CSIS8601: Probabilistic Method & Randomized Algorithms
Lecture 5: Johnson-Lindenstrauss Lemma: Dimension Reduction
Date: 30 Sept 2009

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Dimension Reduction in Euclidean Space

Consider n vectors in Euclidean space of some large dimension. These n vectors reside in an n
dimensional subspace. By rotation, we can assume that n vectors lie in R™. On the other hand, it
is easy to see that n mutually orthogonal unit vectors cannot reside in a space with dimension less
than n.

Moreover, it is not possible to have three mutually almost orthogonal vectors placed in 2 dimensions.

Definition 1.1 We say two unit vectors u and v are e-orthogonal to one another if their dot product
satisfies |u-v| < e.

One might think that n mutually almost orthogonal vectors require n dimensions. Hence, it might
come as a surprise that n vectors that are mutually e-orthogonal can be placed in a Euclidean space
with O(%) dimensions.

Observer that for any three points, if the three distances between them are given, then the three
angles are fixed. Given n — 1 vectors, the vectors together with the origin form a set of n points. In
fact, given any n points in Euclidean space (in n—1 dimensions), the Johnson-Lindenstrauss Lemma
states that the n points can be placed in O(IO#) dimensions such that distances are preserved with

€
multiplicative error ¢, for any 0 < e < 1.

Theorem 1.2 (Johnson-Lindenstrauss Lemma) Suppose U is a set of n points in Fuclidean

space R™. Then, for any 0 < € < 1, there is a mapping f : U — RT, where T = O(lofz,n), such that

forall x,y € U,

(1 =e)llz —yll* < |lf(=) = fFWI? < A +e)llz —yl[*.

Remark 1.3 1. Since for small ¢, (1 +¢€)? = 1+ O(¢) and (1 — €)2 = 1 — O(e), it follows that
the squared of the distances are preserved iff the distances themselves are.

2. Note that ||z — y|| is a norm between 2 vectors in Euclidean space R" and ||f(x) — f(y)|| is
one between 2 vectors in R?. Be careful that, ||z — f(z)]|| is not well-defined.

Corollary 1.4 (Almost Orthogonal Vectors) Suppose ui,ug,...,u, are mutually orthogonal
unit vectors in R™. Then, for any 0 < € < 1, there exists a mapping f : U — RT, where T = O(loe#)

flus)  f(yy)
such that | - mraom! < €

Proof: We apply Johnson-Lindenstrauss’ Lemma with error ¢ to the set U of vectors uy, ug, . .., up
together with the origin to obtain f: U — RT, where T = O(loe%n).

Hence, it follows that for all i, 1 — § < |[f(u;)]|* <1+ §.




Moreover, for i # j, (1 — g)|lui — w;|* < [1f (wi) = ()|l < (1 + §)llui — .

Observe that [Ju; — u;|[* = 2 and [|f(ui) — f(uj)[[* = [[f () [ + || f (u)[]* = 2f (wi) - ().
So, from (1 — §)||u; — ujH2 < |If(u;) — f(uj)||2, we conclude f(u;) - f(u;) < §.

On the other hand, from || f(us) — f(u;)|[* < (1 + §)|Jui — uj]|?, we have f(u;) - f(u;) > —5.

Hence, we have |f(u;) - f(u;)] < §. However, observe that f(u;) and f(u;) might not be unit

vectors. We know that || f(w;)|| - || f(u;)|| > (1 — §)* > . Therefore, we have ]H%Zl f(u];||| <
i) Uj
u

2 Random Projection

For point @, suppose f(x) := (fi(x))ie(r). Then, [|f(z) — FWII® = iy 1fi(2) — fily)*-

We have learned that the sum of independent random variables concentrate around its mean. Hence,
the goal is to design a random mapping f; : U — R such that E[|f;(z) — f;(y)|*] = % - [lz — y||?, in
which case we have E[||f(z) — f(v)||] = ||z — y||?.

Note that f; takes a vector and returns a number. Observe that Euclidean space is equipped with
dot product. Note that dot product with a unit vector gives the magnitude of the projection on
the unit vector. Hence, we can take a random vector r in space R™, and let f; have the form

filx) =71 x.
Suppose we fix two points z and y. Since dot product is linear, we have f;(x) — fi(y) = fi(z — y).
Hence, we consider v := x — y = (vg, v1,...,05—1), and let v := |[v]| = />, v2. Recall the goal is

12 =2

to define f;, and hence find a random vector r such that E[(r-v)?] = 7 - [[v]|? = %.

Using Random Bits to Define a Random Projection For each j € [n], suppose v; €
{—1,41} is a uniform random bit such that 7’s are independent. Define the random vector

7= ﬁ(%,vl, .+ -yYn—1)- Hence, fi(v) = ﬁ Zj V5.

Check that E[(fi(v))?] = %Z] v]2~ = % Hence, we have found the required random mapping
fi :R" - RT.

Remark 2.1 Observe that the mapping f : R® — R” is linear.

3 Proof of Johnson-Lindenstrauss Lemma

We define X; := f;(v)2 = £(3;9v;)% and let Y := 3, X;. Recall B[X;] = % and E[Y] = 2.
Then, the desirable event can be expressed as:

Pr(1—e)llz —yl* < [If(2) = f@II* < A+ O)llz —y[]’] = PrY — E[Y]| < eE[Y]].

The goal is to first find a 7' large enough such that the failing probability Pr[|Y — E[Y]| > eE[Y]]

is at most =5. Since there are (g) such pairs of points, using union bound, we can show that with

probablhty at least , the distances of all pairs of points are preserved.

We again use the method of moment generating function.



3.1 JL as a Measure Concentration Result

Using the method of moment generating function described in previous classes, the failure proba-
bility in question is at most the sum of the following two probabilities.

1. PrlY < (1—ev?] <exp(—t(1 —e)v?) - [[; Elexp(tX;)], for all t < 0.

2. PrlY > (1+ €)v?] < exp(—t(1+ €)v?) - [, Elexp(tX;)], for all ¢ > 0.
We next derive an upper bound for E[e!Xi].

4 Upper Bound for E[eth-]

For notational convenience, we drop the subscript ¢, and write X := %(Z] ijj)Q, where 12 =

> UJZ, where v; € {—1,1} are uniform and independent. Hence, we have

Ble"*] = Blexp(7:(32; 07 + Xz vivvivy))]-
Although the ~;’s are independent, the cross-terms v;7;’s are not. In particular, v;v; and 7,y are
not independent if i = ¢’ or j = 5.

We compare X with another variable X , which we can analyze.
4.1 Normal Distribution

Suppose ¢ is a random variable having standard normal distribution N(0,1), with mean 0 and
variance 1. In particular, it has the following probability density function:
2
1 —z
ﬁe 2, for x € R.

Suppose v is a {—1,1} is a random variable that takes value —1 or 1, each with probability %
Then, the random variables g and v have some common properties.

Fact 4.1 Suppose v is a uniform {—1,1}-random variable and g is a random variable with normal
distribution N (0,1).

For higher moments we have,

1. For oddn >3, E[y"]| = E[¢"] = 0.

2. For evenn >4, 1= ER"| < E[¢"].

Normal distributions have the following important property.



Fact 4.2 Suppose g;’s are independent random variables, each having standard normal distribution

N(0,1). Define Z := Ej gjvj, where vj’s are real numbers. Then, Z has normal distribution
N(0,v?%) with mean 0 and variance v := Y, v?.

We define X := %(Z] g;v;)? and let Z := > 9jvj- Notice that we have Z ~ N(0, v2).
Using Fact 4.1, we can compare the moments of X and X.

Lemma 4.3 Define X and X as above.

1. For all integers n >0, E[X"] < E[X"].

2. Using the Taylor expansion exp(y) =Y =, f—:, we have Elexp(tX)] < Elexp(tX)], fort > 0.

Lemma 4.4 Fort < 5% E[exp(t)?)] <(1- 2332)_%.
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Sketch Proof: Observe that X = 172, where Z has normal distribution N(0,1?).

Hence, it follows that E [et)? | = Elexp(% - Z?)]. We leave the rest of the calculation as a homework
exercise.

Therefore, for ¢t > 0, we conclude that Flexp(tX)] < E[exp(t)?)] <(1- %)_%, for t < %
Claim 4.5 Suppose X := %(ZJ vjv4)%, where v? = > vj2-.

Then, for 0 <t < 555, Elexp(tX)] < (1 — %)_%
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For negative t, we cannot argue that Elexp(tX)] < Elexp(tX)]. However, we can still obtain an

upper bound using another method.
2

Claim 4.6 Fort <0, E[exp(tX)] <1+ % +
Proof:

[NS][¢]
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S
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We use the inequality: for y < 0, e¥ <14y + 92—2
Hence, for ¢ < 0,
Elexp(tX)] < B[l +tX + £X2] = 1+ & 1 L E[X?).
We use the fact that E[X] = % We next obtain an upper bound for E[X?]. From Lemma 4.3, we
have E[X?] < E[X?].
1

Observe that X2 = %—;, where Z has the normal distribution N(0,22). Hence, E[X?2] = 2 ElgY],
where ¢ has the standard normal distribution N(0,1).

Through a standard calculation, we have E[g?] = 3, hence achieving the required bound. [ |
4.2 Finding the right value for t.

We now have an upper bound for E[e/*] and hence we can finish the proof.

Positive t. For t > 0, we have Pr[Y > (1 + €)v?] < exp(—t(1 + €)v?) - [], Elexp(tX;)]

T

< exp(—t(1 4 e)r?) - (1 — 22)=5



where ¢ has to satisfy ¢ < 55 too.

Remark 4.7 In this case, the upper bound is not of the form Elexp(tX;)] < exp(g;(t)). Instead
of trying to find the best value of ¢ by calculus, sometimes another valid value of ¢ is good enough.

We try t := W Tic- In this case, we have (1 — M)_% < V1 + €. Hence,

Prly > (1+e)p?) < (Ve (1 +6)T < exp(—5F),

where the last inequality comes from the fact that for 0 < e < 1,
e“(1+¢€) = exp(}(—e + In(1 + €))) < exp(—5).
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Negative t. For negative ¢, we use the bound E[e!X] <1 + % +
T
-

We can pick any negative t. So, we try t := 2(1+6) .

€ 52 e(l—e
Prly <(1- e)yQ] <[(1- 50T + 8(f+6)2)exp(2((1+6)) )]T
We apply the inequality 1+ 2z < é€*, for any real x to obtain the following upper bound.

lexp(— 55y + s + sed))T < exp(—55).

2

One can check that — (1+6) + (1+E)2 + 2(( )) < 5—2 for0<e<1.

Hence, in conclusion, for 0 < e < 1,

Pr]lY — 12| > ev?] < 2exp(—¢ ) This probability is at most 2, if we choose T := [M}

€

5 Lower Bound

We show that if we want to maintain the distances of n points in Euclidean space, in some cases,
the number of dimension must be at least Q(logn).

5.1 Simple Volume Argument

Consider a set V' = {uy, ug,...,u,} of n points in n-dimensional Euclidean space. For instance, let
u; = %, where e; is the standard unit vector, where the ¢th position is 1 and 0 elsewhere. Then,

for i # j, |Ju; — u;l| = 1.

We show the following result.

Theorem 5.1 Let 0 < e < 1. Suppose f:V — RT such that for all i # j,
1< |[f(ui) = fluj)l] < 1+e.

Then, T is at least Q(logn).

Remark 5.2 Observe that if we have 1 — e < |[f(w;) — f(u;)|| < 1+ €, then we can divide the
mapping by (1 —e€), i.e. f/:= %g Then, we have 1 < |[f/(u;) — f'(u;)|| £ £ =14 O(e).

Proof:

For each 4, consider a ball B(f(u;),1) of radius 3 around the center f(u;). Since for i # j,
| f(u;) — f(uj)]| > 1, the balls are disjoint (except maybe for only 1 point of contact between two



balls).

On the other hand, for all ¢ > 1, ||f(u1) — f(u;)|| < (1 + €). Hence, it follows the big ball
B(f(u1), 2 + €) centered at f(u;) contains all the n smaller balls.

Note that the volume of a ball with radius r in R” is proportional to . Since there are n disjoint
smaller balls in the big ball, the ratio of the volume of the big ball to that of a smaller ball is at
least n.

(

Nof o

€ T
Hence, we have n < I); <57, for e < 1. Therefore, it follows that T > Q(logn). ]
2
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6 Homework Preview
1. Suppose g is a random variable with normal distribution N (0, 1). Prove the following.

(a) For odd n > 1, E[¢g"] = 0.
(b) For even n > 2, E[g"] > 1.

];2
(Hint: Use induction. Let I, := F[¢"] = \/% Jg #"e” 2 dz. Use integration by parts to show
that I,10 = (n+1)1,.)

2. Suppose 7;’s are independent uniform {—1,1}-random variables and g;’s are independent
random variables, each having normal distribution N (0,1). Suppose v;’s are real numbers,
and define X := (3, vjv5)? and X := (> g;v;)?. Show that for all integers n > 1, E[X"] <
E[X"].

3. Suppose Z is a random variable having normal distribution N (0,22). Compute E[e!4*]. For
what values of t is your expression valid?

4. In this question, we investigate if Johnson-Lindenstrauss Lemma can preserve area.

(a) Suppose the distances between three points are preserved with multiplicative error €. Is
the area of the corresponding triangle also always preserved with multiplicative error
O(e), or even some constant multiplicative error?

(b) Suppose u and v are mutually orthogonal unit vectors. Observe that the vectors u and
v together with the origin form a right-angled isosceles triangle with area % Suppose
the lengths of the triangle are distorted with multiplicative error at most e. What is the
multiplicative error for the area of the triangle?

(c) Suppose a set V of n points are given in Euclidean space R". Let 0 < € < 1. Give a
randomized algorithm that produces a low-dimensional mapping f : V — R” such that
the areas of all triangles formed from the n points are preserved with multiplicative error
€. What is the value of T for your mapping? Please give the exact number and do not
use big O notation.

(Hint: If two triangles lie in the same plane (a 2-dimensional affine space) in R"™, then
under a linear mapping their areas have the same multiplicative error. For every triangle,
add an extra point to form a right-angled isosceles triangle in the same plane.)



