
CSIS8601: Probabilistic Method & Randomized Algorithms
Lecture 9: Lovasz Local Lemma, Job Shop Scheduling
Lecturer: Hubert Chan
Date: 18 Nov 2009

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Limited Dependency

We have seen how the union bound is used in probabilistic method. Suppose A0, A1, . . . , An−1 are
bad events (not necessarily independent) such that each Pr[Ai] ≤ p. If np < 1, then by union
bound, we conclude that Pr[∪iAi] ≤ np < 1, and hence, with positive probability, none of the bad
events occur. We see that if the events have limited dependency, we can have the same conclusion
under a weaker condition.

Definition 1.1 (Dependency Graph) Suppose A0, A1, . . . , An−1 are events in some probability
space. A dependency graph H = (V,E) is a graph with vertex set V = [n] such that for each i ∈ [n],
if J := {j : {i, j} ∈ E} is the set of neighbors of i, then the event Ai is independent of all the events
{Aj : j ∕∈ J}.
Formally, for any disjoint subsets J1, J2 ⊆ [n] ∖ J ,

Pr[Ai] = Pr[Ai∣(∩j∈J1Aj) ∩ (∩j∈J2Aj)].
Remark 1.2 Observe that the dependency graph is not unique. The complete graph is trivially a
dependency graph, but not a very useful one.

1.1 Example: Monochromatic Subsets

Recall from the first lecture that S1, S2, . . . , Sm are l-subsets of U . We show that if m < 2l−1, then
it is possible to color each element of U BLUE or RED such that none of Si is monochromatic. We
show that if the subsets have limited intersection, then l does not have to depend on m.

Theorem 1.3 (Lovasz Local Lemma) Suppose the collection {Ai : i ∈ [n]} of events has a
dependency graph with maximum degree D ≥ 1. Suppose further that for each i, Pr[Ai] ≤ p, and
4pD ≤ 1. Then, Pr[∪iAi] < 1, i.e., with positive probability, none of the events Ai happens.

Claim 1.4 Suppose each subset Si intersects at most 2l−3 other subsets. Then, it is possible to
color each element of U BLUE or RED such that none of the subsets Si is monochromatic.

Proof: For each element in U , we pick a color uniformly at random. Let Ai be the event that
the subset Si is monochromatic. Then, p := Pr[Ai] = 1

2l−1 .

Observe that the event Ai is independent of all events Aj ’s such that Si ∩ Sj = ∅. Hence, in the
dependency graph H = ([n], E), {i, j} ∈ E iff Si ∩ Sj ∕= ∅. The maximum degree is D ≤ 2l−3.

Hence, 4pD ≤ 4 ⋅ 1
2l−1 ⋅ 2l−3 ≤ 1. By Lovasz Local Lemma, Pr[∪iAi] < 1.

1



2 Proof of Lovasz Local Lemma

We shall prove the following claim.

Claim 2.1 If S ⊆ [n] and i ∕∈ S, then Pr[Ai∣ ∩j∈S Aj ] < 1
2D .

The result follows from the claim because

Pr[∩iAi] =
∏
i Pr[Ai∣ ∩j<i Aj ] > (1− 1

2D )n > 0.

We next prove the claim by induction on the size of S.

Base Case. ∣S∣ = 0. In this case, Pr[Ai∣ ∩j∈S Aj ] = Pr[Ai] ≤ p ≤ 1
4D < 1

2D .

Inductive Step. Suppose the result holds for all S such that ∣S∣ < r, for some r ≥ 1. We now
consider ∣S∣ = r.

Suppose i ∕∈ S. Consider decomposition of S into two sets:

(1) S1 := {j ∈ S : {i, j} ∈ E};
(2) S2 := {j ∈ S : {i, j} ∕∈ E}.
If S1 := ∅, then Pr[Ai∣ ∩j∈S Aj ] = Pr[Ai∣ ∩j∈S2 Aj ]. By the dependency assumption, the latter
quantity equals Pr[Ai] ≤ p < 1

2D .

We next consider S1 ∕= ∅. Hence, ∣S2∣ < r.

Observer that

Pr[Ai∣ ∩j∈S Aj ] =
Pr[Ai ∩ (∩j∈S1Aj)∣ ∩j∈S2 Aj ]

Pr[∩j∈S1Aj ∣ ∩j∈S2 Aj ]
.

We first consider the numerator. First, Pr[Ai∩(∩j∈S1Aj)∣∩j∈S2Aj ] ≤ Pr[Ai∣∩j∈S2Aj ] = Pr[Ai] ≤
p, where the equality in the middle follows from the dependency assumption.

We next consider the denominator. For j ∈ S1, we have Pr[Aj ∣ ∩j∈S2 Aj ] <
1
2D . We can apply

the induction hypothesis because j ∕∈ S2 and ∣S2∣ < r. By the union bound, we conclude that

Pr[∪j∈S1Aj ∣ ∩j∈S2 Aj ] <
∣S1∣
2D ≤

1
2 . Hence, Pr[∩j∈S1Aj ∣ ∩j∈S2 Aj ] >

1
2 .

Therefore, we have Pr[Ai∣ ∩j∈S Aj ] < p
1/2 = 2p ≤ 1

2D , finishing the inductive step of the proof.

3 Job Shop Scheduling

Problem Instance. We are given m jobs J1, J2, . . . Jm and n machines M0,M2, . . . ,Mn−1 with
the following rules.

1. Each job Jj must be processed by some subset of machines in a specific given order. Each job
is processed by a particular machine at most once. For example, job J1 has to be processed
by the machines in the order M6,M1,M5,M3.

2. It takes one unit of time for a machine to process a job during its turn; this is the same over
all machines and jobs. A machine can only process at most 1 job at the same time.

2



Goal. Schedule the jobs among the machines so that the makespan, which is the time for the last
job to be finished, is minimized.

Some Easy Lower Bounds.

In a problem instance, let C be the number of jobs performed by the machine processing the most
number of jobs. Since each machine can only process at most one job in one time step, it cannot
finish before time C.

On the other hand, let L be the number of machines required by the job having the longest machine
sequence. Since each machine takes one time-step to perform a job, the job cannot finish before
time L. Hence, T := max{C,L} is a lower bound on the makespan of the optimal schedule.

3.1 Random Delay

We will use randomness and Lovasz Local Lemma to show there exists a schedule whose makespan
approaches the lower bound asymptotically.

Theorem 3.1 There exists a schedule with makespan 2O(log∗ T )T .

Remark 3.2 Given a positive integer n, log∗ n is the smallest non-negative integer i such that

log
(i)
2 n < 2, i.e., the number of times one can take logarithms before the number drops below 2.

The function log∗ grows very slowly, and in practice it can be considered as a constant. For instance,
log∗ 265536 = 5, where 265536 has more than 19,000 digits in base 10.

Relax Assumption. Suppose we relax the assumption and allow each machine to process more
than 1 job at the same time. However, a job still takes one time-step to be processed by a machine
in the required sequence. Then, there is a relaxed schedule S0 with makespan L. We show how to
convert this infeasible schedule to one that is feasible.

Definition 3.3 In a schedule (not necessarily feasible), the relative congestion of a machine in
some time window is the ratio of number of jobs performed in the window divided by the number of
time steps in the window.

Hence, it follows that if we consider the relaxed schedule S0, the relative congestion of each machine
in the time window of size T is at most 1. Moreover, a schedule is feasible if the relative congestion
of each machine in all time windows with 1 time step is at most 1.

We define T0 := T , and have the following invariant. In schedule Si, each machine in any time
window of size Ti or more has relative congestion at most 1. The goal is to decrease Ti at each
step, at the cost in increasing the makespan.

Scheduling by Random Delay. We convert the schedule S0 into S1 in the following way. For
each job Jj , pick an integer xj uniformly at random from {0, 1, 2, . . . , 2T − 1} independently. Each
job Jj delays for xj time steps before starting as before. As before, we still allow machines to work
on more than 1 job at the same time.

We next show that with positive probability, for some T1 < T , all windows of size T1 or more for
each machine under schedule S1 have relative congestion at most 1.

3



3.2 Applying Lovasz Local Lemma

Lemma 3.4 There is some function f : ℕ→ ℕ where f(n) = Θ(log n) such that with T1 = f(T ),
there is a positive probability that, under schedule S1, for every machine, every window of size T1
or more has relative congestion at most 1.

Proof: For each machine Mi, define Ai to be the event that there is some window with size at
least T1 for machine Mi that has relative congestion larger than 1. We specify the exact value of
T1 later. For the time being, think of T1 = O(log T ).

We next form a dependency graph H = ([n], E) such that {u, v} ∈ E iff both machines Mu and
Mv process the same job. Observe that Ai is independent of all the Aj ’s for which Mi and Mj do
not process any common job.

We estimate the maximum degree of H. Consider machine Mi. Observe that it can process at most
C ≤ T jobs. Each of those jobs can go through at most L ≤ T machines. Hence, the maximum
degree of H is D ≤ T 2.

We next give an upper bound on Pr[Ai]. Consider a fixed window W of size � ≥ T1 for machine Mi.
For each job Jj that is being processed by machine Mi, we define Xj to be the indicator random
variable that takes value 1 if job Jj falls into the window W for machine Mi, and 0 otherwise.

Observe that Xj ’s are independent, because the random delays are picked independently. Moreover,
E[Xj ] = Pr[Xj = 1] ≤ �

2T .

Define Y to be the number of jobs that fall into the window W for machine Mi. Then, Y is the
sum of Xj ’s for the jobs Jj that are performed by machine Mi. Note that Y is a sum of at most T
independent {0, 1}-independent random variables, each of which has expectation at most �

2T .

Introducing Dominating Random Variable Z. We define Z to be a sum of T independent
{0, 1}-independent random variables, each of which has expectation exactly �

2T . Intuitively, Z is
more likely to be larger than Y . (This can be proved formally. We will talk about this in details
in the next lecture.) Observe that E[Z] = �

2 .

Hence, Pr[Y > � ] ≤ Pr[Z > � ] = Pr[Z > 2E[Z]]. By Chernoff Bound, this is at most

exp(−E[Z]
3 ) = exp(− �

6 ) ≤ exp(−T1
6 ). Observe that if we had not used Z to analyze Y , then since

E[Y ] ≤ �
2 , we would have obtained exp(−E[Y ]

3 ) ≥ exp(− �
6 ), i.e., the direction of the inequality is

not what we want.

Note that there are trivially at most (3T )2 windows. Hence, using union bound, we have Pr[Ai] ≤
9T 2 ⋅ exp(−T1

6 ) =: p.

Hence, in order to use Lovasz Local Lemma, we need 4pD ≤ 1. Therefore, it is enough to have
36T 2 exp(−T1

6 ) ⋅ T 2 ≤ 1. We set f(n) := 6 ln(36n4) and T1 := 6 ln(36T 4) = Θ(log T ).

By the Lovasz Local Lemma, Pr[∩iAi] > 0. Hence, the result follows.

Conclusion. We begin with a schedule S0 of makespan at most P0 := T such that every window of
size T0 := T or more for each machine has relative congestion at most 1. After the transformation,
we obtain a schedule S1 of make span at most P1 = 3P0 such that every window of size T1 = f(T0)
or larger for each machine has relative congestion at most 1.

4



3.3 Recursive Transformation

Observe that we can apply the same transformation to schedule S1. In particular, we divide the
total time into windows of size T1, and apply the same transformation separately for each window
to obtain schedule S2, with makespan at most P2 = 3P1 such that for each machine, every window
of size T2 = f(T1) or more has relative congestion at most 1. Here, the function f comes from
Lemma 3.4.

Hence, we have the series T0 := T , P0 := T , and Ti+1 := f(Ti) and Pi+1 := 3Pi. This process can
continue as long as f(Ti) < Ti.

The process stops when f(Tk) ≥ Tk, at which point Tk is at most some constant Kf , which depends
only on the function f . This means in schedule Sk, in each time step, each machine has to deal
with at most Kf of jobs. Hence, it is easy to increase the makespan by a further Kf factor to
make the schedule feasible. It follows that we have a feasible schedule with makespan at most
Kf ⋅ Pk = O(3k ⋅ T ).

It remains to bound the value of k ≤ min{i : f (i)(T ) ≤ Kf}. Since f(T ) = Θ(log T ), it follows that
k = O(log∗ T ). Hence, we have a feasible schedule with makespan 2O(log∗ T )T , proving Theorem 3.1.

4 Homework Preview

1. Calculation Involving log∗. In this question, you are asked to complete the details of some
calculations.

(a) Deriving Kf . Suppose f(t) := 6 ln(36t4). Derive a constant Kf > 0 such that f(t) ≥ t
implies that t ≤ Kf .

(b) Suppose k := min{i : f (i)(T ) ≤ Kf}. Prove that k = O(log∗ T ).

(Hint: Make use of big-O notation carefully and avoid messy calculations.)

2. Packet Routing in a Graph. We describe a problem that is closely related to job shop
scheduling.

Problem Instance. Suppose G = (V,E) is a directed graph. We are given m source-
sink pairs {(sj , tj) : j ∈ [m]}. We wish to send one data packet from each source to its
corresponding sink.

(a) For each j ∈ [m], a packet must be sent from sj to tj via some specific path Pj . Each
path Pj is simple: this means each (directed) edge appears at most once in Pj .

(b) It takes one unit of time for a data packet to be sent through a directed edge. An edge
can only allow at most 1 data packet to be sent at any time.

Goal. Schedule the packets to be sent in the graph so that the makespan, which is the time
for the last packet to arrive at its sink, is minimized.

Show that the packet routing problem can be reduced to the job shop scheduling problem. In
particular, given an instance of the packet routing problem, construct an instance of the job

5



shop scheduling problem such that there exists a packet schedule with makespan T iff there
exists a job shop schedule with makespan T .

6


