CSIS8601: Probabilistic Method & Randomized Algorithms Lecture 10: Lovasz Local Lemma (2): Asymptotically Optimal Job Shop Scheduling Lecturer: Hubert Chan Date: 25 Nov 2009

These lecture notes are supplementary materials for the lectures. They are by no means substitutes for attending lectures or replacement for your own notes!

1 Dominating Random Variables

Definition 1.1 A random variable Z dominates another random variable Y if for all real numbers τ , $Pr[Y > \tau] \leq Pr[Z > \tau]$.

Remark 1.2 Observe that the random variables might or might not be independent.

In the last lecture, we saw a random variable Y that is a sum of at most T independent $\{0, 1\}$ random variables, each of which has expectation at most some value p. We compare Y with another random variable Z, which is a sum of exactly T independent $\{0, 1\}$ -random variables, each of which has expectation exactly p. We last time claimed that it is more likely for Z to be larger than Y. We prove this formally.

Claim 1.3 The random variable Z dominates the random variable Y.

Coupling. Observe that Y and Z could be independent. Hence, it is incorrect to argue that the event $Y > \tau$ implies that $Z > \tau$. We use the technique of *coupling*: the idea is to introduce random variables \hat{Y} and \hat{Z} that have the same distributions as Y and Z respectively; however, \hat{Y} and \hat{Z} are correlated so that we can argue about them. In particular, they are not independent.

Suppose Y is a sum of $T' \leq T \{0, 1\}$ -variables such that the *i*th one has expectation $p_i \leq p$.

We define $\{0, 1\}$ -random variables U_i, V_i , where $i \in [T]$ in the following way. For $0 \le i < T'$, we pick a real number x uniformly at random from [0, 1] independently; set $U_i := 1$ iff $x \le p_i$ and $V_i := 1$ iff $x \le p$. For $i \ge T'$, set just set $U_i := 0$ with probability 1, and let $V_i := 1$ with probability p.

Define $\widehat{Y} := \sum_{i} U_i$ and $\widehat{Z} := \sum_{i} V_i$. Observer that Y and \widehat{Y} have the same distribution, and so do Z and \widehat{Z} . Moreover, since U_i and V_i are coupled, we always have $U_i \leq V_i$. Hence, we also have $\widehat{Y} \leq \widehat{Z}$ always.

Hence, we can conclude for all real numbers τ that

$$Pr[Y > \tau] = Pr[Y > \tau] \le Pr[Z > \tau] = Pr[Z > \tau].$$

2 Asymptotically Optimal Job Shop Scheduling

In the last lecture, we showed an almost optimal schedule for the job shop problem. Suppose $T := \max\{C, L\}$, where C is the maximum number of jobs performed by a machine, and L is the maximum number of machines required by a job. We showed that there is a schedule with

makespan $2^{O(\log^* T)}T$, which almost matches the lower bound $\Omega(T)$ for any feasible schedule. In this lecture, we show it is possible to obtain a schedule with makespan O(T).

The first step is the same as before. Recall we start with an infeasible schedule S_0 , which is obtained by pretending that there is no limit on the number of jobs a machine can handle simultaneously.

We transform schedule S_0 into schedule S_1 , which have the following properties.

- 1. For each machine, any window of size at least $T_1 := \Theta(\log T)$ has relative congestion at most $r_1 := 1$.
- 2. The makespan is at most $P_1 := 3T$.

Recall last time, after each transformation, we have the invariant that the relative congestion of windows of a certain size is kept at most 1. We apply a different transformation this time, which has the following invariant.

For $i \geq 1$, we apply a transformation from S_i to obtain S_{i+1} such that the following holds.

- 1. Let $T_{i+1} := \Theta(\log^c T_i)$ for some constant c. For each machine, any window of size between T_{i+1} and $2T_{i+1}$ has relative congestion at most $r_{i+1} := r_i \cdot (1 + \frac{1}{\log T_i})$, where c is some universal constant.
- 2. The makespan is at most $P_{i+1} := P_i \cdot (1 + \frac{1}{T_i})$.

The recursion continues as long as $T_{i+1} < \sqrt{T_i}$ (and this also implies $T_{i+1} < \frac{T_i}{6 \log T_i}$, if T_i is at least some constant). When the recursion stops, say when i = k, then T_k is at most some constant and $k = O(\log^* T)$. Using the recursion for r_i and P_i , we show that when the recursion terminates, both r_k and P_k are bounded.

Lemma 2.1 Suppose the recursion stops for some i = k. Then, $T_k = O(1)$; moreover, for the schedule S_k , the relative congestion for every window of size at least T_k is at most $r_k = 4 \cdot r_1$ and the makespan is at most $P_k = O(1) \cdot P_1$.

Proof:

Observe that if T_i is larger than some constant, then $T_{i+1} = \Theta(\log^c T_i) < \sqrt{T_i}$. Hence, it follows that when the recursion terminates for some i = k, T_k is at most some constant.

The result follows if we can show that both $\prod_{i < k} (1 + \frac{1}{\log T_i})$ and $\prod_{i < k} (1 + \frac{1}{T_i})$ are bounded above by some constant, where logarithm is base 2 here. Since the first term is larger, we only need to bound that.

Define $a_i := \frac{1}{\log T_i}$, for $1 \le i < k$. We can assume that $T_{k-1} \ge 4$, otherwise we can terminate early. It follows that $a_{k-1} \le \frac{1}{2}$. Observe that because of the terminating condition, $\log T_{i+1} < \frac{1}{2} \log T_i$, i.e., $a_i < \frac{1}{2}a_{i+1}$.

Hence, it follows that $\sum_{i < k} a_i = 1$, at most some constant. Finally, $\prod_{i < k} (1 + \frac{1}{\log T_i}) = \prod_{i < k} (1 + a_i) \leq \prod_{i < k} e^{a_i} = e \leq 4$, as required. Hence, it follows that when the recursion terminates, in the schedule S_k , the makespan is at most P_k and a machine works on at most $T_k \cdot r_k = O(1)$ jobs in one time step. Increasing the time span with a further factor of $T_k r_k$ gives us a feasible schedule with makespan at most $O(P_k) = O(T)$.

It suffices to show how to transform the schedule from S_i to S_{i+1} that maintains the invariant.

3 Transforming S_i into S_{i+1}

We will use similar techniques for the transformation. Recall that in schedule S_i , every window of size at least T_i for every machine as relative congestion at most r_i .

Scheduling by Random Delay. We convert the schedule S_i into S_{i+1} in the following way. We divide the whole time span into blocks of size $B := T_i^2$. We transform each block separately and concatenate the results of all the blocks to form schedule S_{i+1} .

We next describe how each block is transformed. For each job J_j , pick an integer x_j uniformly at random from $\{0, 1, 2, \ldots, T_i - 1\}$ independently. Delay all operations for job J_j in the block for x_j time steps. As before, we still allow machines to work on more than 1 job at the same time. As a result, the makespan of the block can increase from $B = T_i^2$ to $T_i^2 + T_i$, i.e., increases by a factor of at most $(1 + \frac{1}{T_i})$.

We next show that with positive probability, for some $T_{i+1} = \Theta(\log^c T_i)$ (where c is a constant), all windows of size between T_{i+1} and $2T_{i+1}$ for each machine have relative congestion at most $r_{i+1} := r_i \cdot (1 + \frac{1}{\log T_i})$ after the transformation.

3.1 Applying Lovasz Local Lemma

Recall that we analyze the transformation of a particular block of size $B := T_i^2$.

Lemma 3.1 There is some $T_{i+1} = \Theta(\log^3 T_i)$ such that with positive probability, all windows of size between T_{i+1} and $2T_{i+1}$ for each machine have relative congestion at most $r_{i+1} := r_i \cdot (1 + \frac{1}{\log T_i})$ after the transformation.

Proof: For each machine M_i , define A_i to be the event that there is some window with size at between T_{i+1} and $2T_{i+1}$ for machine M_i that has relative congestion larger than r_{i+1} . We specify the exact value of T_{i+1} later. Observe that from the recursion $r_{i+1} := r_i \cdot (1 + \frac{1}{\log T_i})$, we can deduce that $r_i \leq e < 4$.

We next form a dependency graph H = ([n], E) such that $\{u, v\} \in E$ iff both machines M_u and M_v process the same job. Observe that A_i is independent of all the A_j 's for which M_i and M_j do not process any common job.

We estimate the maximum degree of H. Consider machine M_i . Observe that it can process at most $Br_i \leq 4T_i^2$ jobs. Each of those jobs can go through at most $B \leq T_i^2$ machines. Hence, the maximum degree of H is $D \leq 4T_i^4$.

We next give an upper bound on $Pr[A_i]$. Consider a fixed window W of size $T_{i+1} \leq \tau \leq 2T_{i+1}$ for machine M_i after the transformation. Observe that since the delay is at most T_i , the jobs being processed in the window W could possibly come from a window W' of $\tau + T_i$ time steps before the transformation. By assumption, the relative congestion of W' is at most r_i . Hence, it follows that the maximum possible number of jobs in the window W is $(\tau + T_i) \cdot r_i$. For each of those possible jobs J_j that is being processed by machine M_i , we define X_j to be the indicator random variable that takes value 1 if job J_j falls into the window W for machine M_i , and 0 otherwise.

Observe that X_j 's are independent, because the random delays are picked independently. Moreover, $E[X_j] = Pr[X_j = 1] \leq \frac{\tau}{T_i}$.

Define Y to be the number of jobs that fall into the window W for machine M_i . Then, Y is the sum of X_j 's for the jobs J_j that are performed by machine M_i . Note that Y is a sum of at most $(\tau + T_i)r_i$ independent $\{0, 1\}$ -independent random variables, each of which has expectation at most $\frac{\tau}{T_i}$.

We define Z to be a sum of $(\tau + T_i)r_i$ independent $\{0, 1\}$ -independent random variables, each of which has expectation exactly $\frac{\tau}{T_i}$. Recall that Z dominates Y and $E[Z] = r_i \tau (1 + \frac{\tau}{T_i})$.

Next we are going to use Chernoff Bound to show that with high probability Y cannot be too big. Let $\epsilon := \frac{1}{3\log T_i}$. Hence, it follows that $(1+\epsilon)E[Z] \le r_i\tau(1+\frac{1}{\log T_i}) = r_{i+1}\tau$. We have used the fact $T_{i+1} \le \frac{T_i}{6\log T_i}$, which implies that $(1+\frac{1}{3\log T_i}) \cdot (1+\frac{\tau}{T_i}) \le (1+\frac{1}{3\log T_i}) \cdot (1+\frac{2T_{i+1}}{T_i}) \le (1+\frac{1}{\log T_i})$. Hence, $Pr[Y > r_{i+1}\tau] \le Pr[Z > r_{i+1}\tau] \le Pr[Z > (1+\epsilon)E[Z]]$. By Chernoff Bound, this is at most $\exp(-\frac{\epsilon^2 E[Z]}{3}) \le \exp(-\frac{\epsilon^2 T_{i+1}}{3})$. Here, we use $E[Z] = r_i\tau(1+\frac{\tau}{T_i}) \ge T_{i+1}$.

Note that there are trivially at most $B^2(1+\frac{1}{T_i})^2 = 4T_i^4$ windows. Hence, using union bound, we have $Pr[A_i] \leq 4T_i^4 \cdot \exp(-\frac{\epsilon^2 T_{i+1}}{3}) =: p.$

Hence, in order to use Lovasz Local Lemma, we need $4pD \leq 1$. Therefore, it is enough to have $4T_i^4 \cdot \exp(-\frac{\epsilon^2 T_{i+1}}{3}) \cdot 4T_i^4 \leq 1$. We set $T_{i+1} := \frac{3}{\epsilon^2} \cdot \ln(16T_i^8) = \Theta(\log^3 T_i)$.

By the Lovasz Local Lemma, $Pr[\cap_i \overline{A_i}] > 0$. Hence, the result follows.

4 Algorithmic Version of Lovasz Local Lemma

So far we have only used the existence version of Lovasz Local Lemma: under some limited dependency assumption, with positive probability, none of the bad events happen. However, it does not tell us how to algorithmically realize such a point in the sample space.

Beck gave a randomized algorithm in the paper "An algorithmic approach to the Lovasz Local Lemma". However, the algorithm is involved and we would not cover that in this class.