COMP8601: Advanced Topics in Theoretical Computer Science
Lecture 2: Derandomization, More on Probabilistic Method
Instructor: Hubert Chan

Date: 5 Sept 2013

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Derandomization by Conditional Expectation

In the last lecture, we saw randomized algorithms for MAX CUT and MAX 3-SAT. In each of these
algorithms, there is an underlying random process involving some random variables Xg, X1,..., X1,
and we have computed the expectation of some objective value Y, which is a function on those
random variables.

We show that under some very general conditions, the randomized algorithm can be derandomized,
i.e., there is some deterministic algorithm that finds values Xg := xg, X1 := z1,..., Xn_1 := Tn_1
such that the objective value Y is at least its expectation.

1.1 Principle of Conditional Expectation

The success of the derandomization method depends on the following conditions.

Sufficient Conditions

1. The objective value Y is a function of the random variables Xg, X1, Xo,..., X, _1, i.e., if the
values of the random variables are known, then the value of Y is uniquely determined.

2. Given a partial assignment! X [ := 2} for 1 <@ < n, the conditional expectation F Y| X [ =
r[;)] can be computed efficiently.

We show that when such conditions are met, it is possible to find values z,) := (0, 1,y Tp—1)
for the random variables X, := (Xo, X1,..., X»—1) such that the objective value Y is at least its
expectation p := E[Y].

1. Initialization. We begin when none of the random variables has been assigned any values,
i.e. i:=0. We have the invariant: E[Y'|X[; = 2] > p. The left hand side is simply E[Y].

2. Assigning Value to One More Random Variable X;. Suppose for some 0 < i < n, we
already have the assignment X;) := ;) and the invariant E[Y|X[; = z;)] > p. We show the
following claim.

Claim 1.1 There exists some assignment X; := x; such that E[Y|X{;11) = zj4q)] > p.

Proof: Conditioning on the value of X;, we have

'Recall we denote [i] := {0,1,2,...,i — 1}, and [0] := 0.



where the summation is over the values  that X; can take. Observe that by the invariant,
that the left hand side is at least u. Hence, it follows that there exists some x; such that
E[Y|X[Z] =T NX; = :UZ] > W. [ |

For each x, we test if E[Y[X};) = 2 A X; = 2] > p and find such an ;.
We assign X; := x;.

3. This continues until ¢ = n, when all random variables have received their values. In this case,
we have E[Y|X[,,) = x[,)] > p1, which means that under those values, the objective value Y is
at least u.

1.2 Derandomization for MAX CUT

Given a graph G = (V, E), where V := [n] is labeled by n integers. The randomized algorithm
essentially assigns independently for each vertex i, a random variable X; taking values uniformly
in {0,1} (each with probability 3). The cut can be defined by C := {i : X; = 1}.

The number Y of edges in the cut is a function of the random variables Xy, X1, ..., X,,_1. For each
edge e = {i,j} € I, define Y, to be 1if X; # X; and 0 if X; = X;. Then, Y := %" Y.

It suffices to show that given a partial assignment X7;) := z[;, the conditional expectation F Y| X [ =
x[i]] can be computed efficiently. By linearity of expectation, it is enough to consider, for each edge
e = {u,v} € E, the quantity E[Y.|X[; = z};]. There are 3 cases to consider.

1. If none of X, or X, is assigned a value yet, the conditional expectation of Y, is %, as before.

2. If exactly one of X,, and X, is assigned a value, check that the conditional expectation Y, is
also L.
2

3. If both of X,, and X, already have been assigned values, then Y, is 1 if they receive different
values and 0 otherwise.

The running time of the derandomization algorithm is O(mn), where m is the number of edges.
1.3 Derandomization of MAX 3-SAT

The argument is similar. The important part is given a partial assignment of variables, what is the
(conditional) probability that a clause is satisfied? There are some cases to consider:

1. If the partial assignment makes the clause satisfied, then it is 1;
2. if there are 3 unassigned variables in the clause, then it is %;
3. if there are 2 unassigned variables in the clause, then it is %;

4. if there is 1 unassigned variable in the clause, then it is %;



5. if there is no more unassigned variables in the clause, then it is 0.

One can check that for m clauses in n variables, the derandomized procedure takes time O(mn).

2 Graphs with No Short Cycles: Method of Alteration

When we use the probabilistic method, after we run the experiment, sometimes we have to make
minor alteration to the outcome in order to obtain a desirable solution. We demonstrate this
method by considering the number of edges in a graph with no short cycles.

Definition 2.1 An undirected graph G = (V, E) contains a cycle of length 1 if there are | ver-
tices vy, v, ..., v such that all I edges {v1,va}, {va,vs}, ... {ui_1,v},{vi,v1} € E are present. The
minimum length of a cycle is 3; note that there is no cycle of length 2.

Question. Suppose a graph has no cycles of length [ or less. What is the maximum number of
edges that it can have?

Observe that we are trying to optimize two conflicting objectives: adding more edges means even-
tually creating short cycles. In the extreme case, in a complete graph, every 3 points form a
3-cycle.

Theorem 2.2 There exists an n-verter graph with no cycles of length | or less that has at least
1

Q(n'TTT) edges.

We proof the special case for [ = 3. The general case will appear in a homework question.

Definition 2.3 (Random Graph G, ;) Consider the following experiment. Let V be a set of n
vertices. We form a random graph (V, E) in the following way. For each unordered pair {u,v} €
(‘2/), independently add an edge between u and v with probability p, i.e., Pr({u,v} € E) =p. The
resulting graph is known as Gy, p := (V, E).

Note that for any graph G with index set V, Pr(G,, = G) > 0. Our candidate graph could
be generated by the process. If we want more edges, then p should be large; if we do not want
short cycles, then p should be small. We will find the best value of p to balance between the two
requirements..

2.1 Without alteration: How lucky can we be?

Our best hope is to prove that with non-zero probability, both of the following events A and B
happen. Event A is the event that G, , has a large number X of edges. Event B is the event that
there are no triangles in G, p.

Consider event B first. Group the n vertices into % groups, each of size 3. (For the time being,

assume n is divisible by 3.) Look at one such group. The probability that there is no triangle
between 3 vertices is (1 —p?). The probability that this holds for all 7 groups is (1— pg)"/ 3. Hence,
Pr(B) < (1 —p?)™3, which is quite small (exponentially small with respect to n).

Note that the events A and B are not independent. If we want to use the union bound Pr(AUB) <

Pr(A)+ Pr(B) to give an upper bound on the failure probability, we would need to prove something



like the failure probability Pr(A4) is less than (1 — p®)™/3. Since this is small, it is difficult to show
that the number of edges X is large using this approach.

Consider another approach. Although with high probability, there would exist a triangle, the
number Y of triangles is not too big. Here is an idea. We run the experiment and form G, ;. Let
X be the number of edges and Y be the number of triangles. We pick one edge from each triangle
and remove it. In the worst case, we remove Y edges from the graph.

After this alteration, the graph would have no triangles, and the number of edges in the remaining
graph is at least Z := X — Y. By choosing the probability p carefully, we show that with non-zero
probabilitiy, Z is large.

First observe the following quantities.

Claim 2.4 We have the following.

1. EIX]=(5)p
2. var[X] = (g)p(l —p)

3. BlY] = (3)p*.

Proof: The first two results follow from the fact that X has a binomial distribution with (g)
objects and probability p. The last result follows from the fact that there are (g) ways to form a
cycle in a graph, and the probability that each of them is formed is p3. [ |

We can proceed in two ways: (1) using probability or (2) using expectation.
2.2 By Probability

Suppose we can show the following:

1. For some o > 0, Pr(X < E[X] — a) < 3.

2. For some 3 > 0, Pr(Y > f8) < %

Using union bound, we know that with non-zero probability neither events happen, and in that
case, we have Z := X - Y > E[X| —a — (.

We first choose p such that E[X] > 4E[Y]. Observe that we can choose p := \/SEH. Check that
E[X] = ©6(n?).

For the first event, observe by Chebyshev’s inequality, Pr(X < E[X]|—«) < Pr(|X — E[X]| >
a) < %[QX] < (g)p. The last quantity is at most 3, if we set o := \/@ = 0(n%™).

“aZ
For the second event, by Markov’s inequality, if we set § := 2E[Y], then Pr[Y > ] < %
Hence, it follows that with non-zero probability, we have

Z:=X-Y >E[X]-a-2E[Y] > E[X]|—a-1EX] =25 _ /2(")p > Q(n'5).



2.3 By Expectation

We choose p such that E[X] > 2E[Y]. We can set p := 1/ ;>. Check that E[X] = ©(n!?).
Then, it follows that
E[Z] = E[X] - E[Y] > E[X] - 2X = 2 — g(n!5).

Remark 2.5 Note that this is not the best result for triangle-free graphs. Consider a complete
bipartite graph with 5 vertices on each side. Then, the graph has no triangles and has Q(n?) edges.
However, we obtain a weaker result using the probabilistic method to illustrate how a similar result
could be proved for general [.

2.4 General Case

The general case would appear as a homework problem. If you would like a head start to work on
the next homework, here is a preview.

1. Graphs with No Short-Cycles. In this question, we show the following result. For each
[ >3, and n > 2!*2, there exists a graph, with n vertices and no cycles of length [ or less,

that has Q(nHﬁ) edges.

. For 3 < i <, let Y; be the number of

S

(a) Consider the random graph G,, ,, where p >
length-i cycles in Gj, ,. Compute E[Yj].

(b) Let Y := Y4, Vi. Show that E[Y] < (np)".

(c) By choosing an appropriate value of p, prove that there exists an n-vertex graph, with

1+ﬁ)

no cycles of length [ or less, that has Q(n edges.

(d) Derandomize the above procedure, i.e., give a deterministic algorithm that returns a
graph with the desired properties. Analyze the running time of your algorithm.



