
CSIS0351/CSIS8601: Randomized Algorithms
Lecture 3: Set Cover: Randomized Rounding
Lecturer: Hubert Chan
Date: 15 Sept 2011

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Set Cover

Consider the following problems.

1. Suppose there is a set U of n households that wish to receive TV signals. Moreover, there
are m possible locations to install signal amplifiers such that at location j, the amplifier can
cover households in some subset Sj ⊆ U . What is the minimum number of amplifiers that
are sufficient to cover every household?

2. Suppose a buyer wants to purchase a complete set U of n cards. The cards are sold as m
possible bundles such that for bundle j, the price is c(j) and it includes a subset Sj ⊆ U
of cards. What is the minimum cost the buyer needs to pay such that he can collect one
complete set of cards?

These problems can be formulated in terms of the Set Cover Problem.

Definition 1.1 (Set Cover (Unweighted Version)) Consider the following problem.

Input: A set U of n elements; a collection {Sj : j ∈ [m]} of m subsets of U .
Output: A feasible subset C ⊆ [m] such that the sub-collection {Sj : j ∈ C} covers U , i.e.,
∪j∈CSj = U . We wish to minimize the cost |C| of the solution, which is the number of subsets used
to cover U .
Definition 1.2 (Set Cover (Weighted Version)) Consider the following problem.

Input: A set U of n elements; a collection {Sj : j ∈ [m]} of m subsets of U such that Sj has cost
c(j).

Output: A feasible subset C ⊆ [m] such that the sub-collection {Sj : j ∈ C} covers U , i.e.,
∪j∈CSj = U . We wish to minimize the cost

∑
j∈C c(j) of the solution, which is the total cost of the

subsets used to cover U .
Observe that the unweighted version is a special case of the weighted version, in which every subset
has cost 1. We first concentrate on the unweighted version of the problem. The techniques can be
applied to the weighted version in a similar fashion.

Definition 1.3 (Approximation Ratio) An approximation algorithm for a cost minimization
problem is said to have approximation ratio ρ ≥ 1 if for any instance of the problem, the algorithm
returns a feasible solution with cost at most ρ·OPT, where OPT is the optimal cost for that instance.

1

Unfortunately, a result of Feige’s [Fei98] states that there is no efficient algorithm for set cover with
approximation ratio less than lnn, assuming P 6= NP .

Theorem 1.4 (Hardness of Set Cover [Fei98]) For all 0 < ε < 1, it is NP-hard to approxi-
mate the Set Cover Problem with approximation ratio (1− ε) lnn.

In view of the hardness result, we aim for approximation ratio Θ(log n) for the Set Cover Problem.

2 Approximation Algorithm via Linear Programming

We first consider an equivalent reformulation of the problem. Suppose we are given an instance of
the problem, i.e., we have a set U of n elements and a collection {Sj : j ∈ [m]} of m subsets.

For each j ∈ [m], we assign an indicator variable xj ∈ {0, 1} such that if we want to use the subset
Sj , we set xj := 1 and otherwise xj := 0. Then, the total number of subsets used is

∑
j∈[m] xj .

However, observe that the variables xj ’s have to satisfy some constraint. In particular, each element
g ∈ U needs to be covered by at least one subset. Hence, out of the subsets Sj ’s that contain g,
at least one of the corresponding variables xj ’s has to be 1. Therefore, we have the condition∑

j:g∈Sj
xj ≥ 1, for all g ∈ U . We have the following integer linear program formulation for the

given instance.

(1) Integer Linear Program Formulation

OPT := min
∑

j∈[m] xj
∀g ∈ U :

∑
j:g∈Sj

xj ≥ 1

∀j ∈ [m] : xj ∈ {0, 1}

This is exactly the same problem as before, and hence it is still hard to solve. The hardness of the
problem is actually because of the integer constraints xj ∈ {0, 1}, for all j ∈ [m]. If we relax the
constraint to such that xj can take any non-negative reals xj ≥ 0, we obtain a linear relaxation of
the problem.

(2) Linear Program Relaxation

LP := min
∑

j∈[m] xj
∀g ∈ U :

∑
j:g∈Sj

xj ≥ 1

∀j ∈ [m] : xj ≥ 0

Here are some questions one might ask: Why do we relax the integer constraint? How does this
affect the cost of the solution?

1. After relaxing the integer constraints xj ∈ {0, 1} to xj ≥ 0, the linear program can be solved
efficiently, i.e., non-negative values (possibly fractional) for xj ’s can be found efficiently such
that the objective function is minimized.

A Note on LP Solver. The interested reader can refer to the lp solve package in the
following link: http://lpsolve.sourceforge.net/5.5/

2

2. Observe that every feasible solution for (1) is also feasible for (2). Hence, if OPT is the
optimal cost for (1) and LP is the optimal cost for (2), we have LP ≤ OPT. Note that if the
minimum for (2) is attained only at some fractional solution, then LP < OPT.

3. We could be relax xj ∈ {0, 1} to 0 ≤ xj ≤ 1. However, xj ≤ 1 is unnecessary because since
we only need to satisfy constraint of the type

∑
j:e∈Sj

xj ≥ 1, there is no need to assign values
greater than 1 to any variable.

Although we can solve the Linear Program Relaxation (2), the fractional solution does not solve
our original problem. For instance, if x2 = 1

2 , what does it mean to use half of the set S2? However,
the fractional solution gives us a clue on how to pick the subsets. In particular, we can try the
following randomized approach: if xj = p for some p ∈ [0, 1], then we can include Sj in our solution
with probability p.

3 Randomized Rounding

We consider the method of randomized rounding, which was first used by Raghavan and Thompson
in [RT87].

3.1 First Attempt

Given an instance of set cover, we consider the Linear Program Relaxation (2), and use an LP
solver to obtain an optimal solution {xj} to the (2). We perform the following rounding procedure.

Simple Rounding Procedure

1. For each j ∈ [m], independently pick Sj with probability xj , i.e., include j in C with proba-
bility xj . (Observe that for an optimal LP solution, we must have 0 ≤ xj ≤ 1.)

2. Return C as a candidate solution.

We first analyze the expected size of C. Since each subset Sj is picked with probability xj , it follows
that the expected size of C is exactly

∑
j∈[m] xj = LP, which is at most OPT. This is good news,

as the expected size of C is at most the optimal (feasible) solution of the original problem.

However, the problem is that C might not be feasible. In fact, most probably there is some element
that is not covered by the subsets indicated by C. Let us first try to obtain an upper bound on the
probability that a particular element g is not covered.

Observe that element g is not covered exactly when all the subsets Sj containing g are not picked,
and this happens with probability

∏
j:g∈Sj

(1 − xj) ≤
∏

j:g∈Sj
exp(−xj) = exp(−

∑
j:g∈Sj

xj) ≤
exp(−1). The last inequality holds because the xj ’s form a feasible solution to the LP relaxation
and hence

∑
j:g∈Sj

xj ≥ 1.

3.2 Second Attempt

We know that in the Simple Rounding Procedure, for each element g, the probability that it is not
covered is at most 1

e . Suppose we repeat the Simple Rounding Procedure T times independently.

3

In particular, we do the following.

1. For t = 1, 2, . . . , T , do:
Run the Simple Randomized Procedure to obtain cover Ct.

2. Return Ĉ := ∪Tt=1Ct.

In other words, we return the cover indexed by Ĉ, which is the union of all the Ct’s returned in the
repeated runs.

Note that a subset can be repeated several times. However, we still have the upper bound E[|Ĉ|] ≤
T · LP ≤ T · OPT. Let B1 be the event that |Ĉ| ≥ 4T · OPT. Then, by Markov’s inequality,
Pr[B1] ≤ 1

4 .

The probability that an element g is not covered by Ĉ is at most (1e)T . This is at most 1
4n if we

pick T := ln 4n. Let B2 be the event that there exists some element which is not covered by Ĉ.
Then, Pr[B2] ≤ 1

4 , by the union bound over all elements in U .

It follows that Pr[B1 ∪B2] ≤ 1
2 . Hence, with probability at least 1

2 , the subsets {Sj : j ∈ Ĉ} cover
all elements in U , and the number of subsets used is at most 4T · OPT = 4 ln 4n ·OPT .

Currently, the failure probability is at most 1
2 . Do you know how to decrease the failure probability

to arbitrary δ > 0?

4 Greedy Algorithm

We can also compute a set cover by the following greedy algorithm.

Greedy Algorithm. Initialize C := ∅ and V := U . (The variable C holds the indices of the subset
chosen so far, and V is the set of covered elements in U .) While V is non-empty, find a subset Sj
such that |V ∩ Sj | is maximized; set C := C ∪ {j} and V := V \ Sj . Return C when V is empty.

Theorem 4.1 Suppose B := maxj |Sj |. Then, the greedy algorithm gives lnB + 1 approximation
ratio.

Dual Variables. In order to analyze the greedy algorithm, we use some auxiliary variables. Recall
that the set cover problem can be formulated as an integer program.

OPT := min
∑

j∈[m] xj
∀g ∈ U :

∑
j:g∈Sj

xj ≥ 1

∀j ∈ [m] : xj ∈ {0, 1}

In the LP literature, the xj ’s are known as the primal variables. For each inequality, we consider
a variable yg, for each g ∈ U . The yg’s are known as dual variables that assist the analysis.

We consider the greedy algorithm again, but this time we assign values to the dual variables for
book keeping. Suppose initially all variables are set to 0. When some subset Sj is selected by the
algorithm, i.e. when we include j in C. At this point, for each g ∈ Sj ∩ V , we set yg := 1

|Sj∩V | .

4

Claim 4.2 When the greedy algorithm terminates, the number of subsets chosen is
∑

g∈U yg.

We next analyze the dual variables. For each integer n, we denote H(n) :=
∑n

r=1
1
r ≤ lnn+ 1.

Theorem 4.3 Suppose Sj is some subset such that |Sj | = Bj. Then, when the greedy algorithm
terminates,

∑
g∈Sj

yg ≤ H(Bj).

Proof: Consider the elements in Sj . Initially, all of them are uncovered. Look at the moment
when any element in Sj are being covered at the first time. This must be caused by the inclusion
of some subset S′ (which may or may not be Sj).

However, since S′ is chosen, we know that it must contain at least as many uncovered elements as
Sj , i.e., |S′ ∩ V | ≥ |Sj ∩ V | = Bj .

At this point, for all g ∈ Sj ∩ S′, we assign yg := 1
|S′∩V | ≤

1
Bj

.

Hence, if k elements in Sj ∩S′ are covered in this step, all those k corresponding variables yg’s will
receive a value at most 1

Bj
. However, we use a looser upper bound

∑
g∈Sj∩S′ yg ≤ 1

Bj
+ 1

Bj−1 + · · ·+
1

Bj−k+1 .

Observe now that Sj contains Bj − k uncovered elements. Using the same argument, next time
another element g from Sj is covered, the corresponding variable yg will receive a value at most

1
Bj−k .

Continuing the argument, it follows that eventually we have
∑

g∈Sj
yg ≤ 1

Bj
+ 1

Bj−1 + . . .+ 1
2 + 1 =

H(Bj).

Theorem 4.4 Suppose B := maxj |Sj | = maxj Bj. Then,
∑

g∈U yg ≤ H(B) · OPT.
Proof: Consider an optimal solution given by xj ’s such that

∑m
j=1 xj = OPT.

Observe that since the xj ’s form a feasible cover, for all g ∈ U ,
∑

j:g∈Sj
xj ≥ 1.

Hence, the greedy algorithm returns a cover with size∑
g∈U yg ≤

∑
g∈U yg

∑
j:g∈Sj

xj =
∑

g∈U
∑

j:g∈Sj
ygxj .

We change the order of summation, this equals∑m
j=1

∑
g∈Sj

ygxj =
∑m

j=1 xj
∑

g∈Sj
yg ≤

∑m
j=1 xj · H(B), where the last inequality follows from

Theorem 4.3.

Since
∑m

j=1 xj = OPT, the result follows.

5 Homework Preview

1. Better Approximation Ratio for Set Cover. In the lecture notes, a randomized algo-
rithm to achieve approximation ratio 4 ln 4n is described. We show that if we increase the
number of repetitions slightly, we can actually achieve a better ratio. We assume that the
number of elements in U is large enough, say n ≥ 20.

(a) Suppose we repeat the Simple Rounding Procedure for T := lnn+λ ln lnn times, where
λ > 0 is some number we determine later. Suppose Ĉ is the index set of the cover

5

returned from the repeated runs, and we want approximation ratio ρ, for some ρ > 1
which we want as small as possible. Let B1 be the event that |Ĉ| ≥ ρ ·OPT. Show that
if you set ρ := lnn+ 2λ ln lnn+ 2, then Pr[B1] ≤ 1− 1

lnn .

(b) Let B2 be the event that there is some element that is not covered by Ĉ. What value
should λ take such that the Pr[B2] ≤ 1

(lnn)2
?

(c) What is the approximation ratio ρ (in terms of only n) of the resulting algorithm? Can
you give an upper bound on the failure probability? Failure means either there is some
element in U that is not covered or the cover Ĉ is too large.

(d) Given any arbitrary 0 < δ < 1, how can you obtain the same approximation ratio, but
with failure probability at most δ? How many times in total do you have to run the
Simple Rounding Procedure?

References

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

[RT87] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

6

