CSIS8601: Probabilistic Method & Randomized Algorithms
Lecture 6: Locality Sensitive Hashing: Nearest Neighbor Search
Lecturer: Hubert Chan

Date: 7 Oct 2009

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Nearest Neighbor Search in Hamming Space

Definition 1.1 Let H = {0,1}. The d-dimensional Hamming Space H¢ consists of bit strings of
length d. Each point x € H? is a string x = (g, 1, ...,2q—1) of zero’s and one’s. Given two points
z,y € H, the Hamming distance dg(x,y) between them is the number of positions at which the
corresponding strings differ, i.e.,

dr(z,y) = [{i : zi # yi}!-
Example.

The DNA double helix consists of two strands. The four bases found in DNA are A, C, G and T.
Each type of base on one strand forms a bond with just one type of base on the other strand, with
A bonding only to T, and C bonding only to G. If we use 0 to represent an A-T bond and 1 to
represent a C-G bond, each DNA can be represented as a point in Hamming Space.

Remark 1.2 Given two points z,y € H?, their Hamming distance dy(x,y) can be computed in
O(d) time.

Definition 1.3 (Nearest Neighbor Search) Given a set P of n points in Hamming Space H?,
and a query point ¢ € H%, a nearest neighbor for q in P is a point p € P such that the Hamming
distance dg(p, q) is minimized.

Remark 1.4 (Naive Method) Given a query point ¢, the Hamming distance dy(p, q) for each
p € P can be computed in time O(d). Hence, it takes O(nd) time to find a nearest neighbor.
Observe that running time is linear in the number n of points in P.

Definition 1.5 (Approximate Nearest Neighbor Search) Given a set P of n points in Ham-
ming Space H?, approximation ratio ¢ > 1 and a query point ¢ € H%, a c-nearest neighbor for q in
P is a point p € P such that the Hamming distance dg(p,q) < cdy(p*,q), where p* is a nearest
neighbor of q.

Given a set P of n points in H?, the goal is to design a data structure to store P such that given a
query point ¢, an approximate nearest neighbor can be returned in sublinear time o(n). We next
look at a sub-problem that can help us achieve this goal.

Definition 1.6 (Approximate Range Search) Suppose P is a set of n points in Hamming
Space He A range parameter r > 0 and an approrimation ratio ¢ > 1 are given. Given a query
point ¢ € H®, the search with specified range r and approzimation ratio ¢ does the following: if there
is some point p* € P such that dg(p*,q) < r, return a point p € P that satisfies dg(p,q) < cr.

Remark 1.7 If there is no point p* € P such that dy(p*,q) < r, approximate range search could
still return a point p € P that satisfies r < dg(p,q) < cr.

2 Locality Sensitive Hashing

The algorithm that we describe is due to Indyk and Motwani. Suppose F is a family of hash
function of the form h : H¢ — {0,1}. A hash function h is picked uniformly at random from F.
The idea is that if two points = and y in H? are close with respect to their Hamming distance, then
the probability that h(z) = h(y) should be higher.

Definition 2.1 For ry < ro and p1 > p2, a family F of hash functions is (r1,r2,p1, p2)-sensitive
for H® if for any x,y € H?,

1. Zf dH(l',y) S 1, then P’r']-‘[h(l') = h(y)] 2 P1;

2. if dg(z,y) > ra, then Prrlh(z) = h(y)] < pa.

We next define a family Fy of d hash functions. Each is of the form A : H? — {0,1}, where
h()(z) := x;. In other words, h()(x) returns the ith position of a point z.

dg(x,
Lemma 2.2 For 2,y € H%, Prg,[h(z) = h(y) =1 — %'

Proof: Let § := dy(z,y). This means x and y differ at exactly J positions. Hence, when a

position 7 is chosen uniformly at random, the probability that z; = y; is 1 — g. It follows that

Prr, [h(z) = h(y)] = 1 — 2o,)

Corollary 2.3 Forr >0, ¢c> 1 and rc < d, the family Fy is (r,rc,1 — 5,1 — F)-sensitive for the
Hamming Space H.

. 1
We take 71 := 7, 12 :=cr, p1 := 1 — 5 and pp := 1 — %%, Since 1 > p1 > pa, we have p := lgg% <1

2.1 Hashing by Dimension Reduction
We use the family F,; of hash functions to build another family Gx of hash functions, where K is a

width parameter to be determined later. A hash function from G is of the form g : H% — {0, 1}.
A hash function g can be picked uniformly at random from G in the following way.

1. For each k € [K], pick hg uniformly at random from F; independently.

2. Let g := (hi)re|k) be the concatenation of the hy’s.
For x € HY, g(x) := (ho(x), h1(), ..., hx1(x)).

Hash Table T with Key g. For each point z € H?, a pointer to the point = can be stored in
a hash table T' with the key g(z) € {0,1}*. The space for the hash table is proportional to the
number of pointers stored. Hence, if there are n points, the space for the hash table T"is O(n). Each
computation of g(z) takes O(K) time. Hence, the time for constructing a hash table is O(nK).

2.2 Data Structure for Approximate Range Search

Recall we are given a set P of n points in H¢, a range r > 0 and an approximate ratio ¢ > 1. Let

pr:=1—1%and py:=1— 1% Deﬁnep::%<l.

Let K :=log1 n be the width of hash family Gx and L := n” be the number of hash tables in our
p2

data structure. For ease of presentation, we assume that K and L are integers and do not worry

about rounding off fractions.

Construction of Data Structure. For each [€ [L], a hash table T} storing pointers to points in
P is constructed as follows.

1. Pick a function g; from Gx uniformly at random.

This requires O(K log d) random bits.

2. For each point = € P, store the pointer to the point z in the hash table T} using key g¢;(x).

The space used for the L hash tables is O(Ln) words and the space to store the original n points
is O(nd). The construction time is O(LnkK).

The total space is O(n(nf 4+ d)) and the time is O(n'*?). The notation O hides logarithmic factors
log n.

Query Algorithm. Given a query point ¢ € H¢, a point p € P is returned by the following
algorithm.

1. For each [€ [L], compute the key ¢;(q) and use the key to retrieve points stored in the hash
table Tj.

2. For each retrieved point p, if dg(p,q) < cr, return the point p, and terminate.

3. At most 2L retrieved points will be looked at. If after 2L points, the algorithm still has not
returned a point, the algorithm terminates and does not return a point.

Running time for Query. Since each computation g;(q) takes O(K) time, and each computation

dr(p, q) takes O(d) time, the total time of the algorithm is O(L(K +d)) = O(dn”). Observe p < 1.
2.3 Correctness

We show that for each query point g, the algorithm performs correctly with probability at least
% - % Using standard repetition technique, the failure probability can be reduced to ¢, if we repeat

the whole data structure log% times.

The algorithm behaves correctly means that if there is a point p* € P such that dg(p*,q) < r, a
point p is returned such that dg(p,q) < cr.

Suppose p* € P is a point such that dg(p*,q) < r. The algorithm behaves correctly if both the
following events happen.

1. Eq: there exists some [€ [L] such that g;(p*) = qi(q).

2. Ej: there exist less than 2L points p such that dg(p, q) > cr and for some I € [L], g;(p) = ¢i(q).

The event F; ensures that the point p* would be a candidate point for consideration. The event
FE5 ensures that there would not be too many bad collision points so that the algorithm does not
terminate before the point p* (or other legitimate points) can be found.

We show that Pr[E;] < é and Pr[FEs] < % By union bound, we can conclude Pr[E; N Es] > % — %
1

og

—

n
p

for some fixed I, the probability that g;(p) = gi(¢) is at least p& = p, =

M)

Since dg(p,q) <
_logpy
n losps — n =P —=

Hence, Pr[E;] <
Fix [€ [L] and a point p such that dg(p,q) > rc. Then, the probability that g;(p) = gi(q) is at
most pg = % Hence, it follows that the expected number of points p such that dg(p,q) > rc and
91(p) = gi(q) is at most 1.

Hence, the expected number of points p such that dg(p,q) > rc and g;(p) = g;(q) for some [is at
most L. Using Markov’s Inequality, Pr|[Es] < %, as required.

T?
1
Z.

INL ~ 1
1-7)" <.

3 From Approximate Range Query to Approximate Nearest Neigh-
bor

The data structure described above can be repeated for different values of r. In particular, define
I := [logy . Al], where A := d = max, y dy(z,y). For each i € [I], let r; := (1 + ¢€)*, and we build
a data structure D; with range r; and approximation ratio ¢ =1 + €.

For the query algorithm, we can use binary search to find the smallest ¢ for which the corresponding
data structure D; returns a point.

