
CSIS8601: Probabilistic Method & Randomized Algorithms
Lecture 6: Locality Sensitive Hashing: Nearest Neighbor Search
Lecturer: Hubert Chan
Date: 7 Oct 2009

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Nearest Neighbor Search in Hamming Space

Definition 1.1 Let H = {0, 1}. The d-dimensional Hamming Space Hd consists of bit strings of
length d. Each point x ∈ Hd is a string x = (x0, x1, . . . , xd−1) of zero’s and one’s. Given two points
x, y ∈ Hd, the Hamming distance dH(x, y) between them is the number of positions at which the
corresponding strings differ, i.e.,

dH(x, y) := ∣{i : xi ∕= yi}∣.
Example.

The DNA double helix consists of two strands. The four bases found in DNA are A, C, G and T.
Each type of base on one strand forms a bond with just one type of base on the other strand, with
A bonding only to T, and C bonding only to G. If we use 0 to represent an A-T bond and 1 to
represent a C-G bond, each DNA can be represented as a point in Hamming Space.

Remark 1.2 Given two points x, y ∈ Hd, their Hamming distance dH(x, y) can be computed in
O(d) time.

Definition 1.3 (Nearest Neighbor Search) Given a set P of n points in Hamming Space Hd,
and a query point q ∈ Hd, a nearest neighbor for q in P is a point p ∈ P such that the Hamming
distance dH(p, q) is minimized.

Remark 1.4 (Naive Method) Given a query point q, the Hamming distance dH(p, q) for each
p ∈ P can be computed in time O(d). Hence, it takes O(nd) time to find a nearest neighbor.
Observe that running time is linear in the number n of points in P .

Definition 1.5 (Approximate Nearest Neighbor Search) Given a set P of n points in Ham-
ming Space Hd, approximation ratio c > 1 and a query point q ∈ Hd, a c-nearest neighbor for q in
P is a point p ∈ P such that the Hamming distance dH(p, q) ≤ cdH(p∗, q), where p∗ is a nearest
neighbor of q.

Given a set P of n points in Hd, the goal is to design a data structure to store P such that given a
query point q, an approximate nearest neighbor can be returned in sublinear time o(n). We next
look at a sub-problem that can help us achieve this goal.

Definition 1.6 (Approximate Range Search) Suppose P is a set of n points in Hamming
Space Hd. A range parameter r > 0 and an approximation ratio c > 1 are given. Given a query
point q ∈ Hd, the search with specified range r and approximation ratio c does the following: if there
is some point p∗ ∈ P such that dH(p∗, q) ≤ r, return a point p ∈ P that satisfies dH(p, q) ≤ cr.

1



Remark 1.7 If there is no point p∗ ∈ P such that dH(p∗, q) ≤ r, approximate range search could
still return a point p ∈ P that satisfies r < dH(p, q) ≤ cr.

2 Locality Sensitive Hashing

The algorithm that we describe is due to Indyk and Motwani. Suppose ℱ is a family of hash
function of the form ℎ : Hd → {0, 1}. A hash function ℎ is picked uniformly at random from ℱ .
The idea is that if two points x and y in Hd are close with respect to their Hamming distance, then
the probability that ℎ(x) = ℎ(y) should be higher.

Definition 2.1 For r1 < r2 and p1 > p2, a family ℱ of hash functions is (r1, r2, p1, p2)-sensitive
for Hd if for any x, y ∈ Hd,

1. if dH(x, y) ≤ r1, then Prℱ [ℎ(x) = ℎ(y)] ≥ p1;

2. if dH(x, y) > r2, then Prℱ [ℎ(x) = ℎ(y)] ≤ p2.

We next define a family ℱd of d hash functions. Each is of the form ℎ(i) : Hd → {0, 1}, where
ℎ(i)(x) := xi. In other words, ℎ(i)(x) returns the ith position of a point x.

Lemma 2.2 For x, y ∈ Hd, Prℱd
[ℎ(x) = ℎ(y)] = 1− dH(x,y)

d .

Proof: Let � := dH(x, y). This means x and y differ at exactly � positions. Hence, when a
position i is chosen uniformly at random, the probability that xi = yi is 1 − �

d . It follows that

Prℱd
[ℎ(x) = ℎ(y)] = 1− dH(x,y)

d .

Corollary 2.3 For r > 0, c > 1 and rc ≤ d, the family ℱd is (r, rc, 1− r
d , 1−

rc
d )-sensitive for the

Hamming Space Hd.

We take r1 := r, r2 := cr, p1 := 1− r
d and p2 := 1− rc

d . Since 1 > p1 > p2, we have � := log p1
log p2

< 1.

2.1 Hashing by Dimension Reduction

We use the family ℱd of hash functions to build another family GK of hash functions, where K is a
width parameter to be determined later. A hash function from GK is of the form g : Hd → {0, 1}K .
A hash function g can be picked uniformly at random from GK in the following way.

1. For each k ∈ [K], pick ℎk uniformly at random from ℱd independently.

2. Let g := (ℎk)k∈[K] be the concatenation of the ℎk’s.

For x ∈ Hd, g(x) := (ℎ0(x), ℎ1(x), . . . , ℎK−1(x)).

Hash Table T with Key g. For each point x ∈ Hd, a pointer to the point x can be stored in
a hash table T with the key g(x) ∈ {0, 1}K . The space for the hash table is proportional to the
number of pointers stored. Hence, if there are n points, the space for the hash table T is O(n). Each
computation of g(x) takes O(K) time. Hence, the time for constructing a hash table is O(nK).

2



2.2 Data Structure for Approximate Range Search

Recall we are given a set P of n points in Hd, a range r > 0 and an approximate ratio c > 1. Let
p1 := 1− r

d and p2 := 1− rc
d . Define � := log p1

log p2
< 1.

Let K := log 1
p2

n be the width of hash family GK and L := n� be the number of hash tables in our

data structure. For ease of presentation, we assume that K and L are integers and do not worry
about rounding off fractions.

Construction of Data Structure. For each l ∈ [L], a hash table Tl storing pointers to points in
P is constructed as follows.

1. Pick a function gl from GK uniformly at random.

This requires O(K log d) random bits.

2. For each point x ∈ P , store the pointer to the point x in the hash table Tl using key gl(x).

The space used for the L hash tables is O(Ln) words and the space to store the original n points
is O(nd). The construction time is O(LnK).

The total space is O(n(n� + d)) and the time is Õ(n1+�). The notation Õ hides logarithmic factors
log n.

Query Algorithm. Given a query point q ∈ Hd, a point p ∈ P is returned by the following
algorithm.

1. For each l ∈ [L], compute the key gl(q) and use the key to retrieve points stored in the hash
table Tl.

2. For each retrieved point p, if dH(p, q) ≤ cr, return the point p, and terminate.

3. At most 2L retrieved points will be looked at. If after 2L points, the algorithm still has not
returned a point, the algorithm terminates and does not return a point.

Running time for Query. Since each computation gl(q) takes O(K) time, and each computation
dH(p, q) takes O(d) time, the total time of the algorithm is O(L(K+d)) = Õ(dn�). Observe � < 1.

2.3 Correctness

We show that for each query point q, the algorithm performs correctly with probability at least
1
2−

1
e . Using standard repetition technique, the failure probability can be reduced to �, if we repeat

the whole data structure log 1
� times.

The algorithm behaves correctly means that if there is a point p∗ ∈ P such that dH(p∗, q) ≤ r, a
point p is returned such that dH(p, q) ≤ cr.
Suppose p∗ ∈ P is a point such that dH(p∗, q) ≤ r. The algorithm behaves correctly if both the
following events happen.

3



1. E1: there exists some l ∈ [L] such that gl(p
∗) = gl(q).

2. E1: there exist less than 2L points p such that dH(p, q) > cr and for some l ∈ [L], gl(p) = gl(q).

The event E1 ensures that the point p∗ would be a candidate point for consideration. The event
E2 ensures that there would not be too many bad collision points so that the algorithm does not
terminate before the point p∗ (or other legitimate points) can be found.

We show that Pr[E1] ≤ 1
e and Pr[E2] ≤ 1

2 . By union bound, we can conclude Pr[E1∩E2] ≥ 1
2 −

1
e .

Since dH(p, q) ≤ r, for some fixed l, the probability that gl(p) = gl(q) is at least pK1 = p
log 1

p2

n

1 =

n
− log p1

log p2 = n−� = 1
L .

Hence, Pr[E1] ≤ (1− 1
L)L ≤ 1

e .

Fix l ∈ [L] and a point p such that dH(p, q) > rc. Then, the probability that gl(p) = gl(q) is at
most pk2 = 1

n . Hence, it follows that the expected number of points p such that dH(p, q) > rc and
gl(p) = gl(q) is at most 1.

Hence, the expected number of points p such that dH(p, q) > rc and gl(p) = gl(q) for some l is at
most L. Using Markov’s Inequality, Pr[E2] ≤ 1

2 , as required.

3 From Approximate Range Query to Approximate Nearest Neigh-
bor

The data structure described above can be repeated for different values of r. In particular, define
I :=

⌈
log1+� Δ

⌉
, where Δ := d = maxx,y dH(x, y). For each i ∈ [I], let ri := (1 + �)i, and we build

a data structure Di with range ri and approximation ratio c = 1 + �.

For the query algorithm, we can use binary search to find the smallest i for which the corresponding
data structure Di returns a point.

4


