1 Derandomization by Conditional Expectation

In the last lecture, we saw randomized algorithms for MAX CUT and MAX 3-SAT. In each of these algorithms, there is an underlying random process involving some random variables $X_0, X_1, \ldots, X_{n-1}$, and we have computed the expectation of some objective value Y, which is a function on those random variables.

We show that under some very general conditions, the randomized algorithm can be derandomized, i.e., there is some deterministic algorithm that finds values $X_0 := x_0, X_1 := x_1, \ldots, X_{n-1} := x_{n-1}$ such that the objective value Y is at least its expectation.

1.1 Principle of Conditional Expectation

The success of the derandomization method depends on the following conditions.

Sufficient Conditions

1. The objective value Y is a function of the random variables $X_0, X_1, X_2, \ldots, X_{n-1}$, i.e., if the values of the random variables are known, then the value of Y is uniquely determined.

2. Given a partial assignment $X_{[i]} := x_{[i]}$ for $1 \leq i \leq n$, the conditional expectation $E[Y|X_{[i]} = x_{[i]}]$ can be computed efficiently.

We show that when such conditions are met, it is possible to find values $x_{[n]} := (x_0, x_1, \ldots, x_{n-1})$ for the random variables $X_{[n]} := (X_0, X_1, \ldots, X_{n-1})$ such that the objective value Y is at least its expectation $\mu := E[Y]$.

1. **Initialization.** We begin when none of the random variables has been assigned any values, i.e. $i := 0$. We have the invariant: $E[Y|X_{[i]} = x_{[i]}] \geq \mu$. The left hand side is simply $E[Y]$.

2. **Assigning Value to One More Random Variable X_i.** Suppose for some $0 \leq i < n$, we already have the assignment $X_{[i]} := x_{[i]}$ and the invariant $E[Y|X_{[i]} = x_{[i]}] \geq \mu$. We show the following claim.

 Claim 1.1 There exists some assignment $X_i := x_i$ such that $E[Y|X_{[i+1]} = x_{[i+1]}] \geq \mu$.

 Proof: Conditioning on the value of X_i, we have

1Recall we denote $[i] := \{0, 1, 2, \ldots, i-1\}$, and $[0] := \emptyset$.

\[E[Y|X[i] = x[i]] = \sum_x Pr(X_i = x|X[i] = x[i]) E[Y|X[i] = x[i] \land X_i = x], \]

where the summation is over the values \(x \) that \(X_i \) can take. Observe that by the invariant, that the left hand side is at least \(\mu \). Hence, it follows that there exists some \(x \) such that \(E[Y|X[i] = x[i] \land X_i = x[i]] \geq \mu \). \(\blacksquare \)

For each \(x \), we test if \(E[Y|X[i] = x[i] \land X_i = x[i]] \geq \mu \) and find such an \(x \).

We assign \(X_i := x_i \).

3. This continues until \(i = n \), when all random variables have received their values. In this case, we have \(E[Y|X[n] = x[n]] \geq \mu \), which means that under those values, the objective value \(Y \) is at least \(\mu \).

1.2 Derandomization for MAX CUT

Given a graph \(G = (V, E) \), where \(V := [n] \) is labeled by \(n \) integers. The randomized algorithm essentially assigns independently for each vertex \(i \), a random variable \(X_i \) taking values uniformly in \(\{0, 1\} \) (each with probability \(\frac{1}{2} \)). The cut can be defined by \(C := \{i: X_i = 1\} \).

The number \(Y \) of edges in the cut is a function of the random variables \(X_0, X_1, \ldots, X_{n-1} \). For each edge \(e = \{i, j\} \in E \), define \(Y_e \) to be 1 if \(X_i \neq X_j \) and 0 if \(X_i = X_j \). Then, \(Y := \sum_{e \in E} Y_e \).

It suffices to show that given a partial assignment \(X[i] := x[i] \), the conditional expectation \(E[Y|X[i] = x[i]] \) can be computed efficiently. By linearity of expectation, it is enough to consider, for each edge \(e = \{u, v\} \in E \), the quantity \(E[Y_e|X[i] = x[i]] \). There are 3 cases to consider.

1. If none of \(X_u \) or \(X_v \) is assigned a value yet, the conditional expectation of \(Y_e \) is \(\frac{1}{2} \), as before.
2. If exactly one of \(X_u \) and \(X_v \) is assigned a value, check that the conditional expectation \(Y_e \) is also \(\frac{1}{2} \).
3. If both of \(X_u \) and \(X_v \) already have been assigned values, then \(Y_e \) is 1 if they receive different values and 0 otherwise.

The running time of the derandomization algorithm is \(O(mn) \), where \(m \) is the number of edges.

1.3 Derandomization of MAX 3-SAT

The argument is similar. The important part is given a partial assignment of variables, what is the (conditional) probability that a clause is satisfied? There are some cases to consider:

1. If the partial assignment makes the clause satisfied, then it is 1;
2. if there are 3 unassigned variables in the clause, then it is \(\frac{7}{8} \);
3. if there are 2 unassigned variables in the clause, then it is \(\frac{3}{4} \);
4. if there is 1 unassigned variable in the clause, then it is \(\frac{1}{2} \);
5. if there is no more unassigned variables in the clause, then it is 0.

One can check that for \(m \) clauses in \(n \) variables, the derandomized procedure takes time \(O(mn) \).

2 Graphs with No Short Cycles: Method of Alteration

When we use the probabilistic method, after we run the experiment, sometimes we have to make minor alteration to the outcome in order to obtain a desirable solution. We demonstrate this method by considering the number of edges in a graph with no short cycles.

Definition 2.1 An undirected graph \(G = (V,E) \) contains a cycle of length \(l \) if there are \(l \) vertices \(v_1, v_2, \ldots, v_l \) such that all \(l \) edges \(\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{l-1}, v_l\}, \{v_l, v_1\} \in E \) are present. The minimum length of a cycle is 3; note that there is no cycle of length 2.

Question. Suppose a graph has no cycles of length \(l \) or less. What is the maximum number of edges that it can have?

Observe that we are trying to optimize two conflicting objectives: adding more edges means eventually creating short cycles. In the extreme case, in a complete graph, every 3 points form a 3-cycle.

Theorem 2.2 There exists an \(n \)-vertex graph with no cycles of length \(l \) or less that has at least \(\Omega(n^{1 + \frac{1}{l-1}}) \) edges.

We proof the special case for \(l = 3 \). The general case will appear in a homework question.

Definition 2.3 (Random Graph \(G_{n,p} \)) Consider the following experiment. Let \(V \) be a set of \(n \) vertices. We form a random graph \((V,E) \) in the following way. For each unordered pair \(\{u,v\} \in \binom{V}{2} \), independently add an edge between \(u \) and \(v \) with probability \(p \), i.e., \(\Pr(\{u,v\} \in E) = p \). The resulting graph is known as \(G_{n,p} := (V,E) \).

Note that for any graph \(G \) with index set \(V \), \(\Pr(G_{n,p} = G) > 0 \). Our candidate graph could be generated by the process. If we want more edges, then \(p \) should be large; if we do not want short cycles, then \(p \) should be small. We will find the best value of \(p \) to balance between the two requirements.

2.1 Without alteration: How lucky can we be?

Our best hope is to prove that with non-zero probability, both of the following events \(A \) and \(B \) happen. Event \(A \) is the event that \(G_{n,p} \) has a large number \(X \) of edges. Event \(B \) is the event that there are no triangles in \(G_{n,p} \).

Consider event \(B \) first. Group the \(n \) vertices into \(\frac{n}{3} \) groups, each of size 3. (For the time being, assume \(n \) is divisible by 3.) Look at one such group. The probability that there is no triangle between 3 vertices is \((1 - p^3) \). The probability that this holds for all \(\frac{n}{3} \) groups is \((1 - p^3)^{n/3} \). Hence, \(\Pr(B) \leq (1 - p^3)^{n/3} \), which is quite small (exponentially small with respect to \(n \)).

Note that the events \(A \) and \(B \) are not independent. If we want to use the union bound \(\Pr(\overline{A} \cup \overline{B}) \leq \Pr(\overline{A}) + \Pr(\overline{B}) \) to give an upper bound on the failure probability, we would need to prove something
like the failure probability \(Pr(\overline{A}) \) is less than \((1 - p^3)^{n/3}\). Since this is small, it is difficult to show that the number of edges \(X \) is large using this approach.

Consider another approach. Although with high probability, there would exist a triangle, the number \(Y \) of triangles is not too big. Here is an idea. We run the experiment and form \(G_{n,p} \). Let \(X \) be the number of edges and \(Y \) be the number of triangles. We pick one edge from each triangle and remove it. In the worst case, we remove \(Y \) edges from the graph. After this alteration, the graph would have no triangles, and the number of edges in the remaining graph is at least \(Z := X - Y \). By choosing the probability \(p \) carefully, we show that with non-zero probability, \(Z \) is large.

First observe the following quantities.

Claim 2.4 We have the following.

1. \(E[X] = \binom{n}{2}p \)
2. \(\text{var}[X] = \binom{n}{2}p(1 - p) \)
3. \(E[Y] = \binom{n}{3}p^3 \).

Proof: The first two results follow from the fact that \(X \) has a binomial distribution with \(n \) objects and probability \(p \). The last result follows from the fact that there are \(\binom{n}{3} \) ways to form a cycle in a graph, and the probability that each of them is formed is \(p^3 \).

We can proceed in two ways: (1) using probability or (2) using expectation.

2.2 By Probability

Suppose we can show the following:

1. For some \(\alpha > 0 \), \(Pr(X < E[X] - \alpha) < \frac{1}{2} \).
2. For some \(\beta > 0 \), \(Pr(Y > \beta) < \frac{1}{2} \).

Using union bound, we know that with non-zero probability neither events happen, and in that case, we have \(Z := X - Y \geq E[X] - \alpha - \beta \).

We first choose \(p \) such that \(E[X] \geq 4E[Y] \). Observe that we can choose \(p := \sqrt{\frac{3}{8n}} \). Check that \(E[X] = \Theta(n^{1.5}) \).

For the first event, observe by Chebyshev’s inequality, \(Pr(X < E[X] - \alpha) \leq Pr(|X - E[X]| > \alpha) < \frac{\text{var}[X]}{\alpha^2} \leq \frac{(\binom{n}{2})p}{\alpha^2} \). The last quantity is at most \(\frac{1}{2} \), if we set \(\alpha := \sqrt{2 \binom{n}{2}p} = \Theta(n^{0.75}) \).

For the second event, by Markov’s inequality, if we set \(\beta := 2E[Y] \), then \(Pr[Y > \beta] < \frac{1}{2} \).

Hence, it follows that with non-zero probability, we have

\[
Z := X - Y \geq E[X] - \alpha - 2E[Y] \geq E[X] - \alpha - \frac{1}{2}E[X] = \frac{E[X]}{2} - \sqrt{2 \binom{n}{2}p} \geq \Omega(n^{1.5}).
\]
2.3 By Expectation

We choose p such that $E[X] \geq 2E[Y]$. We can set $p := \frac{\sqrt{3}}{4n}$. Check that $E[X] = \Theta(n^{1.5})$.

Then, it follows that

$$E[Z] = E[X] - E[Y] \geq E[X] - \frac{E[X]}{2} = \frac{E[X]}{2} = \Omega(n^{1.5}).$$

Remark 2.5 Note that this is not the best result for triangle-free graphs. Consider a complete bipartite graph with $\frac{n}{2}$ vertices on each side. Then, the graph has no triangles and has $\Omega(n^2)$ edges. However, we obtain a weaker result using the probabilistic method to illustrate how a similar result could be proved for general l.

2.4 General Case

The general case would appear as a homework problem. If you would like a head start to work on the next homework, here is a preview.

1. **Graphs with No Short-Cycles.** In this question, we show the following result. For each $l \geq 3$, and $n \geq 2^{l-1}$, there exists a graph, with n vertices and no cycles of length l or less, that has $\Omega(n^{1+\frac{1}{l-1}})$ edges.

 (a) Consider the random graph $G_{n,p}$, where $p \geq \frac{2}{n}$. For $3 \leq i \leq l$, let Y_i be the number of length-i cycles in $G_{n,p}$. Compute $E[Y_i]$.

 (b) Let $Y := \sum_{3 \leq i \leq 1} Y_i$. Show that $E[Y] \leq (np)^l$.

 (c) By choosing an appropriate value of p, prove that there exists an n-vertex graph, with no cycles of length l or less, that has $\Omega(n^{1+\frac{1}{l-1}})$ edges.

 (d) Derandomize the above procedure, i.e., give a deterministic algorithm that returns a graph with the desired properties. Analyze the running time of your algorithm.