
CSIS8601: Probabilistic Method & Randomized Algorithms
Lecture 10: Lovasz Local Lemma (2): Asymptotically Optimal Job Shop Scheduling
Lecturer: Hubert Chan
Date: 25 Nov 2009

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Dominating Random Variables

Definition 1.1 A random variable Z dominates another random variable Y if for all real numbers
� , Pr[Y > � ] ≤ Pr[Z > � ].

Remark 1.2 Observe that the random variables might or might not be independent.

In the last lecture, we saw a random variable Y that is a sum of at most T independent {0, 1}-
random variables, each of which has expectation at most some value p. We compare Y with another
random variable Z, which is a sum of exactly T independent {0, 1}-random variables, each of which
has expectation exactly p. We last time claimed that it is more likely for Z to be larger than Y .
We prove this formally.

Claim 1.3 The random variable Z dominates the random variable Y .

Coupling. Observe that Y and Z could be independent. Hence, it is incorrect to argue that the
event Y > � implies that Z > � . We use the technique of coupling : the idea is to introduce random
variables Ŷ and Ẑ that have the same distributions as Y and Z respectively; however, Ŷ and Ẑ
are correlated so that we can argue about them. In particular, they are not independent.

Suppose Y is a sum of T ′ ≤ T {0, 1}-variables such that the ith one has expectation pi ≤ p.
We define {0, 1}-random variables Ui, Vi, where i ∈ [T ] in the following way. For 0 ≤ i < T ′, we
pick a real number x uniformly at random from [0, 1] independently; set Ui := 1 iff x ≤ pi and
Vi := 1 iff x ≤ p. For i ≥ T ′, set just set Ui := 0 with probability 1, and let Vi := 1 with probability
p.

Define Ŷ :=
∑

i Ui and Ẑ :=
∑

i Vi. Observer that Y and Ŷ have the same distribution, and so

do Z and Ẑ. Moreover, since Ui and Vi are coupled, we always have Ui ≤ Vi. Hence, we also have
Ŷ ≤ Ẑ always.

Hence, we can conclude for all real numbers � that

Pr[Y > � ] = Pr[Ŷ > � ] ≤ Pr[Ẑ > � ] = Pr[Z > � ].

2 Asymptotically Optimal Job Shop Scheduling

In the last lecture, we showed an almost optimal schedule for the job shop problem. Suppose
T := max{C,L}, where C is the maximum number of jobs performed by a machine, and L is
the maximum number of machines required by a job. We showed that there is a schedule with

1



makespan 2O(log∗ T )T , which almost matches the lower bound Ω(T ) for any feasible schedule. In
this lecture, we show it is possible to obtain a schedule with makespan O(T ).

The first step is the same as before. Recall we start with an infeasible schedule S0, which is obtained
by pretending that there is no limit on the number of jobs a machine can handle simultaneously.

We transform schedule S0 into schedule S1, which have the following properties.

1. For each machine, any window of size at least T1 := Θ(log T ) has relative congestion at most
r1 := 1.

2. The makespan is at most P1 := 3T .

Recall last time, after each transformation, we have the invariant that the relative congestion of
windows of a certain size is kept at most 1. We apply a different transformation this time, which
has the following invariant.

For i ≥ 1, we apply a transformation from Si to obtain Si+1 such that the following holds.

1. Let Ti+1 := Θ(logc Ti) for some constant c. For each machine, any window of size between
Ti+1 and 2Ti+1 has relative congestion at most ri+1 := ri ⋅(1+ 1

log Ti
), where c is some universal

constant.

2. The makespan is at most Pi+1 := Pi ⋅ (1 + 1
Ti

).

The recursion continues as long as Ti+1 <
√
Ti (and this also implies Ti+1 <

Ti
6 log Ti

, if Ti is at least
some constant). When the recursion stops, say when i = k, then Tk is at most some constant and
k = O(log∗ T ). Using the recursion for ri and Pi, we show that when the recursion terminates,
both rk and Pk are bounded.

Lemma 2.1 Suppose the recursion stops for some i = k. Then, Tk = O(1); moreover, for the
schedule Sk, the relative congestion for every window of size at least Tk is at most rk = 4 ⋅ r1 and
the makespan is at most Pk = O(1) ⋅ P1.

Proof:

Observe that if Ti is larger than some constant, then Ti+1 = Θ(logc Ti) <
√
Ti. Hence, it follows

that when the recursion terminates for some i = k, Tk is at most some constant.

The result follows if we can show that both
∏
i<k(1 + 1

log Ti
) and

∏
i<k(1 + 1

Ti
) are bounded above

by some constant, where logarithm is base 2 here. Since the first term is larger, we only need to
bound that.

Define ai := 1
log Ti

, for 1 ≤ i < k. We can assume that Tk−1 ≥ 4, otherwise we can terminate early.

It follows that ak−1 ≤ 1
2 . Observe that because of the terminating condition, log Ti+1 <

1
2 log Ti,

i.e., ai <
1
2ai+1.

Hence, it follows that
∑

i<k ai = 1, at most some constant.

Finally,
∏
i<k(1 + 1

log Ti
) =

∏
i<k(1 + ai) ≤

∏
i<k e

ai = e ≤ 4, as required.

2



Hence, it follows that when the recursion terminates, in the schedule Sk, the makespan is at most
Pk and a machine works on at most Tk ⋅ rk = O(1) jobs in one time step. Increasing the time span
with a further factor of Tkrk gives us a feasible schedule with makespan at most O(Pk) = O(T ).

It suffices to show how to transform the schedule from Si to Si+1 that maintains the invariant.

3 Transforming Si into Si+1

We will use similar techniques for the transformation. Recall that in schedule Si, every window of
size at least Ti for every machine as relative congestion at most ri.

Scheduling by Random Delay. We convert the schedule Si into Si+1 in the following way. We
divide the whole time span into blocks of size B := T 2

i . We transform each block separately and
concatenate the results of all the blocks to form schedule Si+1.

We next describe how each block is transformed. For each job Jj , pick an integer xj uniformly at
random from {0, 1, 2, . . . , Ti − 1} independently. Delay all operations for job Jj in the block for xj
time steps. As before, we still allow machines to work on more than 1 job at the same time. As a
result, the makespan of the block can increase from B = T 2

i to T 2
i + Ti, i.e., increases by a factor

of at most (1 + 1
Ti

).

We next show that with positive probability, for some Ti+1 = Θ(logc Ti) (where c is a constant),
all windows of size between Ti+1 and 2Ti+1 for each machine have relative congestion at most
ri+1 := ri ⋅ (1 + 1

log Ti
) after the transformation.

3.1 Applying Lovasz Local Lemma

Recall that we analyze the transformation of a particular block of size B := T 2
i .

Lemma 3.1 There is some Ti+1 = Θ(log3 Ti) such that with positive probability, all windows of
size between Ti+1 and 2Ti+1 for each machine have relative congestion at most ri+1 := ri ⋅(1+ 1

log Ti
)

after the transformation.

Proof: For each machine Mi, define Ai to be the event that there is some window with size at
between Ti+1 and 2Ti+1 for machine Mi that has relative congestion larger than ri+1. We specify
the exact value of Ti+1 later. Observe that from the recursion ri+1 := ri ⋅ (1 + 1

log Ti
), we can deduce

that ri ≤ e < 4.

We next form a dependency graph H = ([n], E) such that {u, v} ∈ E iff both machines Mu and
Mv process the same job. Observe that Ai is independent of all the Aj ’s for which Mi and Mj do
not process any common job.

We estimate the maximum degree of H. Consider machine Mi. Observe that it can process at
most Bri ≤ 4T 2

i jobs. Each of those jobs can go through at most B ≤ T 2
i machines. Hence, the

maximum degree of H is D ≤ 4T 4
i .

We next give an upper bound on Pr[Ai]. Consider a fixed window W of size Ti+1 ≤ � ≤ 2Ti+1 for
machine Mi after the transformation. Observe that since the delay is at most Ti, the jobs being
processed in the window W could possibly come from a window W ′ of � + Ti time steps before the
transformation. By assumption, the relative congestion of W ′ is at most ri. Hence, it follows that

3



the maximum possible number of jobs in the window W is (� + Ti) ⋅ ri. For each of those possible
jobs Jj that is being processed by machine Mi, we define Xj to be the indicator random variable
that takes value 1 if job Jj falls into the window W for machine Mi, and 0 otherwise.

Observe that Xj ’s are independent, because the random delays are picked independently. Moreover,
E[Xj ] = Pr[Xj = 1] ≤ �

Ti
.

Define Y to be the number of jobs that fall into the window W for machine Mi. Then, Y is the
sum of Xj ’s for the jobs Jj that are performed by machine Mi. Note that Y is a sum of at most
(� +Ti)ri independent {0, 1}-independent random variables, each of which has expectation at most
�
Ti

.

We define Z to be a sum of (� + Ti)ri independent {0, 1}-independent random variables, each of
which has expectation exactly �

Ti
. Recall that Z dominates Y and E[Z] = ri�(1 + �

Ti
).

Next we are going to use Chernoff Bound to show that with high probability Y cannot be too big.
Let � := 1

3 log Ti
. Hence, it follows that (1 + �)E[Z] ≤ ri�(1 + 1

log Ti
) = ri+1� . We have used the fact

Ti+1 ≤ Ti
6 log Ti

, which implies that (1 + 1
3 log Ti

) ⋅ (1 + �
Ti

) ≤ (1 + 1
3 log Ti

) ⋅ (1 + 2Ti+1

Ti
) ≤ (1 + 1

log Ti
).

Hence, Pr[Y > ri+1� ] ≤ Pr[Z > ri+1� ] ≤ Pr[Z > (1 + �)E[Z]]. By Chernoff Bound, this is at

most exp(− �2E[Z]
3 ) ≤ exp(− �2Ti+1

3 ). Here, we use E[Z] = ri�(1 + �
Ti

) ≥ Ti+1.

Note that there are trivially at most B2(1 + 1
Ti

)2 = 4T 4
i windows. Hence, using union bound, we

have Pr[Ai] ≤ 4T 4
i ⋅ exp(− �2Ti+1

3 ) =: p.

Hence, in order to use Lovasz Local Lemma, we need 4pD ≤ 1. Therefore, it is enough to have

4T 4
i ⋅ exp(− �2Ti+1

3 ) ⋅ 4T 4
i ≤ 1. We set Ti+1 := 3

�2
⋅ ln(16T 8

i ) = Θ(log3 Ti).

By the Lovasz Local Lemma, Pr[∩iAi] > 0. Hence, the result follows.

4 Algorithmic Version of Lovasz Local Lemma

So far we have only used the existence version of Lovasz Local Lemma: under some limited depen-
dency assumption, with positive probability, none of the bad events happen. However, it does not
tell us how to algorithmically realize such a point in the sample space.

Beck gave a randomized algorithm in the paper “An algorithmic approach to the Lovasz Local
Lemma”. However, the algorithm is involved and we would not cover that in this class.

4


