
COMP8601: Advanced Topics in Theoretical Computer Science
Lecture 2: Derandomization, More on Probabilistic Method
Instructor: Hubert Chan
Date: 5 Sept 2013

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Derandomization by Conditional Expectation

In the last lecture, we saw randomized algorithms for MAX CUT and MAX 3-SAT. In each of these
algorithms, there is an underlying random process involving some random variablesX0, X1, . . . , Xn−1,
and we have computed the expectation of some objective value Y , which is a function on those
random variables.

We show that under some very general conditions, the randomized algorithm can be derandomized,
i.e., there is some deterministic algorithm that finds values X0 := x0, X1 := x1, . . . , Xn−1 := xn−1
such that the objective value Y is at least its expectation.

1.1 Principle of Conditional Expectation

The success of the derandomization method depends on the following conditions.

Sufficient Conditions

1. The objective value Y is a function of the random variables X0, X1, X2, . . . , Xn−1, i.e., if the
values of the random variables are known, then the value of Y is uniquely determined.

2. Given a partial assignment1 X[i] := x[i] for 1 ≤ i ≤ n, the conditional expectation E[Y |X[i] =
x[i]] can be computed efficiently.

We show that when such conditions are met, it is possible to find values x[n] := (x0, x1, . . . , xn−1)
for the random variables X[n] := (X0, X1, . . . , Xn−1) such that the objective value Y is at least its
expectation µ := E[Y ].

1. Initialization. We begin when none of the random variables has been assigned any values,
i.e. i := 0. We have the invariant: E[Y |X[i] = x[i]] ≥ µ. The left hand side is simply E[Y ].

2. Assigning Value to One More Random Variable Xi. Suppose for some 0 ≤ i < n, we
already have the assignment X[i] := x[i] and the invariant E[Y |X[i] = x[i]] ≥ µ. We show the
following claim.

Claim 1.1 There exists some assignment Xi := xi such that E[Y |X[i+1] = x[i+1]] ≥ µ.
Proof: Conditioning on the value of Xi, we have

1Recall we denote [i] := {0, 1, 2, . . . , i− 1}, and [0] := ∅.
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E[Y |X[i] = x[i]] =
∑

x Pr(Xi = x|X[i] = x[i])E[Y |X[i] = x[i] ∧Xi = x],

where the summation is over the values x that Xi can take. Observe that by the invariant,
that the left hand side is at least µ. Hence, it follows that there exists some xi such that
E[Y |X[i] = x[i] ∧Xi = xi] ≥ µ.

For each x, we test if E[Y |X[i] = x[i] ∧Xi = x] ≥ µ and find such an xi.

We assign Xi := xi.

3. This continues until i = n, when all random variables have received their values. In this case,
we have E[Y |X[n] = x[n]] ≥ µ, which means that under those values, the objective value Y is
at least µ.

1.2 Derandomization for MAX CUT

Given a graph G = (V,E), where V := [n] is labeled by n integers. The randomized algorithm
essentially assigns independently for each vertex i, a random variable Xi taking values uniformly
in {0, 1} (each with probability 1

2). The cut can be defined by C := {i : Xi = 1}.
The number Y of edges in the cut is a function of the random variables X0, X1, . . . , Xn−1. For each
edge e = {i, j} ∈ E, define Ye to be 1 if Xi 6= Xj and 0 if Xi = Xj . Then, Y :=

∑
e∈E Ye.

It suffices to show that given a partial assignmentX[i] := x[i], the conditional expectation E[Y |X[i] =
x[i]] can be computed efficiently. By linearity of expectation, it is enough to consider, for each edge
e = {u, v} ∈ E, the quantity E[Ye|X[i] = x[i]]. There are 3 cases to consider.

1. If none of Xu or Xv is assigned a value yet, the conditional expectation of Ye is 1
2 , as before.

2. If exactly one of Xu and Xv is assigned a value, check that the conditional expectation Ye is
also 1

2 .

3. If both of Xu and Xv already have been assigned values, then Ye is 1 if they receive different
values and 0 otherwise.

The running time of the derandomization algorithm is O(mn), where m is the number of edges.

1.3 Derandomization of MAX 3-SAT

The argument is similar. The important part is given a partial assignment of variables, what is the
(conditional) probability that a clause is satisfied? There are some cases to consider:

1. If the partial assignment makes the clause satisfied, then it is 1;

2. if there are 3 unassigned variables in the clause, then it is 7
8 ;

3. if there are 2 unassigned variables in the clause, then it is 3
4 ;

4. if there is 1 unassigned variable in the clause, then it is 1
2 ;
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5. if there is no more unassigned variables in the clause, then it is 0.

One can check that for m clauses in n variables, the derandomized procedure takes time O(mn).

2 Graphs with No Short Cycles: Method of Alteration

When we use the probabilistic method, after we run the experiment, sometimes we have to make
minor alteration to the outcome in order to obtain a desirable solution. We demonstrate this
method by considering the number of edges in a graph with no short cycles.

Definition 2.1 An undirected graph G = (V,E) contains a cycle of length l if there are l ver-
tices v1, v2, . . . , vl such that all l edges {v1, v2}, {v2, v3}, . . . {vl−1, vl}, {vl, v1} ∈ E are present. The
minimum length of a cycle is 3; note that there is no cycle of length 2.

Question. Suppose a graph has no cycles of length l or less. What is the maximum number of
edges that it can have?

Observe that we are trying to optimize two conflicting objectives: adding more edges means even-
tually creating short cycles. In the extreme case, in a complete graph, every 3 points form a
3-cycle.

Theorem 2.2 There exists an n-vertex graph with no cycles of length l or less that has at least

Ω(n1+
1

l−1 ) edges.

We proof the special case for l = 3. The general case will appear in a homework question.

Definition 2.3 (Random Graph Gn,p) Consider the following experiment. Let V be a set of n
vertices. We form a random graph (V,E) in the following way. For each unordered pair {u, v} ∈(
V
2

)
, independently add an edge between u and v with probability p, i.e., Pr({u, v} ∈ E) = p. The

resulting graph is known as Gn,p := (V,E).

Note that for any graph G with index set V , Pr(Gn,p = G) > 0. Our candidate graph could
be generated by the process. If we want more edges, then p should be large; if we do not want
short cycles, then p should be small. We will find the best value of p to balance between the two
requirements..

2.1 Without alteration: How lucky can we be?

Our best hope is to prove that with non-zero probability, both of the following events A and B
happen. Event A is the event that Gn,p has a large number X of edges. Event B is the event that
there are no triangles in Gn,p.

Consider event B first. Group the n vertices into n
3 groups, each of size 3. (For the time being,

assume n is divisible by 3.) Look at one such group. The probability that there is no triangle
between 3 vertices is (1−p3). The probability that this holds for all n3 groups is (1−p3)n/3. Hence,

Pr(B) ≤ (1− p3)n/3, which is quite small (exponentially small with respect to n).

Note that the events A and B are not independent. If we want to use the union bound Pr(A∪B) ≤
Pr(A)+Pr(B) to give an upper bound on the failure probability, we would need to prove something
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like the failure probability Pr(A) is less than (1− p3)n/3. Since this is small, it is difficult to show
that the number of edges X is large using this approach.

Consider another approach. Although with high probability, there would exist a triangle, the
number Y of triangles is not too big. Here is an idea. We run the experiment and form Gn,p. Let
X be the number of edges and Y be the number of triangles. We pick one edge from each triangle
and remove it. In the worst case, we remove Y edges from the graph.

After this alteration, the graph would have no triangles, and the number of edges in the remaining
graph is at least Z := X − Y . By choosing the probability p carefully, we show that with non-zero
probabilitiy, Z is large.

First observe the following quantities.

Claim 2.4 We have the following.

1. E[X] =
(
n
2

)
p

2. var[X] =
(
n
2

)
p(1− p)

3. E[Y ] =
(
n
3

)
p3.

Proof: The first two results follow from the fact that X has a binomial distribution with
(
n
2

)
objects and probability p. The last result follows from the fact that there are

(
n
3

)
ways to form a

cycle in a graph, and the probability that each of them is formed is p3.

We can proceed in two ways: (1) using probability or (2) using expectation.

2.2 By Probability

Suppose we can show the following:

1. For some α > 0, Pr(X < E[X]− α) < 1
2 .

2. For some β > 0, Pr(Y > β) < 1
2 .

Using union bound, we know that with non-zero probability neither events happen, and in that
case, we have Z := X − Y ≥ E[X]− α− β.

We first choose p such that E[X] ≥ 4E[Y ]. Observe that we can choose p :=
√

3
8n . Check that

E[X] = Θ(n1.5).

For the first event, observe by Chebyshev’s inequality, Pr(X < E[X] − α) ≤ Pr(|X − E[X]| >
α) < var[X]

α2 ≤ (n2)p
α2 . The last quantity is at most 1

2 , if we set α :=
√

2
(
n
2

)
p = Θ(n0.75).

For the second event, by Markov’s inequality, if we set β := 2E[Y ], then Pr[Y > β] < 1
2 .

Hence, it follows that with non-zero probability, we have

Z := X − Y ≥ E[X]− α− 2E[Y ] ≥ E[X]− α− 1
2E[X] = E[X]

2 −
√

2
(
n
2

)
p ≥ Ω(n1.5).
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2.3 By Expectation

We choose p such that E[X] ≥ 2E[Y ]. We can set p :=
√

3
4n . Check that E[X] = Θ(n1.5).

Then, it follows that

E[Z] = E[X]− E[Y ] ≥ E[X]− E[X]
2 = E[X]

2 = Ω(n1.5).

Remark 2.5 Note that this is not the best result for triangle-free graphs. Consider a complete
bipartite graph with n

2 vertices on each side. Then, the graph has no triangles and has Ω(n2) edges.
However, we obtain a weaker result using the probabilistic method to illustrate how a similar result
could be proved for general l.

2.4 General Case

The general case would appear as a homework problem. If you would like a head start to work on
the next homework, here is a preview.

1. Graphs with No Short-Cycles. In this question, we show the following result. For each
l ≥ 3, and n ≥ 2l+2, there exists a graph, with n vertices and no cycles of length l or less,

that has Ω(n1+
1

l−1 ) edges.

(a) Consider the random graph Gn,p, where p ≥ 2
n . For 3 ≤ i ≤ l, let Yi be the number of

length-i cycles in Gn,p. Compute E[Yi].

(b) Let Y :=
∑

3≤i≤l Yi. Show that E[Y ] ≤ (np)l.

(c) By choosing an appropriate value of p, prove that there exists an n-vertex graph, with

no cycles of length l or less, that has Ω(n1+
1

l−1 ) edges.

(d) Derandomize the above procedure, i.e., give a deterministic algorithm that returns a
graph with the desired properties. Analyze the running time of your algorithm.
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