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Abstract

The study of finite metrics is an important area of research, because of its wide
applications to many different problems. The input of many problems (for instance
clustering, near-neighbor queries and network routing) naturally involves a set of
points on which a distance function has been defined. Hence, one would be moti-
vated to store and process metrics in an efficient manner. The central idea in metric
embedding is to represent a metric space by a “simpler” one so that the properties of
the original metric space are well preserved.

More formally, given a target class C of metrics, an embedding of a finite metric
space M = (V, d) into the class C is a new metric space M ′ = (V ′, d′) such that
M ′ ∈ C. Most of the work on embeddings has used distortion as the fundamental
measure of quality; the distortion of an embedding is the worst multiplicative factor
by which distances are increased by the embedding. In the theoretical community,
the popularity of the notion of distortion has been driven by its applicability to ap-
proximation algorithms: if the embedding ϕ : (V, d) → (V ′, d′) has a distortion of
D, then the costs of solutions to some optimization problems on (V, d) and those on
(V ′, d′) can only differ by some function of D; this idea has led to numerous approx-
imation algorithms. Seminal results include the O(log n) distortion embeddings of
arbitrary metrics into Euclidean spaces with O(log n) dimensions, and the fact that
any metric admits an O(log n) stretch spanner with O(n) edges.

The theoretical results mentioned above are optimal. However, they are pes-
simistic in the sense that such guarantees hold for any arbitrary metric. It is con-
ceivable that better results can be obtained if the input metrics are “simple”. The
main theme of this work is to investigate notions of complexity for an abstract met-
ric space and theoretical guarantees for problems in terms of the complexity of the
input metric.

One popular notion for measuring the complexity of a metric is the doubling di-
mension, which restricts the local growth rate of a metric. We show that the results
on spanners and embeddings can be improved if the given metrics have bounded
doubling dimension. For instance, we give a construction for constant stretch span-
ners with a linear number of edges. Moreover, such metrics can be embedded into
Euclidean space with O(log log n) dimensions and o(log n) distortion.

We also study a new notion of dimension that captures the global growth rate of
a metric. Such a notion strictly generalizes doubling dimension in the sense that it
places weaker restrictions on a given metric than those posed by doubling dimension.
However, we can still obtain good guarantees for problems in which the objective
depends on the global nature of the metric, an example of which is the Traveling
Salesperson Problem (TSP). In particular, we give a sub-exponential time algorithm
to solve TSP with approximation ratio arbitrarily close to 1 for such metrics.
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Chapter 1

Introduction

The study of finite metrics1 is an important area of research, because of its wide applications to
many different problems. The input of many problems (for instance clustering, near-neighbor
query and network routing) naturally involves a set of points on which a distance function has
been defined. Hence, one would be motivated to store and process metrics in an efficient manner.
The central idea in metric embedding is to represent a metric space with a “simpler” one so that
the properties of the original metric space are well preserved.

More formally, given a target class C of metrics, an embedding of a finite metric space
M = (V, d) into the class C is a new metric space M ′ = (V ′, d′) such that M ′ ∈ C. Most
of the work on embeddings has used distortion as the fundamental measure of quality; the dis-
tortion of an embedding is the worst multiplicative factor by which distances are increased by
the embedding2. Given the metric M = (V, d) and the class C, one natural goal is to find an
embedding ϕ((V, d)) = (V ′, d′) ∈ C such that the distortion of the map ϕ is minimized.

This notion of metric embedding is general in the sense that it captures several embedding frame-
works. For example, when the class C is the class of all Euclidean metrics, or the class of all `1
metrics, we have the familiar notion of embeddings of metric spaces into geometric spaces. On
the other hand, if the class C is the class of metrics generated by sparse (weighted) graphs, such
embeddings give rise to sparse spanners. Note that the concept of distortion is often called
“stretch” in the spanners literature. Moreover, we have the notion of embeddings into a distribu-
tion over tree metrics, where C is the class of convex combinations of tree metrics.

In the theoretical community, the popularity of the notion of distortion/stretch has been driven
by its applicability to approximation algorithms: if the embedding ϕ : (V, d) → (V ′, d′) has a
distortion of D, then the costs of solutions to some optimization problems on (V, d) and those
on (V ′, d′) can only differ by some function of D; this idea has led to numerous approximation
algorithms [Ind01]. Seminal results include the O(log n) distortion embeddings of arbitrary
metrics into `p spaces [Bou85], the fact that any metric admits an O(log n) stretch spanner with
O(n) edges [ADD+93], and that any metric can be embedded into a distribution of trees with

1A list of formal definitions of concepts appearing frequently in this work is found in Section 1.2.
2Formally, for an embedding ϕ : (V, d) → (V ′, d′), the distortion is the smallest D so that ∃K > 0 such that

d(x, y) ≤ d′(ϕ(x), ϕ(y))/K ≤ D d(x, y) for all pairs (x, y) ∈ V × V .
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distortion O(log n) [FRT04], where n is the size of V in all cases. All the above three results are
known to be tight.

In parallel to the theoretical work on embeddings, there has been much recent interest within
more applied communities in embeddings (and more generally, but also somewhat vaguely, on
problems on finding “simpler representations” of distance spaces). One example arises in the
networking community [NZ02, DCKM04], which is interested in taking the point-to-point laten-
cies between nodes in a network, treating it as a metric space M = (V, d) satisfying the triangle
inequality,3 and then finding some simpler representation M ′ = (V ′, d′) of this resulting metric
so that distances between nodes can be quickly and accurately computed in this “simpler” metric
M ′. (E.g., they are interested in assigning each node a short label so that the distance between
two nodes can be approximately inferred merely by looking at their labels.)

The theoretical results mentioned above, although being optimal, are pessimistic in the sense that
such guarantees hold for any arbitrary metric. Simply using the size of a given metric to quantify
the performance of algorithms is unsatisfactory, for it is conceivable that better results can be
obtained if the input metrics are “simple”. The main theme of this work is to investigate notions
of complexity for an abstract metric space and theoretical guarantees for problems in terms of
the complexity of the input metric (and its size).

One popular notion for measuring the complexity of a metric is the doubling dimension, which
restricts the local growth rate of a metric. The doubling dimension of a metric M = (V, d) is the
minimum value k such that every ballB in the metric can be covered by 2k balls of half the radius
of B. This can be seen as a generalization of Euclidean dimension to arbitrary metric spaces;
indeed, it is not difficult to see that R

k equipped with any of the `p norms has doubling dimension
Θ(k). Apart from being a generalization of the `p notion of dimension, designing algorithms that
only use the doubling properties (instead of the geometry of R

k) has other advantages: the notion
of doubling dimension is fairly resistant to small perturbations in the distances: for instance, if
one takes a distance matrix of a set of points in `kp and slightly changes some of the entries, then
the doubling dimension does not change by much, but the metric may not remain isometrically
embeddable in `p (into any number of dimensions).

The notion of doubling dimension was introduced by Larman [Lar67] and Assouad [Ass83],
and first used in nearest-neighbor searching by Clarkson [Cla99]. The properties of doubling
metrics have since been studied extensively, and various algorithms have been generalized to
adapt gracefully to the doubling dimension of the input metric; for examples, see [GKL03, KL03,
KL04, Tal04, HPM05, BKL06, CG06b, IN, KRX06, KRX07].

Continuing research in this direction, we show that the results on spanners and embeddings can
be improved if the given metrics have bounded doubling dimension. For instance, we give a
construction for constant stretch spanners with a linear number of edges. Moreover, such metrics
can be embedded into Euclidean space with O(log log n) dimensions and o(log n) distortion.

On the other hand, although doubling dimension is defined for any metric and is indeed an ex-
tension of the `p notion of dimension, it is still a stringent notion in the sense that the doubling

3While the triangle inequality can be violated by network latencies, empirical evidence [LGS07] suggests that
these violations are small and/or infrequent enough to make metric methods a useful approach.
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property has to be satisfied everywhere, namely every ball can be covered by a small number
of balls of half its radius. Observe that if the metric contains a uniform metric of size Ω(

√
n),

then the doubling dimension of the metric is at least Ω(log n). Intuitively, one would like to get
a notion of dimension such that if a metric behaves “nicely” in general except for small local-
ized regions, then the metric has small dimension. Hence, for problems in which the objective
depends globally on the metric, one would expect such “nice” metrics to be easy instances of the
problem.

In this work, we study a new notion of dimension, which we call “correlation dimension”4 ,
that captures the global growth rate of a metric. Such a notion strictly generalizes doubling
dimension in the sense that any metric with bounded doubling dimension also has bounded global
dimension. Intuitively, we should be able to obtain good guarantees for problems in which
the objective depends on the global nature of the metric. In particular, we consider (1 + ε)-
approximation algorithm for Traveling Salesman Problem (TSP), in the context of metrics with
bounded global dimension. Indeed, we give a sub-exponential time algorithm to solve TSP with
approximation ratio arbitrarily close to 1 for such metrics.

1.1 Outline of the Thesis
We present this work in three chapters: (1) Sparse spanners for doubling metrics; (2) Ultra-
low dimensional embeddings for doubling metrics; and (3) Approximating TSP on metrics with
bounded global growth. The chapter on spanners contains results which have appeared in the pa-
pers [CGMZ05, CG06a], while the results on the other two chapters will appear in the proceeding
of the upcoming SODA in 2008. The work on low dimensional embeddings is a collaboration
with Anupam Gupta and Kunal Talwar, while that on global dimension is done with Anupam
Gupta. Each chapter is self-contained and can be read separately from the others. We summarize
the results of each chapter in the following.

1.1.1 Sparse Spanners for Doubling Metrics

In Chapter 2, we give good constructions of spanners for doubling metrics. A t-spanner for a
metric is a weighted subgraph whose shortest path distance preserves the original metric within
a multiplicative factor of t. Given a metric with doubling dimension dim, we show how to
construct (1 + ε)-spanners with n(1 + 1/ε)O(dim) edges. Observe that a (1 + ε)-spanner for an
arbitrary metric can have at least Ω(n2) edges. From this basic sparse spanner construction, we
can obtain a sparse spanner that has either (1) bounded degree ((1+1/ε)O(dim)) or (2) small hop-
diameter. Observe that it is not possible to achieve both, as that would imply the total number of
points is too small.

A t-spanner has hop-diameter D if every pair u, v ∈ V are connected by some short path in
G having length at most t d(u, v), and there are at most D edges on this path. In particular, we
show one can find a (1+ε)-spanner for the metric with a nearly linear number of edges (i.e., only

4There is a previously defined notion of “correlation dimension” that inspires our definition. Perhaps the name
“net correlation dimension” is more suitable for us. However, for brevity, we still use the term “correlation dimen-
sion” in later discussion.
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O(n log∗ n+ nε−O(dim) edges) and constant hop diameter; we can also obtain a (1 + ε)-spanner
with a linear number of edges (i.e., only nε−O(dim) edges) that achieves a hop diameter that grows
like the functional inverse of the Ackermann’s function. Moreover, we prove that such tradeoffs
between the number of edges and the hop-diameter are asymptotically optimal.

1.1.2 Ultra-Low Dimensional Embeddings for Doubling Metrics

In Chapter 3, we consider the problem of embedding a metric into low-dimensional Euclidean
space. The classical theorems of Bourgain [Bou85], and of Johnson and Lindenstrauss [JL84] say
that any metric on n points embeds into an O(log n)-dimensional Euclidean space with O(log n)
distortion. Moreover, a simple “volume” argument shows that this bound is nearly tight: a
uniform metric on n points requires a nearly logarithmic number of dimensions to embed with
logarithmic distortion. It is natural to ask whether such a volume restriction is the only hurdle
to low-dimensional embeddings. In other words, do doubling metrics, that do not have large
uniform submetrics, and thus no volume hurdles to low dimensional embeddings, embed in low
dimensional Euclidean spaces with small distortion?

We give a positive answer to this question. We show how to embed any doubling metric into
O(log log n)-dimensional Euclidean space with o(log n) distortion. This is the first embedding
for doubling metrics into fewer than logarithmic number of dimensions, even allowing for loga-
rithmic distortion.

This result is one extreme point of our general trade-off between distortion and dimension: given
an n-point metric (V, d) with doubling dimension dimD, and any target dimension T in the range
Ω(dimD log log n) ≤ T ≤ O(log n), we show that the metric embeds into Euclidean space R

T

with O(log n
√
dimD /T ) distortion.

1.1.3 Approximating TSP on Metrics with Bounded Global Growth

In Chapter 4, we approximate the Traveling Salesperson Problem (TSP) for a class of metrics
broader than doubling metrics. Observe that TSP is a canonical NP-complete problem which
is known to be MAX-SNP hard even on Euclidean metrics (of high dimensions) [Tre00]. In
order to circumvent this hardness, researchers have been developing approximation schemes for
“simpler” instances of the problem. For instance, Arora [Aro98] and Talwar [Tal04] showed how
to approximate TSP on low-dimensional metrics (for different notions of dimension). This has
been part of a larger effort to quantify “simple metrics” (say, with respect to some problem such
as TSP). In particular, can we define the “dimension” of metric spaces so that the performance
of algorithms on a given metric space can be quantified meaningfully in terms of the dimension
of the metric? Many proposed notions of dimension have been shown to have good algorithmic
properties (see, e.g., [PRR99, KR02, Cla99, GKL03, KL06]).

However, a feature of most current notions of metric dimension is that they are “local”: the def-
initions require every local neighborhood to be well-behaved, and such strong properties might
not be satisfied in real-life metrics. What if our metric looks a bit more realistic: it has a few
“dense” regions, but is “well-behaved on the average”? How do we even begin to formalize
this idea? We give a global notion of dimension: the correlation dimension (dimC). Loosely

4



speaking, a metric has constant correlation dimension if the number of node-pairs in the metric
within distance r of each other only increases by a constant factor if we go from r → 2r (i.e., if
their range-of-sight doubles).

We show that this global notion of dimension generalizes the popular notion of doubling di-
mension: the class of metrics with dimC = O(1) contains not only all doubling metrics, but
also some metrics containing cliques of size

√
n (but no larger cliques). We first show that

we can solve TSP (and other optimization problems) on these metrics in time 2O(
√
n); then we

take advantage of the global nature of TSP (and the global nature of our definition) to give a
(1 + ε)-approximation algorithm that runs in sub-exponential time: i.e., in 2O(nδε

−4 dimC )-time
for every constant 0 < δ < 1. For this new algorithm, we have to develop new techniques be-
yond those used for earlier PTASs for TSP: since metrics with bounded dimC may contain hard
metrics of size O(

√
n), we show that beating the exp(

√
n) running time requires finding O(1)-

approximations to some portions of the tour, and (1 + ε)-approximations for other portions, and
stitching them together; these new ingredients are potentially of independent interest.

1.2 Definitions and Notations
We end this chapter by defining precisely the terminology we frequently use, which might have
different meanings in another context. We consider finite metric spaces, and we use (V, d) to
denote a finite metric space; unless otherwise stated, we denote the size of the metric by n = |V |.
We make precise what we mean by a metric space in the following definition.

Definition 1.2.1 (Metric space) A metric space (V, d) consists of a point set V and a distance
function d : V × V → [0,∞), also called a metric, such that the following properties are
satisfied.

1. d(u, v) = 0 iff u = v.

2. Symmetry: for all u, v ∈ V , d(u, v) = d(v, u).

3. Triangle inequality: for all u, v, w ∈ V , d(u,w) ≤ d(u, v) + d(v, w).

The symmetry and the triangle inequality are the important properties of metric spaces that we
use. If the first condition is replaced with “d(u, v) = 0 if u = v”, then the distance function d
is called a semi-metric. However, observe that a semi-metric d always induces a metric on the
equivalence classes obtained from the equivalence relation u ∼ v iff d(u, v) = 0.

One way to measure the complexity of a metric space is its dimension. Intuitively, a metric space
consisting of points on the real line is simple, while a metric whose points lie in high dimensional
Euclidean space is complex. Since not all metrics have a valid Euclidean dimension, a popular
notion of dimension is used for general metric spaces: the doubling dimension.

Definition 1.2.2 (Doubling dimension) A metric space (V, d) has doubling dimension at most
k if for all R > 0, any ball of radius R is contained in the union of at most 2k balls of radius
R/2. A ball of radius R consists of all the points that are at distance at most R from some center
point.

5



Observe that any finite number of points in `kp induce a metric space with doubling dimension at
most O(k). A doubling metric is a metric which has bounded doubling dimension. The concept
of a net is useful for doubling metrics.

Definition 1.2.3 (Net) Let S be a set of points in a metric space (V, d), and r > 0. A subset N
of S is an r-net for S if the following conditions hold.

1. For all x ∈ S, there exists some y ∈ N such that d(x, y) ≤ r.
2. For all y, z ∈ N such that y 6= z, d(y, z) > r.

The following fact states that for a doubling metric, one cannot pack too many points in some
fixed ball such that the points are far away from one another.

Fact 1.2.4 Suppose S is a set of points in a metric space with doubling dimension at most k. If
S is contained in some ball of radius R and for all y, z ∈ S such that y 6= z, d(y, z) > r, then
|S| ≤ (4R/r)k.

A spanner is a structure that preserves the distance function of a metric space. The precise
definition is given in the following.

Definition 1.2.5 (Spanner for a metric) A spanner H for a metric space (V, d) is a weighted
undirected graph on the vertex set V with the edge setH such that the weight of an edge {u, v} ∈
H is d(u, v). For t ≥ 1, the spanner H is a t-spanner if for all u, v ∈ V , the shortest path
distance dH(u, v) between u and v in the graph H satisfies dH(u, v) ≤ td(u, v), in which case
we say the stretch or distortion of the spanner H is at most t.

Note that in the literature, the term spanner usually means a subgraph of an unweighted graph.
What we define as a spanner is referred to as an emulator, whose definition differs slightly in
the sense that it is only required that dH(u, v) ≥ d(u, v). However, since we are interested in
minimizing the stretch, without loss of generality, one can assume that every edge in H has
weight given by the metric d.

Using spanners is only one way a metric space can be tranformed. In general, an embedding is
a mapping ϕ : (V, d) → (V ′, d′) from the metric space (V, d) to the metric space (V ′, d′). The
quality of an embedding is measured by how much distances are distorted, which is quantified
by distortion.

Definition 1.2.6 (Distortion) The distortion of an embedding ϕ : (V, d)→ (V ′, d′) is the small-
est D so that ∃K > 0 such that for all pairs (x, y) ∈ V × V , d(x, y) ≤ d′(ϕ(x), ϕ(y))/K ≤
Dd(x, y), if ϕ is an injection; if ϕ is not an injection, the distortion is infinity.

Note. Observe that the role of K in the above definition is that if we scale all distances of an
embedding by the same multiplicative factor, then its distortion does not change. However, if we
only consider embeddings that do not contract distances, then it is enough to have for all pairs
(x, y) satisfy d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ Dd(x, y).

We recall a useful technique that gives a probabilistic decomposition of a metric such that each
component has small diameter and the probability that two points are separated is proportional
to their distance.

6



Definition 1.2.7 (Padded Decompositions [GKL03, KLMN05]) Given a finite metric space
(V, d), a positive parameter ∆ > 0 and α > 1, a ∆-bounded α-padded decomposition is a
distribution Π over partitions of V such that the following conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P is at most ∆.

(b) Suppose S ⊆ V is a set with diameter d. If P is sampled from Π, then the set S is
partitioned by P with probability at most α · d

4D
.

For simplicity, say that a metric admits α-padded decompositions if for every ∆ > 0 it ad-
mits a ∆-bounded α-padded decomposition. It is known that any finite metric space admits an
O(log n)-padded decomposition [Bar96]. Moreover, metrics of doubling dimension dimV ad-
mit O(dimV )-padded decompositions [GKL03]; furthermore, if a graph G excludes Kr-minors
(e.g., if it has treewidth ≤ r), then its shortest-path metric admits O(r2)-padded decomposi-
tions [KPR93, Rao99, FT03].
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Chapter 2

Sparse spanners for doubling metrics

2.1 Introduction
In this chapter, we give constructions for obtaining sparse representations of metrics: these are
called spanners, and they have been studied extensively both for general and Euclidean metrics.
Formally, a t-spanner for a metric M = (V, d) is a weighted undirected graph G = (V,E) such
that the distances according to dG (the shortest-path metric of G) are close to the distances in d:
i.e., d(u, v) ≤ dG(u, v) ≤ t d(u, v).1 In this case, we also say that the spanner has stretch at most
t. Clearly, one can take a complete graph and obtain t = 1, and hence the quality of the spanner
is typically measured by how few edges G can contain while maintaining a stretch of at most t.
The notion of spanners has been widely studied for general metrics (see, e.g. [PS89, ADD+93,
CDNS95]), and for geometric distances (see, e.g., [CK95, Sal91, Vai91, ADM+95]). Here, we
are particularly interested in the case when the input metric has bounded doubling dimension and
the spanner we want to construct has small stretch, i.e. t = 1 + ε, for small ε > 0. We show that
for fixed ε and metrics with bounded doubling dimension, it is possible to construct linear sized
(1 + ε)-spanners. Observe that any 1.5-spanner for a uniform metric on n points must be the
complete graph. Hence, without any restriction on the input metric, it is not possible to construct
a (1 + ε)-spanner with a linear number of edges.

We also show how to construct sparse spanners with small hop diameter. A t-spanner has hop-
diameter D if every pair u, v ∈ V are connected by some short path in G having length at most
t d(u, v), and there are at most D edges on this path.

Main Results. We first give a basic construction of sparse spanners for doubling metrics.

Theorem 2.1.1 (Basic Spanner Construction) Given a metric (V, d) with doubling dimension
dim, there exists a (1 + ε)-spanner with (2 + 1

ε
)O(dim)n edges.

We can modify the edges in this basic sparse spanner construction to obtain a spanner that has
bounded degree.

1Note that the first inequality implies that an edge (u, v) in G has weight at least d(u, v).
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Theorem 2.1.2 (Constant Degree Spanners) Given a metric (V, d) with doubling dimension
dim, there exists a (1 + ε)-spanner such that the degree of every vertex is at most (2 + 1

ε
)O(dim).

On the other hand, we can add extra edges to the spanner from Theorem 2.1.1 to obtain one with
small hop-diameter. Observe that the constant degree spanner obtained in Theorem 2.1.2 must
have a hop diameter of Ω(log∆). We prove upper bounds on hop-diameter as well as essentially
matching lower bounds.

Theorem 2.1.3 (Upper Bound on Hop-diameter) Given a metric M = (V, d) with doubling
dimension dim and n = |V |, there exists a (1 + ε)-spanner with with m+ (2 + 1

ε
)O(dim)n edges

and hop diameter O(α(m,n)), where α is the inverse of Ackermann’s function. Such a spanner
can be constructed in 2O(dim)n log n time.

Note that the result above allows us to trade off the number of edges in the spanner with the
hop-diameter: if we desire only a linear number of edges, then the hop-diameter goes as α(n),
and as we increase the number of edges, the hop-diameter decreases. After proving this result
(which turns out to be fairly straight-forward given known techniques), we then turn to the lower
bound and show that the trade-off in Theorem 2.1.3 is essentially tight.

Theorem 2.1.4 (Lower Bound on Hop-diameter) For any ε > 0, there are infinitely many in-
tegers n such that there exists a metric M induced by n points on the real line, for which any
(1 + ε)-spanner for M with at most m edges has hop diameter at least Ω(α(m,n)).

Our Techniques and Related Work. Independent of our work, Har-Peled and
Mendel [HPM05] also use a similar construction to obtain (1+ε)-spanners with n(1+1/ε)O(dim)

edges. However, the spanners obtained have a hop-diameter of Ω(log∆), where ∆ is the aspect
ratio of the metric.

The upper bound in Theorem 2.1.3 generalizes a result of Arya et al. [ADM+95] for Euclidean
spaces. Indeed, the proof of our result is not difficult given previously known techniques. The
basic idea is to first construct a net-tree representing a sequence of nested nets of the metric space:
this is fairly standard, and has been used earlier, e.g., in [CGMZ05, KL04, Tal04]. A nearly-
linear-time construction of net-trees is given by Har-Peled and Mendel [HPM05]. A second
phase then adds some more edges in order to “short-cut” paths in this net tree which have too
many hops. The techniques we use are based on those originally used by Yao [Yao82] for range
queries on the line, and on the extensions to trees due to Chazelle [Cha87]. As pointed out by
Arya et al. [ADM+95], a similar construction was given by Alon and Schieber [AS87].

To the best of our knowledge, there are no previously known lower bounds which show met-
rics with low doubling (or Euclidean) dimension that require many edges in order to get low
hop-diameter (1 + ε)-spanners. We first consider lower bounds for binary “hierarchically well-
separated” trees (HSTs), where the length of an edge from each node to its child node is much
smaller than that to its parent node: this well-separation ensures that low-stretch paths must be
“well-behaved”: i.e., the low-stretch path between vertices in any subtree cannot escape the sub-
tree, thus allowing us to reason about them. Our lower bound result for line metrics then follows
from the fact that binary HSTs with large separation embed into the real line with small distor-
tion. We note that the lower bounds for the range-query problem given by Yao [Yao82], and Alon
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and Scheiber [AS87], while inspiring our work, directly apply to our problem only for the case
ε = 0; i.e., for the case where we are not allowed to introduce any further stretch in the second,
“short-cutting” phase. Thus Theorem 2.1.4 can be seen as generalizing Yao’s lower bound proof
to all ε > 0.

Other Related Work. Abraham et al. [IA04] study compact routing on Euclidean metrics, and
their construction also essentially gives a (1+ε)-spanner with Oε(n) edges that has hop diameter
O(log∆) with high probability.

Low-stretch spanners with small hop-diameter are potentially useful in network routing proto-
cols. For example, many wireless ad-hoc networks find paths that minimize hop count [PC97,
PBR99, PB94]. Our results may be useful in such situations to build sparse networks admitting
paths having few hops and low stretch simultaneously.

2.1.1 Notation and Preliminaries

We recall the definitions of some frequently encountered concepts. We consider a finite metric
M = (V, d) where |V | = n. A metric has doubling dimension [GKL03] at most k if for every
R > 0, every ball of radius R can be covered by 2k balls of radius R/2.

Definition 2.1.5 ((1 + ε)-spanner) Let (V, d) be a finite metric space. Suppose G = (V,E) is
an undirected graph such that each edge {u, v} ∈ E has weight d(u, v), and dG(u, v) is the
length of the shortest path between vertices u and v in G. The graph G, or equivalently, the set
E of edges, is a (1 + ε)-spanner for (V, d) if for all pairs u and v, dG(u, v)/d(u, v) ≤ 1 + ε.

A (1+ε)-path in the metricM = (V, d) between u and v is one with length at most (1+ε)d(u, v).
Thus a (1 + ε)-spanner is a subgraph G = (V,E) that contains a (1 + ε) path for each pair of
nodes in V .

Definition 2.1.6 (Hop Diameter) A (1 + ε)-spanner is said to have hop diameter at most D if
for every pair of nodes, there exists a (1 + ε)-path in the spanner between them having at most
D edges or hops.

2.2 Basic Construction of Sparse (1 + ε)-Spanners for Dou-
bling Metrics

In this section, we show the existence of sparse spanners by giving an explicit construction. In
particular, we have the following result.

Theorem 2.2.1 Given a metric (V, d) with doubling dimension k, there exists a (1 + ε)-spanner
Ê that has (2 + 1

ε
)O(k)n edges.

The basic idea is to first construct a net-tree representing a sequence of nested nets of the metric
space: this is fairly standard, and has been used earlier, e.g., in [Tal04, KL04, CGMZ05]. A
nearly-linear-time construction of net-trees is given by Har-Peled and Mendel [HPM05].

Net trees are formally defined in the following.
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Definition 2.2.2 (Hierarchical Tree) A hierarchical tree for a set V is a pair (T, ϕ), where T is
a rooted tree, and ϕ is a labeling function ϕ : T → V that labels each node of T with an element
in V , such that the following conditions hold.

1. Every leaf is at the same depth from the root.
2. The function ϕ restricted to the leaves of T is a bijection into V .
3. If u is an internal node of T , then there exists a child v of u such that ϕ(v) = ϕ(u). This
implies that the nodes mapped by ϕ to any x ∈ V form a connected subtree of T .

Definition 2.2.3 (Net-Tree) A net tree for a metric (V, d) is a hierarchical tree (T, ϕ) for the set
V such that the following conditions hold.

1. Let Ni be the set of nodes of T that have height i. (The leaves have height 0.) Suppose δ
is the minimum pairwise distance in (V, d). Let 0 < r0 < δ/2, and ri+1 = 2ri, for i ≥ 0.
(Hence, ri = 2ir0.) Then, for i ≥ 0, ϕ(Ni+1) is an ri+1-net for ϕ(Ni).

2. Let node u ∈ Ni, and its parent node be pu. Then, d(ϕ(u), ϕ(pu)) ≤ ri+1.

In order to construct the spanner, we include an edge if the end points are from the same net in
some scale and “reasonably close” to each other with respect to that scale. Using this idea, one
can obtain the following theorem.

Theorem 2.2.4 Given a finite metric M = (V, d) with doubling dimension bounded by dim. Let
ε > 0 and (T, ϕ) be any net tree for M . For each i ≥ 0, let

Ei := {{u, v} | u, v ∈ ϕ(Ni), d(u, v) ≤ (4 + 32
ε
) · ri} \ Ei−1,

where E−1 is the empty set. (Here the parameters Ni, ri are as in Definition 2.2.3.) Then Ê :=
∪iEi forms a (1+ ε)-spanner for (V, d), with the number of edges being |Ê| ≤ (2+ 1

ε
)O(dim)|V |.

We prove Theorem 2.2.4 through Lemmas 2.2.5 and 2.2.8.

Lemma 2.2.5 The graph (V, Ê) is a (1 + ε)-spanner for (V, d).

Proof: Let d̂ be the distance function induced by (V, Ê). Let γ := 4 + 32
ε

. We first show that
each point in V is close to some point in ϕ(Ni) under the metric d̂.

Claim 2.2.6 For all x ∈ V , for all i, there exists y ∈ ϕ(Ni) such that d̂(x, y) ≤ 2ri.

Proof: We shall prove this by induction on i. For i = 0, ϕ(N0) = V . Hence, the result holds
trivially.

Suppose i ≥ 1. By the induction hypothesis, there exists y ′ ∈ ϕ(Ni−1) such that d̂(x, y′) ≤ 2ri−1.
Since ϕ(Ni) is an ri-net of ϕ(Ni−1), there exists y ∈ ϕ(Ni) ⊆ ϕ(Ni−1) such that d(y′, y) ≤ ri =

2ri−1 ≤ γ · ri−1. Hence,, (y′, y) ∈ Ei ⊆ Ê and d̂(y′, y) = d(y′, y), which is at most ri.

Finally, by the triangle inequality, d̂(x, y) ≤ d̂(x, y′) + d̂(y′, y) ≤ 2ri−1 + ri = 2ri.

We next show that for any pair of vertices x, y ∈ V , d̂(x, y) ≤ (1 + ε)d(x, y). Suppose ri ≤
d(x, y) < ri+1.
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Suppose q is the integer such that 8
2q
≤ ε < 16

2q
, i.e. q := dlog2 8ε e.

We first consider the simple case when i ≤ q−1. Then, d(x, y) < 2i+1r0 ≤ 2qr0 ≤ 16
ε
·r0 ≤ γ ·r0.

Since x, y ∈ ϕ(N0), it follows that (x, y) ∈ Ê and d̂(x, y) = d(x, y).

Next we consider the case when i ≥ q. Let j := i− q ≥ 0.
By Claim 2.2.6, there exist vertices x′, y′ ∈ ϕ(Nj) such that d̂(x, x′) ≤ 2rj and d̂(y, y′) ≤ 2rj .
We next show that (x′, y′) ∈ Ê. It suffices to show that d(x′, y′) ≤ γ · rj .

d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) (Triangle inequality)
≤ 2rj + ri+1 + 2rj (Choice of x′, y′ and i)
= rj(4 + 2 · 2q) (i = j + q)
≤ rj(4 +

32
ε
) (2q < 16

ε
)

= γ · rj

Hence, we have d̂(x′, y′) = d(x′, y′). Note that by the triangle inequality,

d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤ 4 · rj + d(x, y). (2.1)

Finally, we obtain the desired upper bound for d̂(x, y).

d̂(x, y) ≤ d̂(x, x′) + d̂(x′, y′) + d̂(y′, y) (Triangle inequality)
≤ 8 · rj + d(x, y) (Choice of x′, y′ and (2.1))
= 8

2q
· ri + d(x, y) (j = i− q)

≤ (1 + 8
2q
)d(x, y) (ri ≤ d(x, y))

≤ (1 + ε)d(x, y) ( 8
2q
≤ ε)

Observe that we have not used the definition of doubling dimension so far. We next proceed to
show that the spanner (V, Ê) is sparse, by using the fact that the metric is doubling. We first
show that for each vertex u, for each i, the number of edges in Ei incident on u is small.

Claim 2.2.7 Define Γi(u) := {v ∈ V : {u, v} ∈ Ei}. Then, |Γi(u)| ≤ (4γ)k.

Proof: Observe that Γi(u) is contained in a ball of radius at most γ · ri centered at u. Moreover,
since S ⊆ ϕ(Ni), any two points in S must be more than ri apart. Hence, from Fact 1.2.4, it
follows that |Γi(u)| ≤ (4γ)k.

Lemma 2.2.8 The number of edges in Ê is at most (2 + 1
ε
)O(k)n.

Proof: It suffices to show that the edges of Ê can be directed such that each vertex has out-
degree bounded by (2 + 1

ε
)O(k).

For each v ∈ V , define i∗(v) := max{i | v ∈ ϕ(Ni)}. For each edge (u, v) ∈ Ê, we direct the
edge from u to v if i∗(u) < i∗(v). If i∗(u) = i∗(v), the edge can be directed arbitrarily. By arc
(u, v), we mean an edge that is directed from vertex u to vertex v.
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We now bound the out-degree of vertex u. Suppose there exists an arc (u, v) ∈ Ei.

By definition of Ei, d(u, v) ≤ γ · ri. Set p = dlog2 γe. Hence, it is not possible for both u and
v to be contained in ϕ(Ni+p). Since i∗(u) ≤ i∗(v), it follows that i∗(u) ≤ i + p. On the other
hand, u ∈ ϕ(Ni) and so i∗(u) ≥ i. So, i∗(u)− p ≤ i ≤ i∗(u).

There are at most p + 1 = O(log γ) values of i such that Ei contains an edge directed out of u.
By Claim 2.2.7, for each i, the number of edges in Ei incident on u is at most (4γ)k.

Hence, the total number of edges in Ê directed out of u is (4γ)k ·O(log γ) = (2 + 1
ε
)O(k).

Observe that in the proof of Lemma 2.2.5, we have actually shown that for any points x and y,
there is a short path of a particular form. This property will be useful when we construct spanners
with small hop-diameter.

Theorem 2.2.9 Consider the construction in Theorem 2.2.4. For any x, y in V , the spanner Ê
contains a (1+ ε)-path of the following form. If x0 and y0 are the leaf nodes in T with ϕ(x0) = x
and ϕ(y0) = y, and xi and yi are the ancestors of x0 and y0 at height i ≥ 1, then there exists i
such that the path

x = ϕ(x0), ϕ(x1), . . . , ϕ(xi), ϕ(yi), . . . , ϕ(y1), ϕ(y0) = y

is a (1 + ε)-path (after removing repeated vertices).

2.3 Construction of ((1 + ε)-Spanners with Bounded Degree

We have shown that the edges in Ê can be directed such that the out-degree of every vertex
is bounded. We next describe how to modify Ê to get another set of edges Ẽ that has size at
most that of Ê, but the resulting undirected graph (V, Ẽ) has bounded degree (Lemma 2.3.1).
Moreover, we show in Lemma 2.3.2 that the modification preserves distances between vertices.

We form the new graph (V, Ẽ) by modifying the directed graph (V, Ê) in the following way.

Modification Procedure. Let l be the smallest positive integer such that 1
2l−1 ≤ ε.

Then, l = O(log 1
ε
).

For each i and point u, define Mi(u) to be the set of vertices w such that w ∈ Γi(u)
and (w, u) is directed into u in Ê.
Let Iu := {i | ∃v ∈ Mi(u)}. Suppose the elements of Iu are listed in increasing
order i1 < i2 < · · · . To avoid double subscripts, we write M u

j :=Mij(u).
We next modify arcs going into each vertex u in the following manner. For 1 ≤ j ≤
l, we keep the arcs directed from Mu

j to u. For j > l, we pick an arbitrary vertex
w ∈Mu

j−l and for each point v ∈Mu
j , replace the arc (v, u) by the arc (v, w).

Observe that since Mu
j is defined with respect to the directed graph (V, Ê), the or-

dering of the u’s for which the modification is carried out is not important.

Let (V, Ẽ) be the resulting undirected graph. Since every edge in Ê is either kept or replaced by
another edge (which might be already in Ê), |Ẽ| ≤ |Ê|.
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Lemma 2.3.1 Every vertex in (V, Ẽ) has degree bounded by (2 + 1
ε
)O(k).

Proof: Let α be an upper bound for the out-degree of the graph (V, Ê). From Lemma 2.2.8, we
have α = (2+ 1

ε
)O(k). Let β be an upper bound for |Mi(u)|. We have β ≤ |Γi(u)| = (2+ 1

ε
)O(k).

We next bound the maximum degree of a vertex in (V, Ẽ). Consider a vertex u ∈ V . The edges
incident on u can be grouped as follows.

1. There are at most α edges directed out of u in Ê.

2. Out of the edges in Ê directed into u, at most βl remain in Ẽ.

3. New edges can be attached to u in (V, Ẽ). For each arc (u, v) directed out of u in Ê, there
can be at most β new edges attaching to u in Ẽ. The reason is (u, v) can be in exactly one
Ei and so there exists unique j such that u ∈ M v

j . Hence, there could be potentially only
at most |M v

j+l| new arcs directed into u because of the arc (u, v) in Ê.

Hence, the number of edges incident on u in (V, Ẽ) is bounded by α + βl + αβ = (2 + 1
ε
)O(k).

We next show that the modification from (V, Ê) to (V, Ẽ) does not increase the distance between
any pair of vertices too much.

Lemma 2.3.2 Suppose d̃ is the metric induced by (V, Ẽ). Then, d̃ ≤ (1 + 4ε)d̂.

Proof: It suffices to show that for each edge (v, u) ∈ Ê removed, d̃(v, u) ≤ (1 + 4ε)d(v, u).
Suppose (v, u) in Ê is directed into u . Then, by construction, v ∈M u

j for some j > l.

Let v0 = v. Then, from our construction, for 0 ≤ s ≤ sj :=
⌊
j−1
l

⌋
, there exists vs ∈ Mu

j−sl such
that for 0 ≤ s < sj , (vs, vs+1) ∈ Ẽ, and (vsj , u) ∈ Ẽ. Then, there is a path in (V, Ẽ) going from
v to u traversing vertices in the following order: v = v0, v1, . . . , vsj , u. By the triangle inequality,
the quantity d̃(v, u) is at most the length of this path, which we show is comparable to d(v, u).

Claim 2.3.3 For 0 ≤ s < sj , d(u, vs+1) ≤ εd(u, vs).

Proof: Note that vs+1 ∈ Mi(u) and vs ∈ Mj(u) for some i and j. From step 3 of our construc-
tion, j − i ≥ l.

Since d(vs, u) ≥ γ · rj−1 and d(vs+1, u) ≤ γ · ri, it follows that d(vs+1, u) ≤ 2
2l
d(vs, u) ≤

εd(vs, u).

Claim 2.3.4 For 0 ≤ s ≤ sj , d(vs, u) ≤ εsd(v0, u).

Proof: The claim can be proved by induction on s and using Claim 2.3.3.

From the triangle inequality and Claims 2.3.3 and 2.3.4, we have

d(vs, vs+1) ≤ d(vs, u) + d(u, vs+1) ≤ (1 + ε)d(vs, u) ≤ (1 + ε)εsd(v0, u) (2.2)
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Finally, we have

d̃(v, u) ≤ ∑sj−1
s=0 d(vs, vs+1) + d(vsj , u) (Triangle inequality)

≤ ∑sj−1
s=0 (1 + ε)εsd(v0, u) + εsjd(v0, u) ((2.2) and Claim 2.3.4)

≤ 1+ε
1−εd(v0, u)

≤ (1 + 4ε)d(v, u)

The last inequality follows from the fact that for 0 < ε < 1
2
, 1+ε
1−ε ≤ 1 + 4ε.

Finally, we show that (V, Ẽ) is the desired spanner.

Theorem 2.3.5 Given a metric (V, d) with doubling dimension k, there exists a (1 + ε)-spanner
such that the degree of every vertex is at most (2 + 1

ε
)O(k).

Proof: We show that Ẽ gives the desired spanner. Lemma 2.3.1 gives the bound on its degree.
From Lemmas 2.2.5 and 2.3.2, we have d̃ ≤ (1 + 4ε)d̂ ≤ (1 + 4ε)(1 + ε)d ≤ (1 + 7ε)d, for
0 < ε ≤ 1

2
. Substituting ε := ε′

7
gives the required result.

2.4 Sparse Spanners with Small Hop-diameter

Observe that our spanner in Theorem 2.2.4 has (2+ 1
ε
)O(dim) ·n edges, and hence is optimal (with

respect to n) in terms of the sparsity achieved while preserving shortest path distance. It is easy
to check that the number of hops in a (1+ ε)-path obtained in Theorem 2.2.9 is Θ(log∆), where
∆ is the aspect ratio of the metric (V, d) (i.e., the ratio of the maximum to the minimum pairwise
distances). Indeed, the net tree (T, ϕ) has a height of Θ(log∆), and in general, a (1 + ε)-path
can have Ω(log∆) hops.

Before we begin in earnest to investigate how many extra edges are required in order to achieve
small hop-diameter, let us make a simple observation. For each node u in the tree T , let Lu be the
set of leaves under u. For each node u, suppose we add an edge between ϕ(u) and every point in
ϕ(Lu). Since the tree has O(log∆) levels, the number of extra edges added is O(n log∆), while
the hop-diameter of the augmented spanner is at most 3. In the next section, we will build on this
idea to show how one can reduce the number of additional edges to O(n log n) (independent of
the aspect ratio ∆) and achieve the same hop-diameter.

2.4.1 A Warm-up: Obtaining O(log n) Hop-diameter

Notice that Theorem 2.2.4 holds for any net tree (T, ϕ). Hence, by choosing a net tree more
carefully, we could possibly improve the trade-off between the hop-diameter of the spanner and
its size. Indeed, we show in the next theorem that we can improve the parameter log∆ to log n
in both cases. (Note that if a metric has constant doubling dimension, log∆ = Ω(log n).)

Theorem 2.4.1 Suppose (V, d) is a finite metric, where |V | = n. Then, there exists a net tree
(T, ϕ) from which the spanner Ê constructed in the manner described in Theorem 2.2.4 has the
following properties.
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1. The hop-diameter of the spanner Ê is O(log n).
2. It is possible to add n(blog2 nc− 1) extra edges such that for all leaves u ∈ N0 in T and
any ancestor v of u, there is an edge between ϕ(u) and ϕ(v). (Hence, the hop-diameter of
the spanner can be reduced to 3.)

Proof: We describe a way to construct a net tree (T, ϕ). Let N0 be the set of leaves for which
there is a one-one correspondence ϕ onto V .

Suppose we have obtained the set Ni of nodes of height i. We would be done if |Ni| = 1.
Otherwise, we would obtain an ri+1-net for ϕ(Ni) in the following way. We show a way to
greedily construct a net for a set. Start with a list L initially containing all the nodes in Ni,
ordered such that a node containing more leaves in its subtree would appear earlier.

As long as the list L is not empty, we repeat the following process. Remove the first node u in
the remaining list, form a new node v ∈ Ni+1 such that ϕ(v) := ϕ(u) and set the parent of u to
be v. For each node w in the remaining list L such that d(ϕ(w), ϕ(v)) ≤ ri+1, remove w from
list L and set the parent of w to be v.

Claim 2.4.2 For each x ∈ N0, let Ax be the set of its ancestors in T . Then,
|ϕ(Az)| ≤ blog2 nc+ 1. In particular, |ϕ(Az) \ {ϕ(z)}| ≤ blog2 nc.

Proof: Let ai be the ancestor of z in Ni. Suppose there exists i such that ϕ(ai) 6= ϕ(ai+1).
It follows that the node ai must have a sibling c, for which ϕ(c) = ϕ(ai+1), whose subtree
contains at least as many leaves as the subtree at ai does. Hence, the subtree at ai+1 contains at
least twice as many leaves as ai does. Thus there can be at most blog2 nc values of i for which
ϕ(ai) 6= ϕ(ai+1).

For the first part of the theorem, it follows that the (1 + ε)-path guaranteed in Theorem 2.2.4 has
at most 2blog2 nc+ 1 hops.

For the second part of the theorem, for every z ∈ N0, we add an edge between ϕ(z) and every
point in ϕ(Az) \ {ϕ(z)}. Note that |ϕ(Az)\{ϕ(z)}| ≤ blog2 nc. Suppose y is the lowest ancestor
of z such that ϕ(z) 6= ϕ(y), and suppose x is the ancestor of z that is also the child of y. Then,
observe that the spanner Ê already includes the edge between ϕ(y) and ϕ(x) = ϕ(z). Hence, for
each vertex z, we actually only need to add at most blog2 nc− 1 extra edges. The (1+ ε)-path in
Theorem 2.2.4 can be reduced to x = ϕ(x0), ϕ(xi), ϕ(yi), ϕ(y0) = y, which has 3 hops.

In the following section, we will investigate the tradeoff between the hop-diameter of a spanner
and the number of edges, this time using any given net tree instead.

2.4.2 The General Upper Bound for Hop-diameter

In this section, we assume that the given metric (V, d) has doubling dimension bounded by k.
Given a net tree (T, ϕ) for the metric, suppose ET is the spanner obtained in Theorem 2.2.4.
Note that ET is dependent on the stretch parameter ε. However, for ease of notation, we would
leave out the dependency on ε throughout this section.
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The approach we use is similar to that used by Arya et al. [ADM+95] for Euclidean metrics,
which is a subclass of doubling metrics. Instead of using net trees, they worked with “dumbbell
trees”, which have similar properties. Applying a construction from [Cha87, AS87] to “shortcut”
edges in the net-tree, we can show that one can add few extra edges to ET in order to achieve
small hop-diameter. Moreover, as shown in [AS87], this can be done in O(n log n) time.

We first consider how to add extra edges to a tree such that every pair of nodes has a path with a
small number of hops between them.

Definition 2.4.3 Define g(m,n) to be the minimum i such that for any tree metric with with
vertex set V , where |V | = n, there exists a spanner P with m edges that preserves all pairwise
distances exactly, and for any pair of points, there is a shortest path in P with i hops.

Lemma 2.4.4 Suppose a metric (V, d) with n points has a net tree (T, ϕ), and suppose ET is the
(1 + ε)-spanner obtained in Theorem 2.2.4. Then, it is possible to add m extra edges to ET such
that the hop-diameter of the new spanner is at most 2g(m,n) + 1.

Proof: Suppose u is an internal node of T that has a child v such that ϕ(u) = ϕ(v). We contract
the edge {u, v} by merging the two nodes u and v, and renaming the new node v ′ such that
ϕ(v′) = ϕ(v). We repeat the process to obtain the resulting tree (T ′, ϕ). Note that (T ′, ϕ) is a
tree with V as its vertex set, and is no longer a net tree or a hierarchical tree. However, observe
that if u is an ancestor of v in T , then ϕ(u) is an ancestor of ϕ(v) in T ′.

Consider the tree T ′ with unit weights on its edges. By the definition of g, there is a spanner F
on T ′ that preserves all pairwise distances such that for every pair of nodes, there is a shortest
path with at most g(m,n) hops. We add the following set of edges to the spanner ET .

EF := {{ϕ(a), ϕ(b)} : {a, b} ∈ F}.

Suppose x and y points in V , x0 and y0 are the leaf nodes in T such thatϕ(x0) = x andϕ(y0) = y,
and xi and yi are the ancestors in T at height i for x0 and y0 respectively. By Theorem 2.2.9, there
exists i such that the following points form a (1 + ε)-path P0, after removing repeated points.

x = ϕ(x0), ϕ(x1), . . . , ϕ(xi), ϕ(yi), . . . , ϕ(y1), ϕ(y0) = y

Suppose xi and yi are contracted to x̂ and ŷ respectively in T ′. By the choice of F , there exist at
most g(m,n)− 1 intermediate vertices {vi}ki=1 on the path from x0 to x̂ in T ′ such that {x0, v1},
{vi, vi+1} (1 ≤ i < k) and {vk, x̂} are in F . Hence, we have a path with at most g(m,n) hops
from x to ϕ(x̂): x = ϕ(x0), ϕ(v1), ϕ(v2), . . . , ϕ(vk), ϕ(x̂). Since this sequence of points is a
subsequence of ϕ(x0), ϕ(x1), . . . , ϕ(xi), it follows this length of this path is at most that of the
sub-path from ϕ(x0) to ϕ(xi) in P0.

Similarly, there is a path with at most g(m,n) hops from ϕ(ŷ) to y whose length is at most that
of the corresponding sub-path in P0. Hence, there is a (1 + ε)-path with at most 2g(m,n) + 1
hops from x to y in the spanner ET ∪ EF .

17



Theorem 2.4.5 (Chazelle [Cha87]) For m ≥ 2n, g(m,n) = O(α(m,n)), where α is the func-
tional inverse of Ackermann’s function.

Definition 2.4.6 (Ackermann’s function [Tar75]) Let A(i, j) be a function defined for integers
i, j ≥ 0 as the following.

A(0, j) = 2j for j ≥ 0
A(i, 0) = 0, A(i, 1) = 2 for i ≥ 1
A(i, j) = A(i− 1, A(i, j − 1)) for i ≥ 1, j ≥ 2

Define the function α as α(m,n) = min{i | i ≥ 1, A(i, 4dm/ne) > log2 n}.

From Lemma 2.4.4 and Theorem 2.4.5, we obtain the following theorem.

Theorem 2.4.7 Suppose a metric (V, d) with n points has a net tree (T, ϕ), and suppose ET is
the (1 + ε)-spanner obtained in Theorem 2.2.4. Then, it is possible to add m extra edges to ET

such that the hop-diameter of the new spanner is at most O(α(m,n)).

Observing that A(2, 4 log∗ n) > log2 n, we have the following corollary.

Corollary 2.4.8 Suppose a metric (V, d) with n points has a net tree (T, ϕ), and suppose ET is
the (1+ ε)-spanner obtained in Theorem 2.2.4. Then, it is possible to add n log∗ n extra edges to
ET such that the hop-diameter of the new spanner is O(1).

2.4.3 The Lower Bound on Hop-diameter

We now show that the trade-off between the size of the spanner and its hop-diameter obtained in
Theorem 2.1.3 is essentially optimal.

Theorem 2.4.9 For any ε > 0, for infinitely many integers n, there exists a metric M induced
by n points on the real line such that any (1 + ε)-spanner with m edges on the metric M has
hop-diameter Ω(α(m,n)).

Our general approach first consider a family of metrics, each of which induced by some binary
“hierarchically well-separated tree” (HST). We define a function G(i, j) that is a variant of the
Ackermann’s function such that if a metric from the family contains n ≥ G(i, j) points, then any
spanner on the metric with hop-diameter bounded by i + 1 must have more than Ω(jn) edges.
The relationship betweenG(i, j) and the Ackermann’s function is used to obtain the lower bound
for HSTs. The proof technique we used is an extension of that used in Yao’s paper [Yao82].
Our lower bound result for line metrics then follows from the fact that binary HSTs with large
separation embed into the real line with small distortion.

Remark 2.4.1 For technical reasons, we assume that a spanner contains a self-loop for every
point. Since any spanner must contain a linear number of edges, this assumption does not affect
the asymptotic lower bound.
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Construction of the family of HST metrics. For k ≥ 0, let Mk be the metric induced by the 2k

leaves of the weighted complete binary tree Tk defined as follows. Let β > 0 be the separation
parameter for the HST. The tree Tk is a binary tree containing 2k leaves such that for each internal
node u at height h ≥ 1, the distance from u to any of the leaves in the subtree rooted at u is βh−1.

The following proposition follows from the construction of the metrics Mk.

Proposition 2.4.10 Let the HST metric Mk be defined as above.

(a) Suppose Mk is constructed with separation β ≥ 100(1 + ε). Let U be the subset of
points corresponding to the leaves of Tk which are the descendants of some internal node.
Then, any (1 + ε)-path between points in U cannot contain any point outside U .

(b) Consider Tk and suppose h ≤ k. Suppose T ′ is the tree obtained from Tk by replacing
each subtree rooted at an internal node of height h by a leaf whose distance from the root
is the same as before, i.e., βk−1. Then, T ′ is isomorphic to Tk−h.

(c) For every k ≥ 0, the metric Mk with expansion β ≥ 4 has doubling dimension at most
2.

We will use Proposition 2.4.10(a) crucially in our analysis. Unless otherwise stated, we assume
the HST metric Mk is always constructed with separation β large enough such that the statement
holds.

We prove the following theorem that states the lower bound result for the HST metrics.

Theorem 2.4.11 For each integer k ≥ 1 and any ε > 0, there exists an HST metric Mk with
large enough separation β such that any (1 + ε)-spanner on Mk with at most m edges has
hop-diameter at least Ω(α(m,n)).

We observe that HST metrics with large separation embed into the real line with small distortion
in the following claim.

Claim 2.4.12 For each integer k ≥ 1 and any ρ > 0, for sufficiently large β > 0, the HST metric
Mk with separation β embeds into the real line with distortion at most 1 + ρ.

Proof: We embed the leaves associated with Mk into the real line in their natural ordering, i.e.
leaves in the subtree rooted at some internal node are clustered together in the line. The distance
between embedded points is the same as that between them in the tree. Such an embedding does
not contract distances.

Consider the expansion of the distance between a pair of leaves whose lowest common ancestor
is at height r. Hence, their distance in the tree is 2βr. Observe that their embedded distance is at
most 2 · {2r + 2r−1β + · · ·+ 2βr−1 + βr}. Hence, the distortion is at most

2r + 2r−1β + · · ·+ 2βr−1 + βr

βr
=
2r

βr
· (β/2)

r − 1
β/2− 1 + 1

≤ 1

β/2− 1 + 1,

which is at most 1 + ρ for β ≥ 2(1 + 1
ρ
).
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Now Theorem 2.4.9, the main result of this section, follows from Theorem 2.4.11 (the result for
HSTs) and Claim 2.4.12 (which relates distances in the HST to those on the real line) as follows.

Proof of Theorem 2.4.9: Suppose n = 2k is a power of two. We construct a line metric M with
n points. Let ε′ = 2ε and ρ > 0 be small enough such that (1 + ε)(1 + ρ) ≤ 1 + ε′. Suppose the
HST metric Mk has large enough separation β such that by Theorem 2.4.11, any (1+ ε′)-spanner
for Mk with m edges has hop-diameter Ω(α(m,n)), and by Claim 2.4.12, Mk embeds into some
line metric M with distortion at most 1 + ρ.

Suppose P is a (1 + ε)-spanner for metric M with m edges and hop-diameter at most D. Since
(1 + ε)(1 + ρ) ≤ 1 + ε′, it follows spanner P corresponds to a (1 + ε′)-spanner in Mk with m
edges and hop-diameter at most D. Therefore, D = Ω(α(m,n)).

In the rest of the section, we will show Theorem 2.4.11, the lower bound result for the HST
metrics. To this end, we define a variant of the Ackermann’s function.

Definition 2.4.13 Define the function G(i, j), for i ≥ 0, j ≥ 0 to be:

G(0, 0) = 0, G(0, j) = 2dlog2 je; j ≥ 1
G(i, 0) = 0, G(i, 1) = 1; i ≥ 1
G(i, j) = G(i, j − 1)G(i− 1, 4G(i, j − 1)); i ≥ 1, j ≥ 2

Proposition 2.4.14 Suppose G(i, j) is the function defined as above.

(a) For all i ≥ 0, j ≥ 1, G(i, j) is a power of two.
(b) For j ≥ 1, j ≤ G(0, j) ≤ 2j.

We now prove the main technical lemma for the lower bound for the HST metrics; as we will
see, the proof of Theorem 2.4.11 will follow easily from this lemma.

Lemma 2.4.15 Suppose 2k ≥ G(i, j), where i ≥ 0 and j ≥ 1; suppose ε > 0 and the HST
metric Mk has large enough separation β. Suppose X is a subset of Mk such that |X| = n ≥ 1.
Let ρ = n/2k. Then, any (1 + ε)-spanner for X with hop-diameter at most i+1 must have more
than 1

4
ρjn edges.

Proof: We prove the result by induction on the lexicographical order of (i, j).

Base cases. For i = 0, j ≥ 1, any spanner with hop-diameter 1 on n points must have exactly
1
2
n(n − 1) + n edges, recalling that we require that a spanner must contain a self-loop for each

point. Hence, observing that j ≤ G(0, j) ≤ 2k from Proposition 2.4.14, we conclude that such a
spanner cannot have the number of edges less than 1

4
ρjn ≤ 1

4
n2 < 1

2
n(n− 1) + n.

For i ≥ 1, j = 1, we observe that any spanner on n points must have at least n edges. Hence, the
number of edges in a spanner cannot be less than 1

4
ρn ≤ 1

4
n < n.

Inductive Step. Suppose X is a subset of Mk such that 2k ≥ G(i, j) for some i ≥ 1 and j ≥ 2,
where |X| = n and ρ = n/2k. For contradiction’s sake, assume there is a (1+ ε)-spanner E with
hop-diameter i+ 1 for X such that |E| ≤ 1

4
ρjn.
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Let I be the indexing set for the subtrees of Tk, each rooted at some internal node and containing
exactly G(i, j − 1) leaves. Observing that G(i, j − 1) is a power of 2 from Proposition 2.4.14, it
follows that

|I| = 2k/G(i, j − 1) ≥ G(i, j)/G(i, j − 1)
= G(i− 1, 4G(i, j − 1)).

For each s ∈ I , let Vs be the set of leaves contained in the corresponding sub-tree. Let us also
define:

• E1s := {{u, v} ∈ E : u, v ∈ Vs}, for each s ∈ I , and E1 := ∪s∈IE1s .
• E2 := {{u, v} ∈ E : u ∈ Vs, v ∈ Vt, s 6= t}.

We describe the high level idea to obtain a contradiction. Suppose for each s ∈ I , we replace
the subtree containing Vs by a leaf in the same manner as Proposition 2.4.10(b), then we would
obtain a tree T ′ which is isomorphic to Tk̂, where 2k̂ = |I| ≥ G(i− 1, 4G(i, j − 1)).
Let Xs := X ∩ Vs and J := {s ∈ I : |Xs| ≥ 1}. Identifying each Xs’s with the corresponding
leaf in the modified tree T ′, consider the submetric of Mk̂ induced by the non-empty Xs’s, whose
point set we write as X ′ := {Xs : s ∈ J}. Hence, Xs is a subset of metric Mk, as well as a point
in metric X ′.

Define E ′ := {{Xs, Xt} : {u, v} ∈ E2, u ∈ Xs, v ∈ Xt}. Observe that E ′ is a (1 + ε)-spanner
for X ′ with hop diameter at most i + 1. Since we wish to apply the induction hypothesis, we
need to show that the size of E ′ is small. Moreover, since |I| ≥ G(i − 1, 4G(i, j − 1)), the
induction hypothesis can only say about spanners of hop-diameter at most i. To resolve this
issue, we would remove some points in X ′ and modify the spanner appropriately such that its
hop-diameter is at most i. First observing that |E ′| ≤ |E2|, it suffices to show that |E2| is small.

Claim 2.4.16 |E2| < 1
4
ρn.

Proof: Let |Xs| = ns and ρs = ns/G(i, j−1). Observe from Proposition 2.4.10(a) that for each
s ∈ I , any (1 + ε)-path between vertices inside Xs cannot go outside Xs. Hence, for ns ≥ 1,
it follows E1s is a spanner for Xs having hop-diameter at most i + 1. Applying the induction
hypothesis for (i, j − 1), we have for each s, |E1

s | > 1
4
ρs(j − 1)ns. Summing over s ∈ I , we

have

|E1| >
∑

s∈I

1

4
ρs(j − 1)ns ≥

1

4
· j − 1
G(i, j − 1)

∑

s∈I
n2s.

Observing that
∑

s∈I ns = n and the fact that x 7→ x2 is a convex function, the last term is
minimized when all ns’s are equal. Hence,

|E1| > j − 1
4G(i, j − 1) · |I| · (

n

|I|)
2 =

1

4
(j − 1)ρn.

Since there are at most 1
4
ρjn edges in total, it follows that |E2| < 1

4
ρn.
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Next, we describe a procedure that removes some points from X ′ and modify E ′ to obtain a
spanner with hop-diameter at most i . Note that the points from X ′ are indexed by J . The
procedure labels the removed points bad.

1. Place the index set J in a list L in an arbitrary order.
2. Consider each element s in list L according to the ordering:

(a) If there exists an element t appearing after s in the list L such that any (1 + ε)-path
in E′ between Xs and Xt takes at least i + 1 hops,

(i) Label s bad and remove it from list L.
(ii) Modify E′ so that if Xp is a point in list L closest to Xs, every edge incident

on Xs will now be incident on Xp, i.e., Xs and Xp are merged.

(b) Move on to the next element in list L.

Any two remaining points certainly have a (1 + ε)-path with at most i hops; oth-
erwise, the one appearing earlier in the list would have been removed. Moreover,
observe in step (ii) of the procedure that Xs and Xp are equidistant from any other
Xq’s in the list. Hence, the length of any (1 + ε)-path for two points still in the list
does not increase. Moreover, since we have merged Xs with Xp, the number of hops
for any (1 + ε)-path cannot increase.

Let B be the set of s ∈ J that are labelled bad. Let R := J − B be the set of remaining indices.
Let Ê be the modified edge set. It follows that Ê is a spanner with hop-diameter at most i for
X̂ := {Xs : s ∈ R}. However, we need to show that not too many bad points are removed.

Claim 2.4.17
∑

s∈R |Xs| ≥ 1
2
n.

Proof: For each s ∈ B, there exists t ∈ J such that any (1 + ε)-path between Xs and Xt in E ′

has at least i+ 1 hops. Fix b ∈ Xt and consider any a ∈ Xs, observe that there is a (1 + ε)-path
P : a = v0, v1, . . . , vl = b in E such that l ≤ i + 1. For each v, let ϕ(v) be the unique Xq that
contains it. Then, it follows there is a (1 + ε)-path P ′: Xs = ϕ(v0), ϕ(v1), . . . , ϕ(vl) = Xt, after
removing redundant Xq’s. Hence, l = i + 1 and there are no redundant Xq’s, otherwise there
would be a (1 + ε)-path from Xs to Xt with less than i + 1 hops. We associate a ∈ Xs with the
edge {a, v1} ∈ E2.
It follows for each s ∈ B and each a ∈ Xs, there exists some edge {a, v} ∈ E2. Each edge can
be associated with at most two points in the bad Xs’s. Hence, we obtain the following.

∑

s∈B
|Xs| ≤ 2|E2| <

1

2
ρn ≤ 1

2
n,

where the middle inequality follows from Claim 2.4.16. Hence, it follows that
∑

s∈G |Xs| ≥ 1
2
n.

We can now obtain a contradiction to the induction hypothesis of Lemma 2.4.15 for (i −
1, 4G(i, j−1)), which states that if X̂ is a sub-metric of Tk̂ such that 2k̂ ≥ G(i−1, 4G(i, j−1))
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and ρ̂ = |X̂|/2k̂, then any (1 + ε)-spanner for X̂ with hop-diameter at most i must have more
than 1

4
ρ̂(4G(i, j − 1))|X̂| edges.

Now, since for each s ∈ R, |Xs| ≤ G(i, j − 1), it follows from Claim 2.4.17 that |X̂| = |R| ≥
1
2
n/G(i, j − 1). Hence, ρ̂ := |R|/|I| ≥ 1

2
ρ. Moreover, n = ρG(i, j − 1)|I| ≤ 2|X̂|G(i, j − 1).

In conclusion, we have a subset X̂ in the metric Tk̂ such that 2k̂ = |I| ≥ G(i − 1, 4G(i, j − 1))
and ρ̂ = |X̂|/|I| ≥ ρ/2. Moreover, Ê is a (1+ ε)-spanner for X̂ with hop-diameter at most i and
has the number of edges less than:

1

4
ρn ≤ 1

4
· (2ρ̂) · 2|X̂|G(i, j − 1) = 1

4
ρ̂(4G(i, j − 1))|X̂|,

obtaining the desired contradiction against the induction hypothesis for (i−1, 4G(i, j−1)). This
completes the inductive step of the proof of Lemma 2.4.15.

If we substitute ρ = 1 in Lemma 2.4.15, we obtain the following corollary.

Corollary 2.4.18 Suppose n = 2k ≥ G(i, j), j ≥ 1. Let ε > 0 and the HST metric Mk have
large enough separation β. Then, any (1 + ε)-spanner for Mk with hop-diameter at most i + 1
must have more than 1

4
jn edges.

In order to get the desired lower bound on the hop-diameter in Theorem 2.4.11, we have to
relate the function G(i, j) to the Ackermann function A(i, j); we do this via yet another function
H(i, j).

Definition 2.4.19 Define the function H(i, j), for i ≥ 0, j ≥ 0 to be:

H(0, j) = 8j3 for j ≥ 0
H(i, 0) = 0, H(i, 1) = 8 for i ≥ 1
H(i, j) = H(i− 1, H(i, j − 1)) for i ≥ 1, j ≥ 2

Claim 2.4.20 Let H(i, j) be as defined above.

(a) For i ≥ 0, j ≥ 0, H(i, j) ≤ A(i+4, j+4)−4. In particular, H(i, j) ≤ A(i+4, j+4).
(b) For i ≥ 0, j ≥ 0, H(i, j) ≥ 4j2G(i, j). In particular, H(i, j) ≥ G(i, j).

Proof: We prove both results by induction on the lexicographic order of (i, j). Let us prove the
claim of part (a) first.

Base cases. For j ≥ 0, H(0, j) = 8j3 ≤ A(4, j+4)−4. For i ≥ 1, H(i, 0) = 0 ≤ A(i+4, 4)−4
and H(i, 1) = 8 ≤ A(i+ 4, 5)− 4.

Inductive step. Suppose i ≥ 1, j ≥ 2. Then, using the induction hypothesis, we have

H(i, j) = H(i− 1, H(i, j − 1))
≤ A(i+ 3, H(i, j − 1) + 4)− 4
≤ A(i+ 3, A(i+ 4, j + 3))− 4
= A(i+ 4, j + 4)− 4,
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which completes the inductive step of the first result.

We next prove the claim of part (b).

Base cases. For j ≥ 0, H(0, j) = 8j3 ≥ 4j2G(0, j), by Proposition 2.4.14(b). For i ≥ 1,
H(i, 0) ≥ 8 · 02G(i, 0), as both sides are zero; H(i, 1) = 8 ≥ 4 = 4G(i, 1).

Inductive step. Suppose i ≥ 1, j ≥ 2. Then, using the induction hypothesis, we have

H(i, j) = H(i− 1, H(i, j − 1))
≥ 4H(i, j − 1)2G(i− 1, H(i, j − 1))
≥ 4H(i, j − 1)2G(i− 1, 4(j − 1)2G(i, j − 1))

Observe that since i ≥ 1 and j ≥ 2, H(i, j − 1) ≥ 2j−1 ≥ j. Hence, H(i, j) ≥ 4j2G(i −
1, 4G(i, j − 1)) = 4j2G(i, j), completing the induction step of the second result.

The following claim describes some properties of the Ackermann function and a functional in-
verse defined by a(x, j) := min{i | i ≥ 1, A(i, j) > x}; note that this is different from the more
commonly used functional inverse α from Definition 2.4.6.

Claim 2.4.21 Suppose the functional inverse a is defined as above.

(a) For all j ≥ 0, if x ≥ y ≥ 0, then a(x, j) ≥ a(y, j). In particular, a(x, j) ≥ a(log2 x, j).
(b) For k ≥ 1 and x ≥ 0, a(x, 4k + 4) + 1 ≥ a(x, 4k).

Proof: The first statement follows trivially from the fact that the Ackermann’s function A(i, j)
is monotone. For the proof of the second statement, suppose i = a(x, 4k + 4). Hence, i ≥ 1 and
A(i, 4k + 4) > x. Observe that A(i + 1, 4k) = A(i, A(i + 1, 4k − 1)) and A(i + 1, 4k − 1) ≥
24k−1 ≥ 4k + 4, since k ≥ 1 and i ≥ 1. Hence, it follows that A(i+ 1, 4k) ≥ A(i, 4k + 4) > x
and thus a(x, 4k) ≤ a(x, 4k + 4) + 1, as required.

We can now prove Theorem 2.4.11 and obtain the lower bound result for the HST metrics.

Proof of Theorem 2.4.11: Suppose E is a (1 + ε)-spanner E for Mk. Let j = d4m
n
e. Then,

by Corollary 2.4.18, since m ≤ 1
4
jn, if G(i, j) ≤ n, the hop-diameter of E is larger than i + 1.

Hence, the hop-diameter of E is at least the following:

min{i+ 1 | G(i, d 4m
n
e) > n}

≥ min{i+ 1 | H(i, 4dm
n
e) > n} (Claim 2.4.20(b))

≥ min{i+ 1 | A(i+ 4, 4dm
n
e+ 4) > n} (Claim 2.4.20(a))

= min{i | A(i, 4dm
n
e+ 4) > n} − 3

= a(n, 4dm
n
e+ 4)− 3

≥ a(n, 4dm
n
e)− 4 (Claim 2.4.21(b))

≥ a(log2 n, 4dmn e)− 4 (Claim 2.4.21(a))

The proof is completed from the observation that a(log2 n, 4dmn e) = α(m,n), by the definition
of the functions α and a.
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Chapter 3

Ultra-Low Dimensional Embeddings for
Doubling Metrics

3.1 Introduction

We consider the problem of representing a metric (V, d) using a small number of dimensions.
Several applications represent data as points in a Euclidean space with thousands of dimensions.
However, this high-dimensionality poses significant computational challenges: many algorithms
tend to have an exponential dependence on the dimension. Hence we are constantly seeking
ways to combat this so-called curse of dimensionality, by finding low-dimensional yet faithful
representations of the data. In this work, we attempt to maintain all pairwise distances, i.e. we
seek to minimize the distortion of an embedding.

This computational motivation leads one to an already compelling and fundamental mathematical
question: given a metric space (which may or may not be Euclidean to begin with), what is the
least number of dimensions in which it can be represented with “reasonable” distortion?

To answer these questions, dimension reduction in Euclidean spaces have been studied exten-
sively. The celebrated and surprising “flattening” lemma of Johnson and Lindenstrauss [JL84]
states that the dimension of any Euclidean metric on n points can be reduced to O( logn

ε2
) with

(1 + ε) distortion, and moreover, this can be done via a random linear map. This result is exis-
tentially tight: a simple packing argument shows that any distortion-D embedding of a uniform
metric on n points into Euclidean space requires at leastΩ(logD n) dimensions—intuitively, there
aren’t enough distinct directions in a low dimensional Euclidean space to accommodate a large
number of equidistant points. Hence we do need the Ω(log n) dimensions, and even allowing
O(log n) distortion cannot reduce the number of dimensions below Ω(log n/ log log n).

It is natural to ask if this “volume” restriction is the only bottleneck to a low-dimensional em-
bedding. In other words, can metrics that do not have such volume hurdles be embedded into
low-dimensional spaces with small distortion? The notion of doubling dimension [Ass83] makes
this very idea concrete: roughly speaking, a metric has doubling dimension dimD = k if and
only if it has (nearly-)uniform submetrics of size about 2k, but no larger. A metric (or more
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strictly, a family of metrics) is simply called doubling if the doubling dimension is bounded by a
universal constant. (See section 3.1.2 for a more precise definition).

The Questions. The packing lower bound shows that any metric requiresΩ(dimD) dimensions
for a constant-distortion embedding into Euclidean space: is this lower bound tight? We now
know the existence of n-point metrics with dimD = O(1) that require Ω(

√
log n)-distortion

into Euclidean space (of any dimension) [GKL03], but can we actually achieve this distortion
with o(log n)-dimensions? What if we give up a bit in the distortion? Bourgain’s classical
result (along with the JL-lemma) shows that all metrics embed into Euclidean space of O(log n)
dimensions andO(log n) distortion [LLR95], but we do not even know if doubling metrics embed
into O(log1−ε n) dimensions with O(log1−ε n) distortion.

If we restrict our attention to Euclidean doubling metrics, we know just as little: a tantalizing
conjecture of Lang and Plaut [LP01] states that all Euclidean metrics with dimD = O(1) embed
into O(1) dimensional Euclidean space with O(1) distortion. However, the best result we know
is still the JL-Lemma (which is completely oblivious to the doubling dimension, and moreover,
is a linear map which is doomed to fail). Again, we do not even know how to take a doubling
Euclidean point set and flatten it into (say) O(log1−ε n) dimensions with O(log1−ε n) distortion!

The Answers. We make progress on the problem of embedding doubling metrics into Eu-
clidean space with small dimension and distortion. (Our results hold for all doubling metrics,
not just Euclidean ones.)

Theorem 3.1.1 (Ultra-Low-Dimension Embedding) Any metric space with doubling dimen-
sion dimD embeds into O(dimD log log n) dimensions with O(log n/

√
log log n) distortion.

Hence we can embed the metric into very few Euclidean dimensions (i.e., Õ(dimD), where the
notation Õ(·) suppresses a multiplicative factor polynomial in log log n), and achieve a slightly
smaller distortion than even Bourgain’s embedding. Note that to achieve distortion O(log n), any
metric with doubling dimension dimD requires at least Ω( dimD

log logn
) Euclidean dimensions, and

hence we are within an O(log log n)2 factor to the optimal dimension for this value of distortion.

This is a special case of our general trade-off theorem:

Theorem 3.1.2 (Main Theorem) Suppose (V, d) is a metric space with doubling dimension
dimD. For any integer T such that Ω(dimD log log n) ≤ T ≤ lnn, there exists F : V →
R
T into T -dimensional space such that for all x, y ∈ V , d(x, y) ≤ ‖F (x) − F (y)‖2 ≤

O

(√
dimD

T
log n

)
· d(x, y).

Varying the target dimension T , we can get some interesting tradeoffs between the distortion
and dimension. For instance, we can balance the two quantities and get O(log2/3 n) dimensions
and O(log2/3 n) distortion for doubling metrics, as desired. On the other hand, for large target
dimension T = lnn, we get distortion O(

√
dimD log n), which matches the best known result

from [KLMN05].

In the interests of clarity of presentation, we only show the existence of such embeddings. Stan-
dard techniques (e.g,. [Bec91, Alo91, MR98]) can be used to give algorithmic versions of our
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results.

Techniques. Our embedding can best be thought of as an extension of Rao’s embed-
ding [Rao99]: there are O(log n) copies of coordinates for each distance scale, hence leading
to O(log n log∆) dimensions. As observed in [ABN06], it is possible to sum up the coordi-
nates over different distance scales to form one coordinate, and in expectation the contraction
is bounded. Using bounded doubling dimension, we show that there is limited dependency be-
tween pairs of points (using the Lovasz Local Lemma), and hence we only need much less than
O(log n) coordinates to ensure that the contraction for all points are bounded.

For the tradeoff between the target dimension and the distortion, we apply a random sign (±1)
to the contribution for each distance scale before summing them up to form a coordinate. This
process is analogous to the random projection in JL-type embeddings. Indeed, we use analysis
similar to that in [Ach00] to obtain a tradeoff between the target dimension and the expansion,
although in our case the original metric needs not be Euclidean.

We give two embeddings: the first one uses a simple decomposition scheme [GKL03, Tal04,
CGMZ05] and illustrates the above ideas in bounding both the contraction and the expansion.
The resulting embedding has distortion O(dimD /

√
T · log n) with T dimensions. In order to

reduce the dependence on the doubling dimension to
√
dimD, we use uniform padded decompo-

sition schemes based on [ABN06].

Bibliographic Note. Independently of our work, Abraham, Bartal, and Neiman (personal com-
munication) have obtained results of a very similar nature, showing how to achieve a trade-off
between distortion and dimension as a function of the doubling dimension dimD and the number
of points n. We believe their results are incomparable to ours. For instance, they can achieve
O(dimD)-dimensional embeddings—smaller than ours by an O(log log n) factor—though only
with slightly super-logarithmic distortion.

Normally, for a pair of points, conventional techniques bound its contraction using only one
distance scale. In order to apply the Local Lemma, the probability of the associated bad event
has to be small enough (see Lemma 3.2.7) and hence we need O(log log n) dimensions. Their
idea is to use O(log log n) distance scales to bound the contraction. Hence, they do not need the
O(log log n) factor in the dimension, but the distortion would suffer an extra factor of O(logε n).

However, we use random signs in our embedding to bound the expansion and consequently our
trade-off at the higher end of dimension is slightly better than theirs. They also present results
on gracefully degrading distortion and average distortion (in the sense defined in [ABC+05,
ABN06]).

Moreover, they also show explicitly how to apply techniques [Alo91, MR98] of getting an al-
gorithmic version of the Local Lemma to construct such an embedding in time k2O(k) log log n,
where k = dimD. Hence, for dimD = o(log log n), we have a polynomial time algorithm; for
dimD = o(log n), we have a sub-exponential time algorithm.
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3.1.1 Related Work

Dimension reduction for Euclidean space was first studied by Johnson and Lindenstrauss [JL84],
using random projections. The results and techniques have since been sharpened and sim-
plified in [FM88, IM98, DG03, Ach00, AC06]. The embeddings have been derandomized,
see [EIO02, Siv02]. Moreover, Matousek [Mat90] has obtained an almost tight tradeoff be-
tween the dimension of the target space and the distortion of the embedding. On the other hand,
dimension reduction for L1 space has been shown to be much harder in [BC03, LN03].

The notion of doubling dimension was introduced by Larman [Lar67] and Assouad [Ass83], and
first used in algorithm design by Clarkson [Cla99]. The properties of doubling metrics and their
algorithmic applications have since been studied extensively, a few examples of which appear
in [GKL03, KL03, KL04, Tal04, HPM05, BKL06, CG06b, IN, KRX06, KRX07].

There is extensive work on metric embeddings, see [IM04]. Bourgain [Bou85] gave an embed-
ding whose coordinates are formed by distances from random subsets. Low diameter decom-
position is a useful tool and was studied by Awerbuch [Awe85], and Linial and Saks [LS93].
Randomized decompositions for general metrics are given in [Bar96, CKR01, FRT04]. Klein
et al. [KPR93] gave decomposition schemes for minor-excluding graphs, which were used by
Rao [Rao99] to obtain embeddings for planar graphs into Euclidean space. These ideas were
developed further in [KLMN05, ABC+05, ABN06].

On the other hand, there is also research on embeddings into constant dimensional spaces, both
for general metrics [BCIS05] and special classes of metrics, for instance ultra-metrics [BCIS06].

3.1.2 Notation and Preliminaries

The reader is referred to standard texts—e.g.,[DL97, Mat02]—for basic definitions of metric
spaces. We denote a finite metric space by (V, d), its size by n = |V |, and its doubling dimension
dimD by k. We assume that the minimum distance between two points is 2 (somewhat weird!),
and hence its diameter ∆ is also (almost) the aspect ratio of the metric. A ball B(x, r) is the set
{y ∈ V | d(x, y) ≤ r}.

Definition 3.1.3 (Nets) Given a metric (V, d) and r > 0, an r-net N for (V, d) is a subset of V
such that

1. (Covering Property) For all x ∈ V , there exists y ∈ N such that d(x, y) ≤ r.
2. (Packing Property) For all x, y ∈ N such that x 6= y, d(x, y) > r.

Definition 3.1.4 (Doubling Dimension dimD) The doubling dimension of a metric (V, d) is at
most k if for all x ∈ V , for all r > 0, every ball B(x, 2r) can be covered by the union of at most
2k balls of the form B(z, r), where z ∈ V .

Definition 3.1.5 (Padded Decompostion) Given a finite metric space (V, d), a positive param-
eter D > 0 and α > 1, a D-bounded α-padded decomposition is a distribution Π over partitions
of V such that the following conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P is at most
D.
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(b) Suppose S ⊆ V is a set with diameter d. If P is sampled from Π, then the set S is
partitioned by P with probability at most α · d

4D

Note. We only need a weaker condition implied by item (b): if we set S := B(x, D
α
), then

the ball is partitioned by P with probability at most 1
2
. In other words, we have Pr[B(xD

α
) ⊆

P (x)] ≥ 1
2
, where P (x) is the cluster in P containing x.

3.2 The Basic Embedding
We give two embeddings: the one from this section is the basic embedding, which achieves the
following trade-off between dimension and distortion:

Theorem 3.2.1 (The Basic Embedding) Given a metric space (V, d) with doubling dimension
dimD, and a target dimension T in the range Ω(dimD log log n) ≤ T ≤ lnn, there exists a
mapping f : V → R

T such that for all x, y ∈ V , Ω
( √

T
dimD

)
· d(x, y) ≤ ||f(x) − f(y)||2 ≤

O(log n) · d(x, y). Hence, the distortion is O( dimD logn√
T

).

Note that this trade-off is slightly worse than than the one claimed in Theorem 3.1.2 in terms
of its dependence on the doubling dimension; however, the advantage is that this embedding is
easier to state and prove. We will then improve on this embedding in the next section.

3.2.1 Basic Embedding: Defining The Embedding

The embedding f : (V, d)→ R
T we describe is of the form f := ⊕t∈[T ]Φ(t), where the symbol⊕

is used to denote the concatenation of the various coordinates. Each Φ(t) : V → R is a single co-
ordinate generated independently of the other coordinates according to a probability distribution
described as follows. To simplify notation, we drop the superscript t and describe how a random
map Φ : V → R is constructed, and f is just the concatenation of T such coordinates.

Let Di := H i, for some constant H ≥ 2. (Later we see that H is set large enough to bound the
contraction.) Suppose all distances in the metric space are at least 2, and I is the largest integer
such that DI < ∆. The mapping Φ : V → R is of the form Φ :=

∑
i∈[I] ϕi. We describe how

ϕi : V → R is constructed, for each i ∈ [I].
Fix i ∈ [I]. We view the metric (V, d) as a weighted complete graph, and contract all edges with
lengths at most Di/2n. The points that are contracted together in this process would obtain the
same value under ϕi. Let the resulting metric be (V, di). Here are a few properties of the metric
(V, di).

Proposition 3.2.2 Suppose for each i ∈ [I], the metric (V, di) is defined as above. Then, for all
x, y ∈ V , the following results hold.

(a) For all i ∈ [I], di(x, y) ≤ d(x, y) ≤ di(x, y) +
Di

2
.

(b) For j ≥ i, dj(x, y) ≤ di(x, y).

Observe that Property (a) of Proposition 3.2.2 implies that the metric (V, di) gives good approxi-
mations of the distances in (V, d) of scales aboveDi. In particular, (V, di) admits anO(k)-padded

29



Di-bounded stochastic decomposition.

Proposition 3.2.3 (Padded Decomposition for Doubling Metrics [GKL03, Tal04, CGMZ05])
Suppose the metric (V, d) has doubling dimension k. Then, there is an α-padded Di-bounded
stochastic decomposition Πi for the metric (V, di), where α = O(k). Moreover, the event
{Bi(x,Di/α) ⊆ Pi(x)} is independent of all the events {Bi(z,Di/α) ⊆ Pi(z) : z 6∈
Bi(x, 3Di/2)}, where Bi(u, r) := {v ∈ V : di(u, v) ≤ r}.

Suppose Pi is a random partition of (V, di) sampled from the padded decompositionΠi of Propo-
sition 3.2.3. Let {σi(C) : C is a cluster in Pi} be uniform {0, 1}-random variables, and γi be a
uniform {−1, 1}-random variable. The random objects Pi, σi and γi are sampled independently
of one another. Define ϕi : V → R by

ϕi(x) := γi · σi(Pi(x)) ·min{di(x, V \ Pi(x)), Di/α} (3.1)

Hence we take the distance from the point x to the closest point outside its cluster, truncate it
at Di/α (recall that α is as defined in Proposition 3.2.3), and multiply it with the {0, 1} r.v.
associated with its cluster, and the {−1, 1} r.v. associated with the distance scale i. (For brevity,
we will use the expression κi(x) := σi(Pi(x)) · min{di(x, V \ Pi(x)), Di/α}; hence ϕi(x) =
γi · κi(x).) We shall see that the σi’s play an important role in bounding the contraction, while
the role of γi’s is to bound the expansion.

To summarize, the embedding is defined to be:

f := ⊕t∈[T ]Φ(t); Φ(t) :=
∑

i∈[I]
ϕ
(t)
i . (3.2)

We rephrase Theorem 3.2.1 in terms of the above randomized construction.

Theorem 3.2.4 Suppose the input metric (V, d) has doubling dimension k, and the target dimen-
sion T is in the range Ω(k log log n) ≤ T ≤ lnn. Then, with non-zero probability, the above
procedure produces a mapping f : V → R

T such that for all x, y ∈ V , Ω
( √

T
dimD

)
· d(x, y) ≤

||f(x)− f(y)||2 ≤ O(log n) · d(x, y). In other words, there exist some realization of the various
random objects such that the distortion of the resulting mapping is O( dimD logn√

T
).

Note. Before we dive in, let us note that we consider the modified metrics (V, di) in order
to avoid a dependence on the aspect ratio ∆ in the expansion bound for the embedding. Now
observe that |ϕ(t)j (x)− ϕ(t)j (y)| ≤ min{dj(x, y), Dj/α}.

Lemma 3.2.5 Suppose x, y ∈ V and for each j ∈ [I], define dj := min{dj(x, y), Dj/α}. Then,

(a) For each i ∈ [I], ∑j≥i dj ≤ O(logH n) · di(x, y).
(b) For each i ∈ [I], ∑j≥i d

2
j ≤ O(logH n) · di(x, y)2.

In particular, for all t ∈ [T ], the contribution |∑j≥i(ϕ
(t)
j (x)−ϕ(t)j (y))| ≤

∑
j≥i dj ≤ O(logH n)·

di(x, y).

Moreover,
∑

i∈[I] d
2
i ≤ O(logH n) · d(x, y)2.
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Proof: We prove statements (a) and (b). The other statements follow from the two in a straight
forward manner.

For ease of notation, we omit the superscript t in this proof. Observe that for j ≥ i, dj ≤
dj(x, y) ≤ di(x, y), where the second inequality follows from Proposition 3.2.2(b).

There are three cases to consider depending on the value of j. The first is for very large j’s
when d(x, y) ≤ Dj

2n
: in this case, dj(x, y) = 0. The second case is for moderate values of j

when Dj

2n
< d(x, y) ≤ Dj: there are at most O(logH n) such j’s. In (a), adding these up gives a

contribution of O(logH n) · di(x, y); in (b), we have a contribution of O(logH n) · di(x, y)2.
Finally, the last case is for small values of j, when d(x, y) > Dj . Consider the largest j0 for
which this happens. Then, it follows from Proposition 3.2.2 that di(x, y) ≥ dj0(x, y) > Dj0/2.
Observing that dj ≤ Dj/α and {Dj} forms a geometric sequence, it follows that

∑
i≤j≤j0 dj =

O(di(x, y)), and
∑

i≤j≤j0 d
2
j = O(di(x, y)

2).

Combining the three cases gives the result.

3.2.2 Basic Embedding: Bounding Contraction

A natural idea to bound the contraction for a particular pair of points x, y is to use the padding
property of the random decomposition: if d(x, y) ≈ H i, then at the corresponding scale i ∈ [I]
the two vertices will be in different clusters, and will contribute a large distance. This idea
has been extensively used in previous work starting with [Rao99]. However, in these previous
works, we have a separate coordinate for each distance scale, which leads to a large number of
dimensions. Abraham et al. [ABN06] show that the coordinates for distance scales can actually
be combined to form one single coordinate, and with constant probability the contraction is still
bounded. Now we want to use a small number of coordinates as well: to do this, we exploit small
doubling dimension to use the Lovasz Local Lemma and bound the contraction for all pairs of
points.

Fixing the γ’s. As noted in the description of the embedding, the γ’s do not play any role in
bounding the contraction. In fact, we will show something stronger: for any realization of the
γ’s, there exists some realization of the P ’s and σ’s for which the contraction of the embedding
f is bounded. For the rest of this section, we assume that the γ’s are arbitrarily fixed upfront.

For each i ∈ [I], let the subset Ni be an arbitrary βDi-net of (V, di), for some 0 < β < 1 to be
specified later.

Bounding the Contraction for some Special Points. We first bound the contraction for the
pairs in Ei := {(x, y) ∈ Ni × Ni : 3Di/2 < di(x, y) ≤ 3HDi}, i ∈ [I]. (Note that from
Proposition 3.2.2(a), it follows that for each (x, y) ∈ Ei, d(x, y) < 4HDi.)

For t ∈ [T ], and (x, y) ∈ Ei, define A(t)(x, y) to be the event that all the following happens:

• the vertex x is well-padded: i.e., Bi(x,
Di

α
) ⊆ P

(t)
i (x);

• the vertex y is mapped to 0: σ(t)i (P
(t)
i (y)) = 0;

• if |∑j>i(ϕ
(t)
i (x)− ϕ(t)i (y))| ≤ Di

2α
, then σ(t)i (P

(t)
i (x)) = 1, otherwise σ(t)i (P

(t)
i (x)) = 0.
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Proposition 3.2.6 (Conditioning on Higher Levels) Let (x, y) ∈ Ei. Suppose for j > i, the
random objects {γ(t)j , P

(t)
j , σ

(t)
j : t ∈ [T ]} have been arbitrarily fixed. For each t ∈ [T ],

sample random partition P
(t)
i from Proposition 3.2.3 and random {0, 1}-variables {σ(t)i (C) :

C is a cluster of P (t)i } uniformly, all independently of one another. Then, for each t ∈ [T ], with
probability at least 1

8
, the event A(t)(x, y) happens independently over the different t’s.

Moreover, if the event A(t)(x, y) happens, then the inequality |∑j≥i(ϕ
(t)
j (x) − ϕ

(t)
j (y))| ≥

Di

2α
holds; furthermore, for any realization of the remaining random objects, i.e., γ (t)i and

{γ(t)j , P
(t)
j , σ

(t)
j : j < i}, the inequality |∑i∈[I](ϕ

(t)
i (x)− ϕ(t)i (y))| ≥ Di

4α
holds, provided H ≥ 8.

(Recall that Di+1 = HDi.)

Proof: Given any realization of the random objects of scales larger than i, each of the three
defining events for A(t)(x, y) happens independently of one another with probability at least 1

2
,

and hence A(t)(x, y) happens with probability at least 1
8
, independently over t ∈ [T ], since the

random objects at scale i are sampled independently over t ∈ [T ].
It follows that if A(t)(x, y) happens, then the partial sum from large scales up to scale i is
|∑j≥i(ϕ

(t)
j (x)−ϕ(t)j (y))| ≥ Di

2α
. Observe the sum from smaller scales |∑j<i(ϕ

(t)
j (x)−ϕ(t)j (y))|

is bounded above by a geometric sum
∑

j<i
Dj

α
, which is at most Di

4α
, provided that H ≥ 8.

In order to show that the contraction for the pair (x, y) is small, we need to show that the event
A(t)(x, y) happens for a constant fraction of t’s. We define C(x, y) to be the event that for at
least T

16
values of t, the event A(t)(x, y) happens. We conclude that the event C(x, y) happens

with high probability (as a function of T ), by using a Chernoff bound: if X is the sum of i.i.d.
Bernoulli random variables, then Pr[X < (1− ε)E[X]] ≤ exp(− 1

2
ε2E[X]), for 0 < ε < 1.

Proposition 3.2.7 (Using Concentration) Under the sampling procedure described in Proposi-
tion 3.2.6, the event C(x, y) fails to happen with probability at most p := exp(− T

64
).

Proof: This follows by applying the Chernoff bound mentioned above with ε = 1
2
.

Now that each event C(x, y) happens with high enough probability, we use the Lovasz Local
Lemma to show that there is some realization of {P (t)i , σ

(t))
i : t ∈ [T ]} such that for all (x, y) ∈

Ei, the events C(x, y) happen simultaneously. In order to use the Local Lemma, we need to
analyze the dependence of these events. Recall that Ni is a βDi-net of (V, di).

Lemma 3.2.8 (Limited Dependence) For each (x, y) ∈ Ei, the event C(x, y) is independent of
all but B := (H

β
)O(k) of the events C(u, v), where (u, v) ∈ Ei.

Proof: Observe that the eventC(x, y) is determined by the random objects {P (t)
i , σ

(t)
i : t ∈ [T ]}.

More specifically, it is determined completely by the events {Bi(w,
Di

α
) ⊆ P

(t)
i (w) : t ∈ [T ]}

and {σ(t)i (P (t)(w)) = 0 : t ∈ [T ]}, for w ∈ {x, y}. Note that if di(x,w) > 3Di/2, then the
corresponding events for the points x and w are independent. Note that if di(x,w) ≤ 3Di/2,
then d(x,w) ≤ 2Di; moreover, any two net-points in (V, di) must be more than βDi apart in
(V, d). Hence, observing that the doubling dimension of the given metric is at most k, for each
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of x and y, only ( 2Di

βDi
)O(k) net points are relevant. Now, each net point can be incident by at

most (4H
β
)O(k) edges in Ei. Hence, it follows that C(x, y) is independent of all but (H

β
)O(k) of the

events C(u, v), where (u, v) ∈ Ei.

Now we can apply the (symmetric form of the) Lovasz Local Lemma.

Lemma 3.2.9 (Lovasz Local Lemma) Suppose there is a collection of events such that each
event fails with probability at most p. Moreover, each event is independent of all but B other
events. Then, if ep(B + 1) < 1, then all the events in the collection happen simultaneously with
non-zero probability.

Proposition 3.2.10 (One More Level) Suppose for j > i, the random objects {γ (t)j , P
(t)
j , σ

(t)
j :

t ∈ [T ]} have been arbitrarily fixed. If T = Ω(k log H
β
), then there is some realization of

{P (t)i , σ
(t)
i : t ∈ [T ]} such that all the events {C(x, y) : (x, y) ∈ Ei} happen. In particular, such

a realization does not depend on the γ’s at scale i.

Proof: From Proposition 3.2.7, the failure probability for each event C(x, y) is at most p :=
exp(− T

64
) and from Lemma 3.2.8, the number of dependent events is at most B = (H

β
)O(k).

Hence, setting Ω(k log H
β
), we have ep(B + 1) < 1, and we can apply the Local Lemma.

Define E to be the event that for all i ∈ [I], for all (x, y) ∈ Ei, the event C(x, y) happens.
By applying Proposition 3.2.10 repeatedly, we show that the event E happens with non-zero
probability.

Proposition 3.2.11 (Contraction for Nearby Net Points) Suppose in the construction the γ’s
are arbitrarily fixed, and the P ’s and σ’s are still random and independent. Moreover, suppose
T = Ω(k log H

β
). Then, with non-zero probability, our random construction produces an embed-

ding f : (V, d) → R
T such that the event E happens; in particular, there exists some realization

of the P ’s and σ’s such that ||f(x)− f(y)||2 ≥
√
T
4
· Di

4α
.

Proof: For each i ∈ [I], let Ei denote the event that for all (x, y) ∈ Ei, the event C(x, y)
happens. Then, we have E = ∩i∈[I]Ei.
From Proposition 3.2.10, we have for all i ∈ [I], Pr[Ei| ∩j≥i+1 Ej] > 0. Hence, we have
Pr[E ] =∏i∈[I] Pr[Ei| ∩j≥i+1 Ej] > 0.

Bounding the Contraction for All Points. We next bound the contraction for an arbitrary
pair (u, v) of points noting that if all net points do not suffer large contraction (by the above
argument), and all pairs do not incur a large expansion (by the argument of Lemma 3.2.5), then
one can extend the contraction result to all pairs of points. Of course, to do so, the net Ni must
be sufficiently fine. Recall that Ni is a βDi-net for (V, di).

Lemma 3.2.12 (Extending to All Pairs) Suppose the event E happens. Then, for any x, y ∈ V ,
there exist T/16 values of t’s for which

|Φ(t)(x)− Φ(t)(y)| = Ω(d(x, y))/αH .
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Proof: We can assume β < 1/4. Let i ∈ [I] such that (2 + 2β)Di ≤ d(x, y) ≤ (2 + 2β)Di+1.
Suppose u, v ∈ Ni are the net points such that di(x, u) ≤ βDi and di(y, v) ≤ βDi. Then, it
follows that (u, v) ∈ Ei. Since the event E happens, the event C(u, v) also occurs, and so there
are at least T/16 values of t’s for which the event A(t)(u, v) occurs. We show that for each such
t, |Φ(t)(x)− Φ(t)(y)| = Ω(d(x, y))/αH .

Since A(t)(u, v) occurs, it follows that |∑j≥i(ϕ
(t)
j (u) − ϕ

(t)
j (v))| ≥ Di/2α. Now using

Lemma 3.2.5, it follows that |∑j≥i(ϕ
(t)
j (x) − ϕ

(t)
j (u))| ≤ O(logH n) · di(u, x) ≤ O(logH n) ·

βDi ≤ Di/8α, for sufficiently small β, where 1
β
= Θ(α logH n). The same upper bound

holds for |∑j≥i(ϕ
(t)
j (y) − ϕ

(t)
j (v))|. Hence, since the net points u, v were “far apart”, and

both x and y were close to their net points, we can use the triangle inequality to infer that
|∑j≥i(ϕ

(t)
j (x)− ϕ(t)j (y))| ≥ Di/4α.

Finally, observing that for j < i, |ϕ(t)j (x) − ϕ
(t)
j (y)| ≤ Dj/α = Di

αHi−j and H ≥ 16, we
have |∑j<i(ϕ

(t)
j (x) − ϕ

(t)
j (y))| ≤ Di/8α. Therefore, |∑j∈[I](ϕ

(t)
j (x) − ϕ

(t)
j (y))| ≥ Di/8α, as

required.

Hence, by settingH = 16 and 1
β
= Θ(α logH n), and observing α = O(k) from Proposition 3.2.3

(where k is the doubling dimension and is at most log n), we have the following result.

Proposition 3.2.13 (Bounding Contraction) Suppose the γ’s are arbitrarily fixed and β is suf-
ficiently small such that 1

β
= Θ(α logH n) and H ≥ 16. Then, for T = Ω(k log log n), there

exists some realization of P ’s and σ’s that produces an embedding f : V → R
T such that for all

x, y ∈ V , ‖f(x)− f(y)‖2 ≥ Ω(
√
T
k
) · d(x, y).

3.2.3 Basic Embedding: Bounding Expansion

Recall that E is the event∩i∈[I]∩(x,y)∈Ei
C(x, y). We showed in Proposition 3.2.11 that Pr[E ] > 0,

and if the event E happens, the resulting embedding f : V → R
T has bounded contraction. We

now bound the expansion of the embedding f : V → R
T for every pair (x, y) of points. In

order to bound this expansion, the {−1,+1}-random variables γi will finally be used. Their role
is fairly natural: if the contributions from different distance scales are simply summed up, then
there would be a factor of |I| (roughly speaking) appearing in the expansion for each coordinate.
However, with the random variables γi’s, the sum starts to behave like a random walk, and the
expectation of the sum of the signed contributions would only suffer a factor of

√
I . In order to

make this argument formal, we use techniques similar to those used in analyzing the Johnson-
Lindenstrauss lemma [Ach00]. The main problem that arises here is that if we condition on the
event E , not only the different coordinates of the map but also the γ’s are no longer independent,
and hence we would not be able to use the “random walk”-like argument. Therefore, we need a
more careful analysis to apply the large-deviation arguments.

Fixing the P ’s and σ’s. Suppose the γ’s are sampled uniformly and independently. From
Proposition 3.2.13, there exists some realization of the P ’s and the σ’s such that the contraction
of the embedding f is bounded. Hence, from this point, we can concentrate on bounding the
expansion. Since the γ’s are randomly drawn, the P ’s and the σ’s are random variables too, and
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are functions of the γ’s. Proposition 3.2.10 gives a clear idea of the dependency between the
random variables: the P ’s and the σ’s at scale i are determined only by the random objects at
scales strictly larger than i, and in particular are independent of the γ’s at scale i.

Let us fix x, y ∈ V and define the random variable

S := ||f(x)− f(y)||22 =
∑

t∈[T ]
(Q(t))2,

where Q(t) := Φ(t)(x) − Φ(t)(y). (The coordinates Φ were defined in (3.1). We want to show
that for large enough T , the r.v. S does not deviate too much from its mean with high probability.
Then, a union bound over all pairs (x, y) of points leads to the conclusion that with non-zero
probability, the embedding f has bounded expansion.

Observe that Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i , where Y

(t)
i := κ

(t)
i (x) − κ

(t)
i (y). Define di :=

min{di(x, y), Di/α}. Recall that the random variables γ(t)i are uniformly picked from {−1,+1},
and |Y (t)i | ≤ di.

We can illustrate the dependency between the different random objects in the following descrip-
tion.

For i from I down to 0, do:

1. For each t ∈ [T ], the value Y (t)
i is picked adversarially from [−di, di],

hence possibly depending on previously picked values {Y (t)
j , γ

(t)
j : j >

i, t ∈ [T ]}.
2. For each t ∈ [T ], γ(t)i is picked uniformly from {−1,+1}, and moreover,
independent of any random objects picked thus far.

Lemma 3.2.14 (Computing the m.g.f.) Suppose the γ’s and Y ’s are picked according to the
above description. Moreover, ν2 :=

∑
i∈[I] d

2
i . Then for 0 ≤ hν2 < 1/2,

E[exp(hS)] ≤ (1− 2hν2)−T/2.
Moreover, for ε > 0, Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.

The proof of Lemma 3.2.14 appears in Section 3.2.4. Using this lemma, we can bound the
expansion of the embedding.

Proposition 3.2.15 (Bounding Expansion) Suppose the target dimension T is at
most lnn. Then, for each pair x, y ∈ V , with probability at least 1 − 1

n2 ,
||f(x)− f(y)||2 ≤ O(log n) · d(x, y).

Proof: Let ν2 :=
∑

i∈[I] d
2
i , and recall that S = ||f(x) − f(y)||22. Then, from Lemma 3.2.14,

we have for ε > 0, Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.
Note that for ε ≥ 8, (1 + ε) exp(−ε) ≤ exp(−ε/2). Hence, for T ≤ lnn, we set ε := 8 lnn

T
and

from Lemma 3.2.5, we have ν2 =
∑

i∈[I] d
2
i ≤ O(log n)·d(x, y)2. Hence, with failure probability

at most 1
n2 , we have ||f(x)− f(y)||22 ≤ (1+ 8 lnn

T
) ·T ·O(log n) · d(x, y)2 ≤ O(log2 n) · d(x, y)2.
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Using the union bound over all pairs (x, y) and combining with Proposition 3.2.13, we com-
plete the proof for the low distortion embedding claimed in Theorem 3.2.4, modulo the proof
of Lemma 3.2.14 that is given in Section 3.2.4. In Section 3.3, we will give an embedding that
improves the dependence on the doubling dimension dimD.

3.2.4 Resolving Dependency among Random Variables

Suppose we wish to bound the magnitude of the following sum, whose terms are dependent on
one another:

S :=
∑

t∈[T ](Q
(t))2, (3.3)

where for each t ∈ [T ], Q(t) := ∑
i∈[I] γ

(t)
i Y

(t)
i . The γ(t)i ’s are {−1,+1} random variables; for

each i ∈ [I], the Y (t)i ’s are random variables taking values in the interval [−di, di]. The following
procedure specifies how the various random variables are being sampled.

For i from I down to 0, do:

1. For each t ∈ [T ], the value Y (t)
i is picked from [−di, di], possibly depend-

ing on previously picked values {Y (t)
j , γ

(t)
j : j > i, t ∈ [T ]}.

2. For each t ∈ [T ], γ(t)i is picked uniformly from {−1,+1}, and moreover,
independent of any random objects picked thus far.

A standard technique to analyze the magnitude of S defined in (3.3) is to consider the moment
generating function (m.g.f.) E[exp(hS)], for sufficiently small h > 0. This is fairly easy when
the terms in the summation S are independent: however, observe that each Y (t) is dependent on
the random objects indexed by j > i. Moreover, the Q(t)’s are not independent either. However,
we can get around this and prove the following result, via Lemmas 3.2.16 and 3.2.17.

Lemma 3.2.14 (Computing the m.g.f.) Suppose ν2 :=
∑

i∈[I] d
2
i . Then for 0 ≤ hν2 < 1/2,

E[exp(hS)] ≤ (1− 2hν2)−T/2.
Moreover, for ε > 0, Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.

Recall that the problem was that each Y (t) is dependent on the random objects indexed by j >
i. Moreover, the Q(t)’s are not independent either. To get around this, we consider random
variables related to Q(t). Define Q̂(t) :=

∑
i∈[I] γ

(t)
i di and Q

(t)
:=
∑

i∈[I] g
(t)
i di, where the g(t)i ’s

are independent normal N(0, 1) variables. Define Ŝ :=
∑

t∈[T ] (Q̂
(t))2 and S :=

∑
t∈[T ] (Q

(t)
)2

analogously. Observe that both the Q̂(t)’s and theQ
(t)

’s are independent over different t’s. Define
ν2 :=

∑
i∈[I] d

2
i . A standard calculation gives us that E[exp(hS)] ≤ (1 − 2hν2)−T/2, for 0 ≤

hν2 < 1/2. We show that E[exp(hS)] is bounded above by the same quantity.

As observed in [Ach00], by the Monotone Convergence Theorem, we have E[exp(hS)] =∑
r≥0

hr

r!
E[Sr]. Hence, we compare the even powers of Q, Q̂ and Q.

Lemma 3.2.16 The following inequalities hold.
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1. For any integer r ≥ 0, E[Q̂2r] ≤ E[Q
2r
].

2. For any real number h > 0, E[exp(hŜ)] ≤ E[exp(hS)].

Proof: The first statement follows from the observation that E[γ2ri ] = 1 ≤ E[g2ri ]. The second
statement follows from the first statement, observing that the Q̂(t)’s and the Q

(t)
’s are indepen-

dent, and using the identity E[exp(hZ)] =
∑

r≥0
hr

r!
E[Zr].

The next lemma resolves the issue that the Q(t)’s are not independent. The idea is to replace each
random variable Y (t)

i by a constant di and show that this does not decrease the expectation of the
relevant random variables.

Lemma 3.2.17 The following properties hold.

1. For all rt ≥ 0 (t ∈ [T ]), E[∏t∈[T ](Q
(t))2rt ] ≤ E[

∏
t∈[T ](Q̂

(t))2rt ].

2. For h > 0, E[exp(hS)] ≤ E[exp(hŜ)].

Proof: Note the second statement follows from the first using the identity E[exp(hZ)] =∑
r≥0

hr

r!
E[Zr], and hence it suffices to prove the first statement. Let us define the partial sums

Q
(t)
i :=

∑
j≥i γ

(t)
i Y

(t)
i and Q̂(t)i :=

∑
j≥i γ

(t)
i di. We show the following statement by backward

induction on i. The case i = 1 gives the required result. We show that for i ∈ [I], for all rt ≥ 0
(t ∈ [T ]), E[∏t∈[T ](Q

(t)
i )

2rt ] ≤ E[
∏

t∈[T ](Q̂
(t)
i )

2rt ].

The case i = I follows from the fact that for all r ≥ 0, for all t ∈ [T ], |Y (t)
I | ≤ dI . Hence,

for all rt ≥ 0 (t ∈ [T ]), E[
∏

t∈[T ](Q
(t)
I )

2rt ] = E[
∏

t∈[T ](Y
(t)
I )2rt ] ≤ E[

∏
t∈[T ](dI)

2rt ] =

E[
∏

t∈[T ](Q̂
(t)
I )

2rt ].

Assume that for all lt ≥ 0 (t ∈ [T ]), E[∏t∈[T ](Q
(t)
i+1)

2lt ] ≤ E[
∏

t∈[T ](Q̂
(t)
i+1)

2lt ], for i ≥ 0. Fix
some rt ≥ 0 (t ∈ [T ]).

E[
∏

t∈[T ]
(Q

(t)
i )

2rt ] = E[
∏

t∈[T ]
(Q

(t)
i+1 + γ

(t)
i Y

(t)
i )2rt ] (3.4)

= E[

r1∑

l1=0

· · ·
rt∑

lt=0

∏

t∈[T ]

(
2rt
2lt

)
(Q

(t)
i+1)

2rt−2lt(Y
(t)
i )2lt ] (3.5)

≤ E[

r1∑

l1=0

· · ·
rt∑

lt=0

∏

t∈[T ]

(
2rt
2lt

)
(Q

(t)
i+1)

2rt−2ltd2lti ] (3.6)

≤ E[

r1∑

l1=0

· · ·
rt∑

lt=0

∏

t∈[T ]

(
2rt
2lt

)
(Q̂

(t)
i+1)

2rt−2ltd2lti ] (3.7)

= E[
∏

t∈[T ]
(Q̂

(t)
i )

2rt ] (3.8)

The equality (3.5) uses the fact that the r.v.’s γ(t)i ’s are independent of all other random variables
and the expectation of an odd power of γ(t)i is 0. The inequality (3.6) follows from the fact that
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|Y (t)i | ≤ di. The inequality (3.7) follows from the linearity of expectation and the induction
hypothesis. Finally, equality (3.8) holds for the same reason as that for (3.5). This completes the
inductive proof.

Finally, we are in a position to prove Lemma 3.2.14:

Proof of Lemma 3.2.14: From Lemma 3.2.17, we have E[exp(hS)] ≤ E[exp(hŜ)],
which is at most E[exp(hS)], by Lemma 3.2.16. Finally, from a standard calculation [DG03],
E[exp(hS)] ≤ (1− 2hν2)−T/2, for 0 ≤ hν2 < 1/2.

To prove the second part of the lemma, let hν2 = ε
2(1+ε)

< 1
2
. Then, we have

Pr[S > (1 + ε)Tν2] = Pr[exp(hS) > exp((1 + ε)Thν2)]

≤ E[exp(hS)] exp(−(1 + ε)Thν2)

≤ (1− 2hν2)−T/2 · exp((1 + ε)Thν2)

= ((1 + ε) exp(−ε))T/2.

which proves the large-deviation inequality.

3.3 A Better Embedding via Uniform Padded Decompositions
Our basic embedding in the previous section uses a simple padded decomposition [CGMZ05],
and serves to illustrate the proof techniques: however, its dependence on dimD is sub-optimal. In
order to improve the dependence of the distortion on the doubling dimension, we use a more so-
phisticated decomposition scheme. We modify the uniform padded decomposition in [ABN06],
by incorporating the properties of bounded doubling dimension directly within the construction,
to achieve both the padding property, as well as independence between distant regions.

3.3.1 Uniform Padded Decompositions

Definition 3.3.1 (Uniform Functions) Given a partition P of (V, d), a function η : V → R is
uniform with respect to the partition P if points in the same cluster take the same value under η,
i.e., if P (x) = P (y), then η(x) = η(y).

For r > 0 and γ > 1, the “local growth rate” is denoted by ρ(x, r, γ) := |B(x,rγ|)
|B(x,r/γ)| , and

ρ(x, r, γ) := minz∈B(x,r) ρ(z, r, γ). All logarithms are based 2 unless otherwise specified.

Claim 3.3.2 (Claim 2 of [ABN06]) For x, y ∈ V , γ ≥ 5 and r > 0 such that 2(1 + 1
γ
)r <

d(x, y) ≤ (γ − 2− 1
γ
)r, we have max{ρ(x, r, γ), ρ(y, r, γ)} ≥ 2.

We show that if (V, d) has bounded doubling dimension, there exists a uniformly padded decom-
position: i.e., one where the padding function α(·) is uniform with respect to the partition. The
following lemma is similar to [ABN06, Lemma 4], except that it has additional properties about
bounded doubling dimension, and also independence between distant regions.
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Lemma 3.3.3 (Uniform Padded Decomposition) Suppose (V, d) is a metric space with dou-
bling dimension k, and D > 0. Let Γ ≥ 8. Then, there exists a D-bounded α-padded decom-
position Π on (V, d), where α = O(k), with the following properties. For each partition P in
the support of Π, there exist uniform functions ξP : V → {0, 1} and ηP : V → (0, 1) such that
ηP ≥ 1

α
. Moreover, if ξP (x) = 1, then 2−7/ log ρ(x,D,Γ) ≤ ηP (x) ≤ 2−7; if ξP (x) = 0, then

ηP (x) = 2
−7 and ρ(x,D,Γ) < 2.

Then, for all x ∈ V , the probability of the event {B(x, ηP (x)D) ⊆ P (x)} is at least 1
2
. Fur-

thermore, the event {B(x, ηP (x)D) ⊆ P (x)} is independent of all the events {B(z, ηP (z)D) ⊆
P (z) : z 6∈ B(x, 3D/2)}.

Proof: We first describe how a random decomposition is sampled, and show that it satisfies the
claimed properties. We construct a D

4
-net N for (V, d) in the following way. Initially, no net

points are chosen and all points are uncovered. While there are still uncovered points in V , we
pick v among the uncovered points that minimizes ρ(v,D,Γ). We include v in the set N of net
points, and all points in V within distance D

4
of v are covered. The process is repeated until all

points are covered. Let N := {v1, v2, . . . , v|N |} be the net points in the order in which they are
picked. Let λ be the maximum number of net points in N in a ball of radius 3D

4
. Since (V, d) has

doubling dimension k, λ = 2O(k). Without loss of generality, we assume λ ≥ 8.
We next describe how each cluster is formed in a random partition. Initially, all points in V are
unclustered. We start from j = 1 to |N |, and form a cluster Cj (which can be empty) in the
following manner. For each j, define

χ̂j := ρ(vj, D,Γ), (3.9)

χj := 2min{max{χ̂j,
√
8}, λ}. (3.10)

and the probability density function

p(r) :=
χ2
j

1−χ−2
j

· 8 lnχj

D
· χ

−8r
D

j for r ∈ [D
4
, D
2
] (3.11)

We sample a random radius rj from the above probability density function. The cluster Cj

consists of the remaining unclustered points in B(vj, rj), which can be empty. The non-empty
clusters form the random partition.

Next, we define two functions ξ : V → {0, 1} and η : V → (0, 1). Suppose the cluster Cj is
non-empty. For all x ∈ Cj , define

ηP (x) :=
2−7

min{max{log χ̂j ,1},log λ} ≥
1
α
,

for some α = O(k). If χ̂j ≥ 2, define ξP (x) = 1; otherwise, ξP (x) := 0. Hence, by construction,
the functions ξP and ηP are uniform with respect to the partition P .

Relationship between ξP and ηP . Suppose ξP (x) = 1. Then it follows that χ̂j ≥ 2. From
the way the net N is constructed, observe that when the random radius rj is picked, all re-
maining unclustered points z satisfy ρ(z,D,Γ) ≥ ρ(vj, D,Γ) = χ̂j . Hence, it follows that
2−7 ≥ ηP (x) ≥ 2−7

log χ̂j
≥ 2−7

log ρ(x,D,Γ)
.
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Suppose ξP (x) = 0. Then, χ̂j < 2, and hence ηP (x) = 2−7. Moreover, since d(x, vj) ≤ D
2

, it
follows that ρ(x,D,Γ) ≤ ρ(vj, D,Γ) = χ̂j < 2.

Independence between distant regions. Define Nx := {v ∈ N : d(x, v) ≤ 3D
4
}. Observe that

the event {B(x, ηP (x)D) ⊆ P (x)} is determined completely by the random rj’s for which vj ∈
Nx. Hence, this event is independent of all the events {B(z, ηP (z)D) ⊆ P (z) : z 6∈ B(x, 3D

2
)}.

Padding property. Finally, it remains to show that the event {B(x, ηP (x)D) ⊆ P (x)} happens
with probability at least 1

2
. Using the same argument as the proof of Lemma 4 in [ABN06], the

probability of the event {B(x, ηP (x)D) 6⊆ P (x)} is at most (1 − θ)(1 + θ
∑

vj∈Nx
χ−1j ), for

the particular choice of θ =
√
1/2. For completeness, we outline the proof of this result in

Lemma 3.3.4. Hence, it suffices to show that the sum
∑

vj∈Nx
χ−1j is at most 1.

Recall from construction (3.10) that χj := 2min{max{χ̂j,
√
8}, λ}. Define N1 := {vj ∈ Nx :

χj = 2max{χ̂j,
√
8}}, the net points influencing x whose χj value is attained by the first argu-

ment in the minimum. Define N2 := Nx \N1 to be the rest of the net points influencing x. Note
that for vj ∈ N2, χj = 2λ. Observe that for all vj ∈ N1, χ−1j ≤ 1

2
· |B(vj ,D/Γ)||B(vj ,DΓ|) ≤

1
2
· |B(vj ,D/Γ)|
|B(x,3D/4+D/Γ|) ;

the last inequality follows from the fact that B(vj, DΓ) ⊇ B(x, 3D/4 + D/Γ). Moreover, ob-
serve that B(vj, D/Γ) ⊆ B(x, 3D/4 +D/Γ). Since N1 are points from a D

4
-net, any two points

are more than D
4

apart. Finally, the balls B(vj, D/Γ) are disjoint, as D/Γ ≤ D/8. Hence, it
follows that

∑
vj∈N1

χ−1j ≤ 1
2
.

On the other hand,
∑

vj∈N2
χ−1j ≤ |N2|/2λ ≤ 1

2
, because |Nx| ≤ λ. Hence, the sum∑

vj∈Nx
χ−1j ≤ 1, as required.

The following lemma is proved using techniques in Lemma 4 of [ABN06]. For completeness,
we give the proof here.

Lemma 3.3.4 Consider the decomposition Π on (V, d) described in Lemma 3.3.3, and the as-
sociated function ηP : V → (0, 1) for each partition P in the support of Π. Fix x ∈ V and
recall Nx := {x ∈ N : d(x, v) ≤ 3D

4
}, the net-points used in the decomposition that are

close to x. Recall also that for each vj ∈ N , there is a parameter χj for sampling a random
radius rj that is used to create a cluster centering at vj . Then, the probability of the event
{B(x, ηP (x)D) 6⊆ P (x)} is at most (1− θ)(1 + θ

∑
vj∈Nx

χ−1j ), where θ =
√
1/2.

Proof: We first state a property of the probability density function defined in (3.11). For
convenience, for two sets A and S, we use A ./ S to denote A ∩ S 6= ∅ and A ∩ S 6= ∅.

Proposition 3.3.5 (Lemma 5 of [ABN06]) Suppose Z ⊆ V and x, v ∈ Z. Let χ ≥ 2 be a
parameter, and D > 0 be an upper bound on the diameter of a cluster. Suppose r is sampled
from the distribution p(r) := χ2

1−χ−2 · 8 lnχD
·χ−8r/D, r ∈ [D/4, D/2]. Let S := BZ(v, r). Suppose

θ ∈ (0, 1) such that θ ≥ 2χ−1, and let η = 1
16
log(1/θ)/ logχ. Then, the following holds:

Pr[BZ(x, ηD) ./ S] ≤ (1− θ)[Pr[BZ(x, ηD) ∩ S 6= ∅] + θχ−1].
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We consider the probability that the ball B(x, ηP (x)D) is separated by the partition P . Observe
that the ballB(x, ηP (x)D) ⊆ B(x,D/4) can only be influenced by net points inNx := {v ∈ N :
d(x, v) ≤ 3D/4}. For convenience, we relabel the net points Nx := {v1, v2, . . . , vt}, while still
preserving the relative order in which they are picked. Observe that since {χj} is monotonically
increasing, {ηj} is monotonically decreasing. Suppose Sj is the cluster created by using vj as
the center.

Observe there is some j0 such that x ∈ Sj0 . In this case, ηP (x) ≤ ηj0 . Hence, if the ball
B(x, ηP (x)D) is not contained in Sj0 , it must be the case that there is some j ≤ j0 such that
B(x, ηP (x)D) ./ Sj . Now, since ηj0 ≤ ηj ≤ 1/16, it follows that B(x, ηjD) ./ Sj . So, it
suffices to analyze the event that there exists some j such that B(x, ηjD) ./ Sj .

For 1 ≤ m ≤ t, we define the events:

Zm := {∀j, 1 ≤ j < m,B(x, ηjD) ∩ Sj = ∅},

Em = {∃j,m ≤ j ≤ t, B(x, ηjD) ./ Sj|Zm}.

We wish to obtain an upper bound for Pr[E1]. We prove the following result by induction. The
required result comes from the case m = 1. For 1 ≤ m ≤ t,

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m
χ−1j ).

We shall use Proposition 3.3.5 repeatedly for the case θ =
√
1/2. First check that θ =

√
1/2 ≥

2χ−1j , for all j. For the base case m = t, observe that Zt implies that x must be in the cluster St.
Hence, Pr[B(x, ηtD) ∩ St 6= ∅|Zt] = 1. We apply Proposition 3.3.5 to obtain:

Pr[Et] ≤ (1− θ)(1 + θχ−1t ).

Suppose the inductive result holds for the case m+1 and we consider the case for m ≥ 1. Define
the events:

Fm := {B(x, ηmD) ./ Sm|Zm},

Gm := {B(x, ηmD) ∩ Sm = ∅|Zm} = {Zm+1|Zm}.

We first consider Pr[Fm]. Using Proposition 3.3.5, we have

Pr[Fm] ≤ (1− θ)(Pr[Gm] + θχ−1m ).
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Hence, using the induction hypothesis, we complete the inductive step:

Pr[Em] ≤ Pr[Fm] + Pr[Gm]Pr[Em+1]
≤ (1− θ)(Pr[Gm] + θχ−1m ) + Pr[Gm] · (1− θ)(1 + θ

∑
j≥m+1 χ

−1
j )

≤ (1− θ)(1 + θ
∑

j≥m χ
−1
j ).

3.3.2 The Better Embedding: Defining the Embedding

The new embedding is quite similar to the basic embedding of Section 3.2.1. We use the uniform
padded decomposition of Lemma 3.3.3 to define the new embedding f : (V, d) → R

T . As
before, the metric (V, d) has doubling dimension dimD = k, and suppose α = O(k) is the
padding parameter in Lemma 3.3.3. Let Di := H i, and assume that the distances in (V, d) are
between 2 and HI .

Again, the embedding is of the form f := ⊕t∈[T ]Φ
(t), where each Φ(t) : V → R is generated

independently according to some distribution; for ease of notation, we drop the superscript t
in the following. Also, each Φ is of the form Φ :=

∑
i∈[I] ϕi. We next describe how each

ϕi : V → R is constructed.

For each i ∈ [I], let Pi be a random partition of (V, d) sampled from the decomposition scheme
as described in Lemma 3.3.3. Suppose ξPi

: V → {0, 1} and ηPi
: V → (0, 1) are the associated

uniform functions with respect to the partition Pi. Let {σi(C) : C is a cluster of Pi} be uniform
{0, 1}-random variables and γi be a uniform {−1,+1}-random variable. The random objects
Pi’s, σi’s and γi’s are independent of one another. Then ϕi is defined by the realization of the
various random objects as:

ϕi(x) := γi · σi(Pi(x)) ·min
{
ξPi
(x) · ηPi

(x)−1/2 · d(x, V \ Pi(x)),
Di√
α

}
. (3.12)

Note the similarities and difference with (3.1). Again, we let

κi(x) := σi(Pi(x)) · min{ξPi
(x)ηPi

(x)−1/2d(x, V \ Pi(x)), Di√
α
} denote the right half of the ex-

pression above.

The proof bounding the distortion will proceed similarly: we show that with non-zero probability,
the embedding f : V → R

T has low distortion.

3.3.3 The Better Embedding: Bounding Contraction for Nearby Net
Points

As before, we use the bounded growth-rate of the metric to bound the contraction of the embed-
ding; however, the proofs are now somewhat more involved. Again, we assume that the γ’s are ar-
bitrarily fixed, and the P ’s and σ’s are random and independent. For each i ∈ [I], let the subsetNi

be an arbitrary βDi-net of (V, d), for some 0 < β < 1 to be specified later. Note that Ni is differ-
ent from the net used for obtaining theDi-bounded decomposition Pi. As in the basic embedding,
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we first bound the contraction for the pairs inEi := {(x, y) ∈ Ni×Ni : 3Di < d(x, y) ≤ 4HDi},
i ∈ [I], and then extend it to all pairs in Section 3.3.5.

Let us fix a pair (x, y) ∈ Ei. Suppose 2(1 + 1/Γ) ≤ 3 and 4H ≤ (Γ − 2 − 1/Γ): Claim 3.3.2
implies that max{ρ(x,Di,Γ), ρ(y,Di,Γ)} ≥ 2. Without loss of generality, we assume the max-
imum is attained by x. Lemma 3.3.3 now implies that ξPi

(x) = 1.

For t ∈ [T ], define A(t)(x, y) to be the event that all the following happens:

• B(x, ηPi
(x)Di) ⊆ P

(t)
i (x);

• σ(t)i (P (t)i (y)) = 0;
• if |∑j>i(ϕ

(t)
i (x)− ϕ(t)i (y))| ≤ Di

2
√
α

, then σ(t)i (P
(t)
i (x)) = 1, otherwise σ(t)i (P

(t)
i (x)) = 0.

Proposition 3.3.6 Let (x, y) ∈ Ei. Suppose for j > i, the random objects {γ(t)j , P
(t)
j , σ

(t)
j :

t ∈ [T ]} have been arbitrarily fixed. For each t ∈ [T ], sample random partition P
(t)
i from

Lemma 3.3.3 and random {0, 1}-variables {σ(t)i (C) : C is a cluster in P (t)i } uniformly, all inde-
pendently of one another. Then, for each t ∈ [T ], with probability at least 1

8
, the event A(t)(x, y)

happens independently over different t’s.

Moreover, if the event A(t)(x, y) happens, then the inequality |∑j≥i(ϕ
(t)
j (x) − ϕ

(t)
j (y))| ≥ Di

2
√
α

holds. Also, in this case, for any realization of the remaining random objects, i.e., γ (t)i and
{γ(t)j , P

(t)
j , σ

(t)
j : j < i}, the inequality |∑i∈[I](ϕ

(t)
i (x)−ϕ(t)i (y))| ≥ Di

4
√
α

holds, providedH ≥ 8.
(Recall Di+1 = HDi.)

Proof: Because of the independence of P (t)i and σ(t)i , and observing that x and y are separated
by P

(t)
i , the event A(t)(x, y) happens with probability at least 1/8. Now, suppose the event

A(t)(x, y) happens. For ease of notation, we omit the superscript t. Then, it follows that from
B(x, ηPi

(x)Di) ⊆ Pi(x) that d(x, V \ Pi(x)) ≥ ηPi
(x)Di. Recalling that ξPi

(x) = 1, we have
ξPi
(x)ηPi

(x)−1/2d(x, V \ Pi(x)) ≥ ηPi
(x)1/2Di ≥ Di/

√
α. Hence, irrespective of whether

σi(Pi(x)) is 0 or 1, we have |∑j≥i(ϕ
(t)
j (x) − ϕ

(t)
j (y))| ≥ Di

2
√
α

. The rest of the results follow
from straight forward calculation, observing that {Dj} forms a geometric sequence.

As before, we define C(x, y) to be the event that for at least T
16

values of t, the event A(t)(x, y)
happens.

Using the same Chernoff bound as in Proposition 3.2.7, we can show a similar result.

Proposition 3.3.7 Suppose (x, y) ∈ Ei, and for j > i, the random objects {γ(t)j , P
(t)
j , σ

(t)
j : t ∈

[T ]} have been arbitrarily fixed. Then, the event C(x, y) fails to happen with probability at most
p := exp(− T

64
).

We next use the Lovasz Local Lemma to show that there is some realization of {P (t)
i , σ

(t))
i : t ∈

[T ]} such that for all (x, y) ∈ Ei, the events C(x, y) happen simultaneously. In order to use the
Local Lemma, we need to analyze the dependency of these events. Recall that Ni is a βDi-net
of (V, di).

Lemma 3.3.8 For each (x, y) ∈ Ei, the event C(x, y) is independent of all but B := (H
β
)O(k) of

C(u, v), where (u, v) ∈ Ei.
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Proof: Observe that the eventC(x, y) is determined by the random objects {P (t)
i , σ

(t)
i : t ∈ [T ]}.

More specifically, it is determined completely by the events {Bi(w,
Di

α
) ⊆ P

(t)
i (w) : t ∈ [T ]}

and {σ(t)i (P (t)(w)) = 0 : t ∈ [T ]}, for w ∈ {x, y}. Note that if di(x,w) > 3Di/2, then the
corresponding events for the points x and w are independent. Note that if di(x,w) ≤ 3Di/2,
then d(x,w) ≤ 2Di; moreover, any two net-points in (V, di) must be more than βDi apart in
(V, d). Hence, observing that the doubling dimension of the given metric is at most k, for each
of x and y, only ( 2Di

βDi
)O(k) net points are relevant. Now, each net point can be incident by at

most (4H
β
)O(k) edges in Ei. Hence, it follows that C(x, y) is independent of all but (H

β
)O(k) of the

events C(u, v), where (u, v) ∈ Ei.

By the Local Lemma, if ep(B + 1) < 1, then all the events C(x, y), where (x, y) ∈ Ei happen
with positive probability.

Proposition 3.3.9 Suppose for j > i, the random objects {γ (t)j , P
(t)
j , σ

(t)
j : t ∈ [T ]} have been

arbitrarily fixed. If T = Ω(k log H
β
), then there is some realization of {P (t)i , σ

(t)
i : t ∈ [T ]} such

that all the events {C(x, y) : (x, y) ∈ Ei} happen.

Again, we define E to be the event that for all i ∈ [I], for all (x, y) ∈ Ei, the event C(x, y)
happens. As in the basic embedding, Proposition 3.3.9 can be used repeatedly to show the
following result.

Proposition 3.3.10 (Contraction for Nearby Net Points) Suppose T = Ω(k log H
β
). Moreover,

the γ’s are arbitrarily fixed, and the P ’s and σ’s remain random and independent. Then, the
event E happens with non-zero probability. In particular, there exists some realization of the P ’s
and σ’s such that the embedding f : (V, d) → R

T satisfies for all i ∈ [I], for all (x, y) ∈ Ei,
||f(x)− f(y)||2 ≥

√
T
4
· Di

4
√
α

.

3.3.4 The Better Embedding: Bounding the Expansion

We use the same argument as the basic embedding to bound the expansion. We sample the γ’s
uniformly and independently, and use Proposition 3.3.10 to show there exists some realization
of the P ’s and σ’s such that the resulting mapping f : V → R

T has the guaranteed contraction.
Hence, we can focus on analyzing the expansion.

Again, fix x, y ∈ V and let S := ||f(x) − f(y)||22 =
∑

t∈[T ](Q
(t))2, where Q(t) := Φ(t)(x) −

Φ(t)(y). In turn, Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i , where Y (t)i := κ

(t)
i (x) − κ

(t)
i (y). Recall that γ(t)i is

uniformly picked from {−1,+1}.
We next bound the magnitude of Yi in the following Lemma, whose proof depends on the uni-
formity of ξPi

and ηPi
. The proof follows the same argument as in [ABN06, Lemma 8], which

we include here for completeness.

Lemma 3.3.11 Consider a particular Yi = κi(x)− κi(y). Then, the following holds.

1. We have |Yi| ≤ max{ξPi
(x)ηPi

(x)−1/2, ξPi
(y)ηPi

(y)−1/2} · d(x, y).
2. For all z ∈ V , ξPi

(z)ηPi
(z)−1 ≤ 27 log ρ(z,Di,Γ).
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Proof: We first prove the first statement. Note that it suffices to show that κi(x) − κi(y) ≤
ξPi
(x)ηPi

(x)−
1
2 · d(x, y), because by symmetry we would have κi(x)− κi(y) ≤ ξPi

(y)ηPi
(y)−

1
2 ·

d(x, y), which gives the required result.

Recall that κi(x) := σi(Pi(x)) ·min{ξPi
(x)ηPi

(x)−
1
2d(x, V \ Pi(x)), Di√

α
}.

We first consider the case Pi(x) 6= Pi(y). Notice that in this case d(x, V \ Pi(x)) ≤ d(x, y).
Hence, we have κi(x) − κi(y) ≤ κi(x) ≤ ξPi

(x)ηPi
(x)−

1
2 · d(x, V \ Pi(x)) ≤ ξPi

(x)ηPi
(x)−

1
2 ·

d(x, y).

For the case Pi(x) = Pi(y), we use the uniformity of the functions ξPi
and ηPi

. If κi(y) =
σi(Pi(y)) · Di√

α
, then since κi(x) ≤ σi(Pi(x)) · Di√

α
, it follows that κi(x)− κi(y) ≤ 0; otherwise,

κi(x)−κi(y) ≤ ξPi
(x)ηPi

(x)−
1
2 · |d(x, V \Pi(x))− d(y, V \Pi(y))| ≤ ξPi

(x)ηPi
(x)−

1
2 · d(x, y).

The second statement follows from the construction of ξPi
and ηPi

as in Lemma 3.3.3. If ξPi
(z) =

1, then ηPi
(z)−1 ≤ 27 log ρ(z,Di,Γ).

We have |Yi| ≤ di := max{
√
O(log ρ(x,Di,Γ)),

√
O(log ρ(y,Di,Γ))} · d(x, y).

Denote ν2 :=
∑

i∈[I] d
2
i . We bound the magnitude of ν in the following proposition. The first

statement follows from a telescoping sum, and the second follows from the first, using the defi-
nition of di.

Proposition 3.3.12 The following inequalities hold.

1. For all z ∈ V ,
∑

i∈[I] log ρ(z,Di,Γ) = O(logH Γ) · log n.
2. ν2 = O(logH Γ log n) · d(x, y)2.

The proof now proceeds in the same fashion as in Section 3.2.3; setting H := 16 and Γ := 128,
we have ν2 = O(log n) · d(x, y)2. Hence, applying Lemma 3.2.14, and setting ε := 8 lnn

T
as

before, we have the following result.

Lemma 3.3.13 (Bounding Expansion) Suppose T ≤ lnn. Then, for each pair x, y ∈ V , with
probability at least 1− 1

n2 ,

||f(x)− f(y)||2 ≤ O(log n) · d(x, y).

3.3.5 The Better Embedding: Bounding Contraction for All Pairs

Now that we have proved that with non-zero probability, the expansion for every pair of points is
at most O(log n), and the contraction for nearby net points is bounded, we next show that if the
βDi-net Ni for (V, d) is fine enough (i.e., β is small enough), then the contraction bound can be
extended to all pairs.

Lemma 3.3.14 (Bounding Contraction for All Pairs) Suppose the event E holds and the ex-
pansion of the embedding f is bounded in the manner described in Lemma 3.3.13. Suppose
β > 0 is small enough such that β−1 = Θ(

√
α log n), where α = O(k). Then, for all x, y ∈ V ,

||f(x)− f(y)||2 ≥ Ω(
√
T/α) · d(x, y).
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Proof: Without loss of generality, we can assume β < 1
4
. Suppose x, y ∈ V . Let i ∈ [I] such

that (3 + 2β)Di < d(x, y) ≤ (3 + 2β)HDi. Suppose u, v ∈ Ni are net points closest to x and
y respectively. Then, it follows that 3Di < d(u, v) ≤ 4HDi, and so (u, v) ∈ Ei. Hence, by
Theorem 3.3.10, ||f(u)− f(v)||2 ≥

√
T
4
· Di

4
√
α

. On the other hand, both d(u, x) and d(v, y) are at
most βDi. Since the expansion of the embedding f is bounded by O(log n), it follows that both
||f(u)− f(x)||2 and ||f(v)− f(y)||2 are at most O(log n) · βDi.

Finally, we set β to be small enough such that 1
β
= Θ(

√
α log n). By the triangle inequality,

||f(x) − f(y)||2 ≥ ||f(u) − f(v)||2 − ||f(x) − f(u)||2 − ||f(y) − f(v)||2 ≥ Ω(
√

T
α
) · Di ≥

Ω(
√

T
α
) · d(x, y).

Putting Lemmas 3.3.13 and 3.3.14 together proves Theorem 3.1.2.
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Chapter 4

Approximating TSP on Metrics with
Bounded Global Growth

4.1 Introduction
Distance functions are ubiquitous, arising as distances from home to work, round-trip delays
between hosts on the Internet, dissimilarity measures between documents, and many other ap-
plications. As a simplifying assumption, theoreticians often assume that the distance function in
question forms a metric. A metric space M = (V, d) is a set of points V with a distance function
d : V × V → R≥0 such that that distances are symmetric and satisfy the triangle inequality.
Unless specified otherwise, we assume that the set V is finite.

However, some problems remain hard even when the underlying distance function is a met-
ric, an example of which is the Traveling Salesman Problem (TSP). Papadimitriou and Yan-
nakakis [PY93] showed that TSP is MAX-SNP hard in general for metrics whose distances
are either 1 or 2. Indeed, even for more structured metrics such as Euclidean metrics, Tre-
visan [Tre00] showed that the problem remains MAX-SNP hard if the Euclidean dimension is
unbounded. On the other hand, Arora [Aro98] gave the first PTAS for TSP on low dimensional
Euclidean metrics. A natural and basic question that arises in the study of metric spaces is:
How do we quantify the complexity of metric spaces? More specifically, which classes of met-
ric spaces admit efficient algorithms for TSP? The class of tree metrics trivially admits efficient
exact solution for TSP. It is not surprising that metrics induced by special classes of graphs ad-
mit efficient TSP algorithms. For instance, for graphs with bounded tree widths, Arnborg and
Proskurowski [AP89] gave a dynamic program that solves TSP on the induced metrics exactly
in linear time. For metrics induced by weighted planar graphs, the best known algorithm is by
Klein [Kle05], who gave a (1 + ε)-approximation algorithm that runs in linear time O(c1/ε2n),
where c > 0 is some constant. Grigni [Gri00] gave QPTAS’s for metrics induced by minor-
forbidding graphs and bounded-genus graphs.

The above examples were situations where the simplicity was in the representation: one can ask
if there are some parameters that capture the complexity of metric spaces. For Euclidean metrics,
the underlying dimension is such a good candidate. However, not all metrics are Euclidean, and
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“Tail”: path with n −

√

n nodes

“Head”:
√

n-clique

(a) Lollipop

Grid with Θ(n) nodes

√

n-sized “hard” instance of (1, 2)-TSP

(b) Augmented Grid

Figure 4.1: Very simple examples of metrics with low correlation dimension.

a general metric embeds into L2 with distortion as large as Ω(log n) [Mat97], even with no
restriction on the number of dimensions. A question one can ask is: are there other parameters
that can capture the intrinsic algorithmic complexity of an abstract metric space (i.e., independent
of its representation)? What is the intrinsic dimension of M = (V, d)?

Building on a definition of [Ass83], researchers considered the doubling dimension dimD(M) of
a metric M [GKL03]: this concept generalized the notion of dimension in geometric spaces, i.e.,
dimD(R

d, `p) = Θ(d). Doubling dimension proved to be a very useful parameter: in the past
three years, many algorithms have since been developed whose performance (run-time, space)
can be given by functions F (|V |, dimD(M)), which give better quantification than those obtained
for general metrics. For instance, Talwar [Tal04] gave a (1 + ε)-approximation algorithm for
TSP such that for metrics with doubling dimension dimD(M) at most k, the algorithm runs in
time 2(

k
ε
logn)O(k)

. While this result is potentially worse for large dimensions, it is much better
for well-behaved metrics, and arguably having this extra parameter to work with allows us to
develop more nuanced algorithms.

Despite its popularity, doubling dimension has some drawbacks: perhaps the biggest one is being
that a space with low dimD cannot have “large dense clusters”.1 This strict definition makes it
difficult to use it to model real networks, which tend to be well-behaved “on the average”, but
often have a few regions of “high density”. We define a new notion of dimension, the correlation
dimension which captures the idea of being “low-dimensional on average”. We give structural
results as well as algorithms for spanners and TSP for metrics with low correlation dimension.
Our definitions are inspired by work on the correlation fractal dimension in physics [GP83] and
in databases [BF95].

Note that correlation dimension is not the only (or even the first) idea to incorporate dense regions
in graphs (see [KL06] for another exciting, and somewhat different direction of relaxing doubling
dimension, thereby obtaining both PTAS and QPTAS for TSP). But it gives a different (global)
way of measuring the complexity, and can be useful in contexts where stricter, local ways of
measuring dimension are not applicable.

Our Results and Techniques. Given a finite metric M = (V, d), let B(x, r) denote the ball

1More precisely, the doubling dimension is defined so that any set that is almost equilateral in a metric of
dimension dimD can only have 2dimD points in it; the precise definition of doubling appears in Section 4.2.
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around u of radius r. The correlation dimension is defined as the smallest constant k such that
∑

x∈V |B(x, 2r)| ≤ 2k ·
∑

x∈V |B(x, r)|, (4.1)

and moreover, this inequality must hold under taking any net of the metric M . (A more for-
mal definition is given in Section 4.2.) Note that this definition is an “average” version of the
bounded-growth rate used by [PRR99, KR02], and hence should be more general than that no-
tion. We show that in fact, correlation dimension is even more general than doubling dimension:

Theorem 4.1.1 (Correlation Generalizes Doubling) Given a metricM , the correlation dimen-
sion is bounded above by a constant times the doubling dimension.

Moreover, correlation dimension is strictly more general than doubling dimension: adding a
clique of size O(

√
n) to a doubling metric does not change its correlation dimension by much,

but completely destroys its doubling dimension. (Some examples are given in Figure 4.1. One
can be convinced that each of these example metrics has “low complexity on average,” which is
precisely what correlation dimension tries to capture.)

The following theorems show the algorithmic potential of this definition.

Theorem 4.1.2 (Embedding into Small Treewidth Graphs) Given any constant 0 < ε < 1
and k, metrics with correlation dimension at most k can be embedded into a distribution of
graphs with treewidth Õk,ε(

√
n) and distortion 1 + ε.

This immediately allows us to get 2Õ(
√
n))-time algorithms for all problems that can be solved

efficiently on small-treewidth graphs, including the traveling salesman problem. Moreover, The-
orem 4.1.2 is tight, since metrics with bounded dimC can contain O(

√
n)-sized cliques.

However, we can do much better for the TSP despite the presence of these O(
√
n)-sized cliques

(or other complicated metrics of that size); we can make use of the global nature of the TSP
problem (and the corresponding global nature of dimC) to get the following result.

Theorem 4.1.3 (Approximation Schemes for TSP) Given any metric M with dimC(M) = k,
the TSP can be solved to within an expected (1 + ε)-factor in time 2O(n

δε−k) for any constant
δ > 0.

Hence, given constants ε, k, the algorithm runs in sub-exponential time. (Recall that sub-
exponential time is ∩δ>0DTIME(2n

δ

).) As we will see later, the best exponent in the expression
above that we can show is (ε−12

√
log n log log n)4k.

While metrics with bounded correlation dimension cannot in general have (1 + ε)-stretch span-
ners with a linear number of edges, we can indeed get some improvement over general metrics.

Theorem 4.1.4 (Sparse Spanners) Given any 0 < ε < 1, any metric with correlation dimen-
sion k has a spanner with O(n3/2ε−O(k)) edges and stretch (1+ ε). Moreover, there exist metrics
with dimC = 2 and for each of which any 1.5-stretch spanner has Ω(n3/2) edges.
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4.1.1 Related Work

Many notions of dimension for metric spaces (and for arbitrary measures) have been proposed;
see the survey by Clarkson [Cla06] for the definitions, and for their applicability to near-neighbor
(NN) search. Some of these give us strong algorithmic properties which are useful beyond NN-
searching. For instance, the low-growth rate of a metric space requires that for all x ∈ V and all
r, |B(x, 2r)| is comparable to |B(x, r)|. This was used in [PRR99, KR02, HKRZ02] to develop
algorithms for object location in general metrics, and in [KK77, AM05], for routing problems.

A large number of algorithms have been developed for doubling metrics; e.g., for NN-
searching [Cla99, KL04, KL05, BKL06, HPM05, CG06b], for the TSP and other optimiza-
tion problems [Tal04], for low-stretch compact routing [Tal04, CGMZ05, Sli05, AGGM06,
XKR06, KRX06], for sparse spanners [CGMZ05, HPM05], and for other applications [KSW04,
KMW05]. Many algorithms for Euclidean space have been extended to work for doubling met-
rics.

For Euclidean metrics, the first approximation schemes for TSP and other problems were given
by Arora [Aro98] and Mitchell [Mit99]; see, e.g., [CL98, ARR99, CLZ02, KR99] for subsequent
algorithms, and [CL00] for a derandomization. The runtime of Arora’s algorithm [Aro98] was
O(n(log n)O(

√
k· 1

ε
)k−1

), which was improved to 2(
k
ε
)O(k)

n + O(kn log n) [RS99]. For (1 + ε)-
approximation for TSP on doubling metrics, the best known running time is 2(

k
ε
log n)O(k)

[Tal04].
Here, the parameter k is the doubling dimension or the Euclidean dimension in the corresponding
cases.

Finally, the concept of correlation fractal dimension was studied by Belussi and Faloutsos [BF95,
PKF00] for estimating the selectivity of spatial queries; Faloutsos and Kamel [FK94] also used
fractal dimension to analyze R-trees.

Earlier Notions of Correlation Dimension The concept of correlation fractal dimen-
sion [GP83] was used by physicists to distinguish between a chaotic source and a random source;
while it is closely related to other notions of fractal dimension, it has the advantage of being eas-
ily computable. Let us define it here, since it may be useful to compare our definitions with the
intuition behind the original definitions.

Consider an infinite set V . If σ = {xi}i≥1 is a sequence of points in V , the correlation sum
is defined as Cn(r) =

1
n2 |{(i, j) ∈ [n] × [n] | d(xi, xj) ≤ r}| (i.e., the fraction of pairs at

distance at most r from each other). The correlation integral is then C(r) = limn→∞Cn(r), and
the correlation fractal dimension for σ is defined to be limr→0 limε→0

logC((1+ε)r)−logC(r)
log(1+ε)

. Hence,
given a set of points, the correlation fractal dimension quantifies the rate of growth in the number
of points which can see each other as their range-of-sight increases. In the next section, we will
define a version of this definition for finite sets.

4.2 Correlation Dimension: Definition and Motivation

Given a finite metric M = (V, d), we denote the number of points |V | by n. For radius r > 0, we
define the ball B(x, r) = {y ∈ V | d(x, y) ≤ r}. Given U ⊆ V , define BU(x, r) = B(x, r)∩U .
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Recall that a subset N ⊆ V is an ε-cover for V if for all points x ∈ V , there is a covering point
y ∈ N with d(x, y) ≤ ε. A subset N ⊆ V is an ε-packing if for all x, y ∈ N such that x 6= y,
d(x, y) > ε. A subset N ⊆ V is an ε-net if it is both an ε-cover and an ε-packing. A set N ⊆ V
is a net if it is an ε-net for some ε.

Inspired by the definitions mentioned in Section 4.1.1, we give the following definition:

Definition 4.2.1 (correlation dimension) A metric M = (V, d) has correlation dimension
dimC(M) at most k if for all r > 0, the inequality

∑
x∈N |BN(x, 2r)| ≤ 2k ·

∑
x∈N |BN(x, r)| (4.2)

holds for all nets N ⊆ V .

In other words, we want to ensure that the average growth rate of the metric M is not too large,
and the same holds for any net N of the metric. Recall that the doubling dimension dimD(M)
is the least k such that every ball B(x, r) of radius r can be covered by at most 2k balls of
radius r/2 [GKL03]. The strong doubling dimension2 is the least k such that

|B(x, 2r)| ≤ 2k|B(x, r)| (4.3)

for all x ∈ V and radius r. We know that the strong doubling dimension is no more than
4 dimD [GKL03]. It follows directly from the definition (4.3) that the correlation dimension is
no more than the strong doubling dimension; more surprisingly, the following result is true as
well. We give its proof in Section 4.3.

Theorem 4.2.2 For any metric space M , dimC(M) ≤ O(dimD(M)).

Hence the class of bounded correlation dimension metrics contains the class of doubling metrics.
The converse is not true: metrics with bounded dimC can be much richer. Consider, for instance,
the unweighted 2-d grid with dimD = dimC = O(1). Now attaching an unweighted clique (or,
say, a metric with all distances between 1 and 2) on O(

√
n) vertices to one of the vertices of

the grid: one can verify that the induced metric still has dimC = O(1), but the dimD jumps to
1
2
log n.

The reader wondering about why the bounded average growth property (4.2) is required to hold
for every net of M in Definition 4.2.1 is referred to Section 4.3.2: loosely, the definition becomes
too inclusive without this restriction.

A very useful property of correlation dimension is that it still has “small” nets. (Of course, since
we allow large cliques, they cannot be as small as for doubling dimension):

Lemma 4.2.3 (Small Nets) Consider a metric M = (V, d) with dimC(M) ≤ k. Suppose S is
an R-packing with diameter D. If we add more points to S and obtain an R-net N for (V, d),
then the size of the packing satisfies |S| ≤ (2D/R)k/2 ·

√
|N |.

2This quantity has been described as the KR-dimension in [GKL03]; we use this name due to [BKL06] to keep
matters simple.
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Proof: Observe that |S|2 ≤∑x∈N |BN(x,D)|. By applying the definition of correlation dimen-
sion repeatedly, we have for each integer t ≥ 0,

∑
x∈N |BN(x,D)| ≤ 2kt

∑
x∈N |BN(x,D/2

t)|. (4.4)

Setting t = dlog2(D/R)e gives the required result.

Hence, given any metric with dimC = O(1), any near-uniform set in the metric has size at most
O(
√
n), and hence λ, the doubling constant [GKL03] of this metric is also O(

√
n).

At this point, it is worthwhile to mention that because property (4.2) is required to hold for every
net ofM in Definition 4.2.1, it is hard to approximate the correlation dimension of a given metric.

Theorem 4.2.4 Given a metric M = (V, d) with n points, it is NP-hard to distinguish between
the cases dimC(M) = O(1) and dimC(M) = Ω(log n).

The proof of Theorem 4.2.4 involves a reduction from the MAXIMUM INDEPENDENT

SET [Has96] problem, and is given in Section 4.4. Observe that this result rules out any non-
trivial approximation of the correlation dimension; however, this does not necessarily rule out
using correlation dimension for the design of algorithms. In particular, the algorithms we design
do not require us to know the correlation dimension of the input metric up-front; while the TSP
approximation algorithm of Section 4.7 seems to require this information at first glance, this
issue can be resolved using standard “guess-and-double” ideas.

4.3 Relating Doubling and Correlation Dimensions
In this section, we study the inter-relationships between doubling dimension and correlation
dimension. We show that the correlation dimension of any metric is at most O(dimD(M)), but
that the converse is not true.

4.3.1 Correlation Dimension Generalizes Doubling

Let us prove the following theorem.

Theorem 4.3.1 (Doubling metrics have bounded dimC) Let M = (V, d) be a metric space.
Then, dimC(M) ≤ 8 dimD(M) + 1.

Proof: While the proof of this theorem is somewhat long, it is conceptually not very difficult.
Suppose the doubling dimension dimD(M) = k and λ = 2k; to prove the theorem it is enough
to show that ∑

x∈V
|B(x, 2r)| ≤ 2λ4

∑

x∈V
|B(x, r)|.

We can then apply this result to every net N ⊆ V (since dimD(N) ≤ 2 dimD(V )) to complete
the proof of the theorem.

We first obtain an upper bound for each B(x, 2r). Suppose Y is an r
2
-net of V . Defining Yx :=

Y ∩B(x, 3r) and By := B(y, r
2
), we can observe that

B(x, 2r) ⊆ ∪y∈YxBy, (4.5)
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Since Yx is contained in a ball of radius 4r centered at x and the inter-point distance of Yx is
greater than r

2
, it follows from dimD(M) = k that |Yx| ≤ λ4. Hence if each By were small, i.e.,

|By| ≤ |B(x, r)|, the right hand side would be ≤ λ4 · |B(x, r)|.
However, we may be unlucky and have several y ∈ Yx such that |By| > |B(x, r)|. Define
the small centers Sx = {y ∈ Yx | |B(y, r2)| ≤ |B(x, r)|}, and the set of the large centers
Lx := Yx \ Sx. Note that |Sx|, |Lx| ≤ |Yx| ≤ λ4. Plugging into (4.5), we get

|B(x, 2r)| ≤
∑

y∈Yx

|By| ≤
∑

y∈Sx

|By|+
∑

y∈Lx

|By|

≤
∑

y∈Sx

η|B(x, r)|+
∑

y∈Lx

|By| ≤ λ4η|B(x, r)|+
∑

y∈Lx

|By|

Hence, summing over all x ∈ V , we have
∑

x∈V |B(x, 2r)| ≤ λ4η
∑

x∈V |B(x, r)|+
∑

x∈V
∑

y∈Lx
|By| (4.6)

The first term is what we want: we just need to bound the second term on the right hand side of
(4.6). Call this term E.

Changing the order of summation, and defining Ny := {x ∈ V : y ∈ Lx}, we have

E :=
∑

x∈V
∑

y∈Lx
|By| =

∑
y∈Y

∑
x:y∈Lx

|By| =
∑

y∈Y |Ny| · |By|. (4.7)

So it now suffices to give an upper bounds |Ny| · |By| for every net point y ∈ Y .

A change in perspective. Now we change our perspective to a single net point y ∈ Y . Let N ′
y be

an r-net of Ny. Since all points in Ny are at distance at most 4r from y, it follows that |N ′
y| ≤ λ3.

Moreover, x ∈ Ny implies that |B(x, r)| < |By|. Also, we have Ny ⊆ ∪x∈N ′yB(x, r). It follows
|Ny| ≤ λ3|By|. Plugging this into (4.7), we get

E ≤∑y∈Y λ
3|By|2. (4.8)

For any z ∈ By, note that By = B(y, r
2
) ⊆ B(z, r). Observe that |By| =

∑
z∈By

1, and hence
|By|2 ≤

∑
z∈By
|B(z, r)|. This implies that

E ≤ λ3
∑

y∈Y
∑

z∈By
|B(z, r)| = λ3

∑
z∈V

∑
y:z∈By

|B(z, r)|. (4.9)

The second equality is a change in the order of summation. We still have to show this quantity is
at most λ4

∑
x∈V |B(x, r)|; for this it suffices to show that |{y ∈ Y | z ∈ By}| ≤ λ.

The Home Stretch. Consider Mz := {y ∈ Y | z ∈ By}: we want to show |Mz| ≤ λ. Note that
Mz is contained in a ball of radius r

2
centered at z and any two distinct points in Mz is more than

r
2

apart. From the doubling property of V , Mz contains at most λ points! Combining this with
(4.6) and (4.9), we have

∑
x∈V |B(x, 2r)| ≤ 2λ4

∑
x∈V |B(x, r)|,

completing the proof.
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4.3.2 The Converse is False

Given that the correlation dimension of a metric is at most 4 dimD(M) + 1, one can ask if the
two quantities are essentially the same; however, the converse of Theorem 4.3.1 is not true. In
particular, we can show that a metric with bounded correlation dimension does not necessarily
have bounded doubling dimension. Consider the “

√
n-lollipop” metric induced by the graph

obtained by attaching a path metric with n − √n nodes to a clique of size
√
n: the doubling

dimension of this metric is clearly at least log2
√
n = 1

2
log n. However, note that the quantity∑

x |B(x, r)| starts off at n (for r = 0), and is about Θ(nr) for arbitrary r ≤ n. Moreover, this
also holds true for any ε-netN , with

∑
x∈N |BN(x, r)| being |N | for r ≤ ε, and beingΘ(|N |r/ε)

for general r ≥ ε. Hence the correlation dimension of this metric is O(1).

Why require closure under taking nets?

Let us consider defining a metric to have correlation dimension k if

∑
x∈V |B(x, 2r)| ≤ 2k ·

∑
x∈V |B(x, r)| (4.10)

holds only for the original metric and not for all nets N . In this case, we can show that the
definition is too inclusive: in particular,

Proposition 4.3.2 Given any metric M = (V, d), one can find a metric M ′ = (V ∪ V ′, d′) with
the restriction d′|V = d, the number of new points |V ′| = |V |, and the dimension of M ′ is 2
(under this new notion of dimension).

Hence, if we do not require the closure under taking sub-nets, we can realize any metric as a
submetric of a (slightly larger) low-dimensional metric, making the definition completely unin-
teresting (at least for TSP).

Proof: Without loss of generality, let the minimum inter-point distance in V be at least 1. Let
ε > 0 be small enough such that εn¿ 1. Let V ′ be a path on n new vertices, with edge-lengths
on the path being ε, and attach it to some point in V . If we view the original metric as a complete
graph on V , the distances metric d′ are the shortest-path distances in the new graph formed by
adding this “tail”. It is an easy calculation to check that the resulting metric has small correlation
dimension (under this definition of correlation dimension).

This shows that the weaker definition (without the closure under taking subnets) has limited ap-
plication, and motivates why we need to restrict the definition further. Taking subnets is perhaps
the minimal restriction we can add to make it possible to say interesting things about the resulting
metrics.

4.4 Hardness of Approximating Correlation Dimension
In this section, we show that it is NP-hard to approximate the correlation dimension of a metric
better than O(log n); since the correlation dimension always lies in the interval 1, . . . , log n, this
proves that only trivial approximation guarantees are possible unless P = NP .
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Theorem 4.4.1 Given a metric M = (V, d) with n points, it is NP-hard to distinguish between
the cases dimC(M) = O(1) and dimC(M) = Ω(log n).

The proof is by reduction from the hardness of approximation of INDEPENDENT SET [Has96].

Proposition 4.4.2 ([Has96]) There exists 0 < k1 < k2 < 1 such that given a graph with n
vertices, it is NP-hard to distinguish whether the size of a maximum independent set is smaller
than nk1 or larger than nk2 .

Proof: Let G = (V,E) be an instance of the independent set problem, namely a graph on n
vertices, and let α(G) be the size of a maximum independent set in G. We will construct a metric
M such that if α(G) ≤ nk1 then dimC(M) = O(1), and if α(G) ≥ nk2 , then α(G) = Ω(log n).

Define MG to be a metric on n points, each corresponding to a vertex in G, with unit distance
between two points if there is an edge between the corresponding vertices in G, and distance 2
otherwise. Hence MG is a metric of diameter 2; note that any ε-net for MG with ε > 1 is an
independent set in G, and this is useful for the hardness proof.

Let us define a parameter l = 2(1 − k1), where k1 is the smaller constant in the hardness result
for independent set, and let K = nl; note that 1 < K ≤ n2; this will be the size parameter.
Define R = 2n2; this will be a distance parameter.

We now define a metric M = (X, d), with |X| = 2nK + n2K. This metric M consists of the
following three “components”; points in different components are at distance 10n2KR from one
other.

1. Super-clique. This component consists of K copies of the metric MG. Two points lying
in different copies of MG are at distance R from each other.

2. Chain-of-clusters. This component consists of a chain of K “clusters”, with each cluster
being a uniform metric on n points and unit inter-point distance. The distance between
points from adjacent clusters is 2, and hence between points in the ith and jth clusters is
2|i− j|.

3. Tail. This component consists of a line metric with Kn2 points, with adjacent points at
distance R from each other.

The Analysis. We now begin to examine the correlation dimension of this metric M .
Note that bounding the correlation dimension amounts to analyzing the quantity FN(r) =∑

x∈N |BN(x, r)| as a function of r, starting from r = 0 and checking whether or not there
is a sudden increase as r doubles. The first claim shows that the only interesting ε-nets are those
with 1 ≤ ε < 2.

Lemma 4.4.3 If N is an ε-net for the metric M where ε < 1 or ε ≥ 2, then
∑

x∈N |BN(x, 2r)| ≤
O(1)

∑
x∈N |BN(x, r)| for any r > 0.

Proof: Let us consider ε-nets for ε < 1. Since the smallest distance in M is 1, by the covering
property of a net, the net N consists of the entire set X . For r < 1, since each point sees only
itself, FN(r) = |N | = Θ(n2K). As r increases past 1 and reaches 2, all the points within
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each copy of MG in the Super-clique, or within each cluster in the Chain-of-clusters can see one
another. This gives a contribution of 2K×

(
n
2

)
= Θ(Kn2) to FN(r), but since FN(0) = Θ(Kn2)

to begin with, the increase is not large. As r increases from 2 to R, the quantity FN(r) also
increases gradually to Θ(n2K2) due to the chain-of-clusters. Hence, when r reaches R, the
sudden contribution of Θ(n2K2) due to the super-clique does not also cause any sudden jumps
in FN(r). Finally, as r increases beyond R, nothing interesting happens.

For ε ≥ 2, at most one point in each copy of MG and each cluster remain in the net N . It is easy
to check that in this case FN(2r) = O(1) FN(r) for all r > 0.

Hence it suffices to consider ε-nets N where 1 ≤ ε < 2. For these values of ε, the net N can
contain only one point from each cluster of the chain-of-clusters; moreover, for each copy of
MG in the super-clique, the points that remain in N correspond to an independent set in the
graph G. As r increases to R, the chain-of-clusters can only give a gradual contribution of
Θ(K2) = o(n2K); hence, if there is a large contribution to FN(r) due to the Super-clique as the
r reaches R, there would be a sudden increase in FN(r). Thus the number of net points in each
copy ofMG in the Super-clique (i.e., the size of the independent sets inG) becomes crucial to the
ratio FN(2r)/FN(r) for R/2 ≤ r < R. The two following lemmas make this intuition formal.

Lemma 4.4.4 Suppose a maximum independent set of G has size α(G) ≤ nk1 . Then, for 1 ≤
ε < 2, for any ε-net N of M , FN(2r) = O(1)F (r), for any r > 0.

Proof: As before, the interesting action takes place when R/2 ≤ r < R. Observe that FN(r) ≥
n2K = n2+l. Since the net points in each MG corresponds to an independent set in G, the
contribution to FN(2r) due to the Super-clique is at most (nk1K)2 = n2k1+2l = n2+l. Hence,
FN(2r) = O(1)FN(r).

Lemma 4.4.5 Suppose α(G) ≥ nk2 . Then, for some 1 ≤ ε < 2, there exists an ε-net N and
R/2 ≤ r < R such that FN(2r) ≥ Ω(n2(k2−k1))FN(r).

Proof: Let ε = 1.5 and r = R/2. Since G contains an independent set of size at least nk2 ,
for each copy MG, we can pick at least nk2 net points to be in N . It follows as before that
FN(r) ≤ O(n2K). Observe that the super-clique contributes at least (nk2K)2 = n2k2+2l. Hence,
FN(2r)/FN (r) ≥ Ω(n2k2+2l−2−l) = Ω(n2(k2−k2)).

Combining the lemmas completes the proof of the hardness reduction.

4.5 Sparse Spanners
We begin our study of metrics with small correlation dimension with a simple construction of
sparse spanners; this will also serve to introduce the reader to some of the basic concepts we
will use later. In this section, we show that metrics with bounded correlation dimension admit
(1+ε)-stretch spanners with Oε(min{n1.5, n log∆}) edges, where∆ = maxx,y d(x,y)

minx,y d(x,y)
is the aspect

ratio of the metric. This should be contrasted with a trivial lower bound for general metrics: any
spanner with stretch less than 3 for Kn,n requires Ω(n2) edges.
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4.5.1 Sparse Spanners: Upper Bound

Theorem 4.5.1 (Sparse Spanner Theorem) Given a metric M = (V, d) with dimC(M) ≤ k,
and ε > 0, there exists a (1 + ε)-spanner with ε−O(k)min{n1.5, n log∆} edges.

The algorithm for constructing sparse spanners for metrics with bounded correlation dimension
is the same as that for doubling metrics in Section 2.2; the proofs, of course, are different. For
completeness, we briefly describe the algorithm here again.

Construction for sparse spanners. Given a metric (V, d) and a parameter ε > 0, let us define
two parameters, γ := 4 + 32

ε
, and p := dlog2 γe + 1. Define Y−p := V . For i > −p, let Yi be a

2i-net of Yi−1; hence these nets are nested. (Note that since the inter-vertex distance is at least 1,
Yi = V for −p ≤ i < 0.) For each net Yi in the sequence, we add edges between vertices which
are in the net Yi and “close together”. In particular, for i ≥ −p, define the edges at level i to be
Ei = {(u, v) ∈ Yi× Yi | γ · 2i−1 < d(u, v) ≤ γ · 2i}. The union of all these edge sets Ê = ∪iEi

is the spanner returned by the construction.

The following lemma (appearing as Lemma 2.2.5 in Section 2.2) states that the spanner Ê pre-
serves distances well:

Lemma 4.5.2 (Low Stretch) The set of edges Ê forms a (1 + ε)-spanner for (V, d).

Hence, it suffices to show that Ê has a small number of edges. We first show that for each i, the
set Ei contains a small number of edges, compared to the size of the net Yi.

Lemma 4.5.3 If the metric (V, d) has correlation dimension at most k, the size |Ei| ≤ 2kp|Yi|.

Proof: Observe that |Ei| ≤
∑

v∈Yi |BYi(v, γ · 2i)|. By using Definition 4.2 for correlation
dimension repeatedly, and the fact that p = dlog2 γe + 1, it follows that the sum is bounded by
2kp|Yi|.

We can now prove half of Theorem 4.5.1; since each |Yi| ≤ n and 2p = O(ε−1), summing the
above bound over all i implies that Ê has at most n log∆ · ε−O(k) edges, where ∆ is the aspect
ratio of the metric. However, this bound may be Θ(n2) if the aspect ratio is large, and we have to
work harder to get a bound depending only on n and ε. The following lemma shows that if there
are many edges in Ei, then a large number of points in the net Yi would no longer belong to the
net Yi+p.

Lemma 4.5.4 Let U := Yi \Yi+p be the points in Yi that do not belong to the net Yi+p. Then, the
number of edges |Ei| ≤ 1

2
|U |(|U |+ 1).

Proof: By the construction of the edge set Ei, note that if (u, v) ∈ Ei, then d(u, v) ≤ γ · 2i.
Since 2p > γ, at most one of the two vertices {u, v} can still be in 2i+p-net Yi+p, and hence
any edge in Ei must have at least one endpoint in U . Now consider any u ∈ U . If both (x, u)
and (y, u) are in Ei, then d(x, y) ≤ γ · 2i+1. Hence, at most one of {x, y} can survive in Yi+p.
Thus, for each node u ∈ U , there can be at most one edge in Ei connecting to a point outside U ;
all other edges in Ei having u as one endpoint must have some other vertex in U as their other
endpoint. It follows that |Ei| ≤

(|U |
2

)
+ |U |, which completes the proof.
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Figure 4.2: Lower bound example for Sparse Spanners.

Lemma 4.5.5 For any r ∈ {0, 1, . . . , p − 1}, the edges in all the Ei’s with i ≡ r (mod p) is∑
j |Ejp+r| ≤ O(2kp/2n1.5).

Proof: Define an upper bound function F (·) such that for any j0, if |Yj0p+r| = a, then∑
j≥j0 |Ejp+r| ≤ F (a); we want to find the sharpest upper found function F (·) possible.

Lemma 4.5.4 implies that if |U | = b, then F (a) ≤ maxb{12b(b + 1) + F (a − b)}. Note that
the right hand side is maximized when b is maximized; however, the value of b = |U | cannot
be too large, since by Lemma 4.5.3 we have |Ej0p+r| ≤ 2kpa. Putting these together forces
F (a) ≤ 2kpa+ F (a− 2kp/2√a), and implies that F (a) = O(2kp/2a1.5). Since any |Yi| ≤ n, the
result follows.

Applying Lemma 4.5.5 for each r ∈ [p] and summing up the resulting bounds gives us |Ê| ≤
O(2kp/2pn1.5) ≤ (2 + 1

ε
)O(k)n1.5, proving the second part of Theorem 4.5.1.

Note that for metrics with bounded doubling dimension, one can get a (1 + ε)-spanners with
O(nε−O(k)) edges [CGMZ05, HPM05]. However, we show that such a result is not possible
with bounded correlation dimension, and that the upper bound in Theorem 4.5.1 is indeed tight.

4.5.2 Sparse Spanners: Lower Bound

Theorem 4.5.6 (Lower Bound on Sparsity) There exists a family of metrics with bounded cor-
relation dimension such that for each metric in the family, any 1.5-stretch spanner has at least
Ω(n1.5) edges.

The metric in the lower bound is roughly represented by the picture in Figure 4.2; note that it
is essential that this lower bound metric has super-polynomial aspect ratio ∆, for we can obtain
such a spanner with O(n log∆) edges from Theorem 4.5.1.

We give a construction for a family of metrics that has bounded correlation dimension, but any
1.5-spanner for any metric in the family must have at least Ω(n1.5) edges.

Let A ≥ 4 be a parameter, which specifies the difference in distance scales in different levels of
the recursive construction. The construction algorithm takes an integer n, the number of points
in the metric and a positive real α > 0, the minimum distance in the metric. We denote the
corresponding metric by M(n, α). For clarity, we omit all ceilings or floors from the description.
For ease of description, each M(n, α) has a special node u.

Construction for M(n, α)
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1. If n is less than some threshold n0 (say 10), then return a uniform metric of n points with
inter-point distance α; set u to be any point.

2. Otherwise, construct M ′ := M(n −√n, αA), together with the special point u′. Replace
u′ with a uniform metric U with

√
n + 1 points having inter-point distance α. Each point

in U has distance to any other point the same as that from u′. Set the special point u to be
any point in U .

Lemma 4.5.7 For all n ≥ 1, the metric M(n, 1) has correlation dimension at most O(1).

Proof: Let N be an R-net of M(n, 1), where Ai−1 ≤ R < Ai. Note that by our construction,
we have N = M(ni, A

i), for some ni. Let ui a net point in N closest to the special point of
M(n, 1). Observe that ui can be a special point for the metric induced by the points M(ni, A

i).
Consider r ≥ R/2. There are four simple cases:

(1) If 2r < Ai, then trivially we have
∑

x∈N |BN(x, 2r)| = ni =
∑

x∈N |BN(x, r)|.
(2) If 2r ≥ Ai > r, then we have

∑
x∈N |BN(x, 2r)| = (

√
ni + 1)

2 + (ni −
√
ni − 1) ≤ 3

∑
x∈N |BN(x, r)|.

(3) Consider 2r ≥ Aî > r, where î > i. Let p := |BN(ui, r)| and q :=
|BN(ui, 2r)\BN (ui, r)|. Note p ≥ √ni and q ≤ √ni. Hence,∑

x∈N |BN(x, 2r)| = (p+q)2+(ni−p−q) ≤ 2(p2+q2)+(ni−p−q) ≤ 3(p2+ni−p) =
3
∑

x∈N |BN(x, r)|.
(4) Consider Aî+1 > 2r > r ≥ Aî, where î ≥ i. Then, p := |BN(ui, 2r)| = |BN(ui, r)|.

Hence, ∑
x∈N |BN(x, 2r)| = p2 + ni − p =

∑
x∈N |BN(x, r)|.

Hence, any net of the metric M(n, 1) satisfies (4.2).

Theorem 4.5.8 Any 1.5-spanner for M(n, 1) must have at least Ω(n1.5) edges.

Proof: Let h(n) be the size of a sparsest 1.5-spanner H for M(n, 1). Observe that M(n, 1)
contains a uniform metric U of size

√
n + 1. Hence, there must be an edge in H between any

two edges in U . Suppose we contract U to a single point in H . Then, the resulting graph is a
1.5-spanner for M(n − √n,A), and hence contain at least h(n − √n) edges. Hence, we have
h(n) ≥ (√n+ 1)2 + h(n−√n). Solving the recurrence, we have h(n) ≥ Ω(n1.5).

4.6 Algorithms for Metrics with Bounded Correlation Dimen-
sion

Having defined the notion of correlation dimension, and having seen a simple warm-up (obtain-
ing sparse spanners), we now turn to devising algorithms for metric spaces, whose performance
is parameterized by the correlation dimension of the underlying metric space. This task is com-
plicated by two issues:
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• Global versus Local Properties. The notion of correlation dimension is global, in the
sense that while there may be pockets of “high-complexity” in a metric with low dimC ,
the complexity is “low on the average”. One should compare this to previous notions of
dimension like doubling, where the metric was well-structured in every region and at every
scale, and thus local arguments would usually suffice to give good algorithms. In sharp
contrast, we are forced to develop algorithms that take into account this global averaging.
As an example, consider the TSP: suppose the input graph consists of a max-SNP hard
(1, 2)-TSP instance on

√
n nodes, which is attached to one vertex of a unit grid. If we want

to obtain a (1 + ε) approximation to TSP, our algorithm would have to cluster the graph
into the “easy” part (the grid), and the “complicated” part (the (1, 2)-TSP instance), and
perhaps run a (Q)PTAS on the former part and a constant approximation algorithm on the
latter part. Of course, the input metric with dimC = O(1) may not have such an obvious
clustering.

• Doubling results may not be applicable. As noted in the discussion after Lemma 4.2.3,
metrics with dimC = O(1) cannot have near-uniform sets of size ω(

√
n), and hence

their doubling dimension is at most 1
2
log2 n + O(1). Hence, while we can conceivably

use results for doubling metrics, most of the current results are no longer interesting
for that range of doubling dimension: e.g., the results for TSP have a running time of
exp{(ε−1 log n)O(dimD)}, and hence plugging in dimD =

1
2
log2 n does worse than n!, the

running time for an exact algorithm. Again, our algorithms will try to avoid this simple-
minded reduction to doubling, even though they will rely on many ideas developed in the
doubling metrics literature.

In the rest of the paper, the two main algorithmic results we present are:

• Weak TSP Approximation & Embedding into Small Treewidth Graphs. We first show
how to solve the TSP on metrics with low correlation dimension within (1 + ε) in time
2
√
n·(ε−1 log n)O(dimC )

. As a by-product, we also get Theorem 4.1.2: a random embedding
of the original metric into a graph with treewidth

√
n · (ε−1 log n)O(dimC). Details of this

result appear in Section 4.6.1.
To prove these results, we adopt, adapt and extend the ideas of Arora [Aro02] and Tal-
war [Tal04]. The main conceptual hurdle to our result is that all the previous proofs use
“O(1)-padded decompositions,” and metrics with small dimC may not admit such good
padded decompositions, since padding is a local property, and our metric may have some
dense regions. We show how to get around this requirement: we use known padded decom-
positions with poorer padding guarantees, and show that carefully altering the boundaries
suffices for our purpose.

• (1 + ε)-Approximations in Sub-exponential Time. The ideas we use for the previous
algorithm are still fairly local, and hence do not fully use the power of having small cor-
relation dimension. In Section 4.7, we show how to improve our partitioning scheme,
and use an improved global charging scheme to get our main result Theorem 4.1.3: an
approximation scheme for TSP that runs in sub-exponential time.
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4.6.1 An Algorithm for TSP in Time 2Õ(
√

n)

Given an ε ≤ 1, we consider randomized (1 + ε)-approximation algorithms for TSP on a metric
M = (V, d) on n points and dimC = k. Let OPT be the cost of the optimal TSP.

As is well-known, we can assume the aspect ratio is n/ε (see, e.g., [Aro02, Tal04]), by the
following simple argument. Suppose ∆ is the aspect ratio of the metric M , and the minimum
distance in the metric is 1. Let Va be an εa∆/n-net of M . Suppose OPTa is the length of
an optimal tour for points in Va only. Then, it follows that OPTa ≤ OPT. From an optimal
tour for the points in Va, we can construct a tour for all points in V , with extra length at most
n · 2ea∆/n = εa · 2∆ ≤ εaOPT. Hence, we will assume that Va = V , and that our metric has an
aspect ratio of at most n/ε.

Moreover, we assume that ε > 1/n, or else we can solve it exactly in 2O(ε−1 log ε−1)-time. We use
the following main ideas, which were also used in obtaining known (Q)PTAS’s for TSP [Aro02,
Tal04]:

(a) We find a good probabilistic hierarchical decomposition into clusters with geometrically de-
creasing diameters, (b) we choose small set of portals in each cluster in this decomposition by
taking a suitably fine net of the cluster, and force the tour to enter and leave the cluster using
only these portals, i.e., the tour is portal-respecting. The main structure lemma shows that the
expected cost of the best portal-respecting tour is at most (1 + ε) times its original cost. Fi-
nally, (c) we find the best portal respecting tour using dynamic programming: for a cluster C, if
there are only B portals among all its child clusters, the time to build the table for C is at most
BO(B) = 2O(B logB). (See, e.g., Section 4.6.4.) Since the total number of clusters is poly(n), total
runtime is poly(n)2O(B logB). Note that for doubling metrics, since each cluster had only 2O(dimD)

child clusters, each with O(ε−1 log n)O(dimD) portals, the runtime is quasi-polynomial [Tal04].

The two main problems that we face are the following:

(i) Metrics with low correlation dimension do not admit O(1)-padded decompositions which
are traditionally used in step (a) above, and

(ii) While we can ensure that the number of portals in any single cluster are at most ≈ O(
√
n)

using Lemma 4.2.3, each cluster may have as many as
√
n child clusters, and hence the

size B of the union of portals for all the child clusters may be close to Θ(n).

To take care of these problems, we need to find a new partitioning and portaling scheme, such
that the union of the portals in each cluster and in all its child clusters has size only Õ(

√
n);

clearly this will require us to do the partitioning and portal-creation steps in a dependent fash-
ion, with each step guiding the other. (Moreover, we will argue that the lack of O(1)-padded
decompositions does not hurt us much; this will turn out to be the easy part.)

We formalize the above ideas in the Sections 4.6.2, 4.6.3 and 4.6.4.

4.6.2 Hierarchical Decomposition and Portal-Respecting Tour

In this section, we show how probabilistic hierarchical decomposition and portal assignment can
be used to approximate TSP. In particular, we show that it is sufficient to restrict our attention to
portal-respecting tours in order to get an (1 + ε)-approximation.
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Given a metric (V, d), we assume unit minimum distance, and hence the aspect ratio and the
largest distance are denoted by ∆. Recall that we can assume ∆ ≤ n

ε
.

Hierarchical Decomposition. Let L := dlogH(n/ε)e be the number of levels in the system,
with DL := ∆ and Di−1 := Di/H , where H ≥ 4 is a parameter that can possibly depend on n.
For each i, Pi will be a partition of V such that each cluster has diameter at most Di. Note that if
PL consists of just one cluster containing all points in V , then each point in V forms a separate
cluster in the partition P0. The family of partitions {Pi} is hierarchical if each height-i cluster
is contained in some height-(i+ 1) cluster.

Portal Assignment. For each 0 ≤ i < L, each height-i cluster C has a set U(C) of points
called portals such that U(C) is a βDi-covering of U(C), where 0 < β < 1 is a parameter to
be determined later. The portals will satisfy the condition that if a point is a portal for a height-i
cluster, then it must be a portal for all lower height clusters. A child portal for a cluster is a portal
in one of its child clusters. We are looking for a tour that satisfies the portal condition:

A path or tour satisfies the portal condition (or is portal-respecting) if it only enters
or leaves a cluster through its portals.

α-Padded Decomposition. In order to show that the expected length of the restricted tour
following the portal condition is not too much larger than that of the optimal tour, we require that
the random Di-bounded partition Pi sampled from the hierarchical decomposition satisfies the
α-padded property. Recall this means that if a set S ⊆ V has diameter d, then it is partitioned by
Pi with probability at most α · d

Di
. In particular, the following condition must be satisfied.

Suppose u, v ∈ V . Suppose Bu and Bv are balls of radius r around u and v respec-
tively. Then, the probability that the set S := Bu ∪Bv is partitioned by Pi is at most
α · 2r+d(u,v)

Di
.

Given a partition P and a point x, we use P (x) to denote the cluster in P that contains x. Observe
that a standard probabilistic decomposition like those by Bartal [Bar96] and Fakcharoenphol et
al. [FRT04] gives α = O(log n).

Lemma 4.6.1 Suppose {Pi} is an α-padded hierarchical decomposition of (V, d), with portals
for each cluster as described above. Then, for any u, v ∈ V , the expected increase in the shortest
path obeying the portal condition is at most 6Lαβ · d(u, v).

Proof: Consider the event that u and v are separated in Pi, but not separated in Pi+1. This
probability is at most α · d(u, v)/Di. Under this event, the shortest path from u to v satisfying
the portal condition is at most (1 + 6βDi)d(u, v), i.e., the distance from u to v increases by at
most 6βDi. The bound is 6βDi, instead of 4βDi, because it might not be possible for u to reach
its closest height-i portal directly. It might have to go through all the lower height portals first.
Hence, summing over all heights i, we have shown that the expected increase in the shortest path
between u and v is at most

∑L
i=0 α · d(u,v)Di

· 6βDi ≤ 6Lαβ · d(u, v).

Hence, using Lemma 4.6.1, we can show that by forcing the tour to satisfy the portal condition,
the length of the resulting optimal tour does not increase too much.
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Proposition 4.6.2 Suppose OPT0 is the length of the optimal tour for points in V , satisfying
the portal condition with respect to the hierarchical decomposition {Pi} and the corresponding
portals for each cluster. Then, E[OPT0] ≤ (1 + 6Lαβ)OPT.

4.6.3 A Partitioning and Portaling Algorithm

In the previous section, we showed how a suitable hierarchical decomposition and portaling
scheme can restrict the search space of potential tours. In this section we give a concrete con-
struction of a probabilistic hierarchical decomposition and portaling scheme such that both the
padding parameter α and the number B of child portals for each cluster are small.

Observe that if the child portals of each cluster form a packing, then using the bounded corre-
lation dimension assumption and Lemma 4.2.3, we can show that B is small for each cluster.
If we use a standard hierarchical decomposition (e.g. one by Bartal [Bar96] or FRT [FRT04])
and choose an appropriate net for each cluster to be its portals, then the child portals of a cluster
need not be a packing, because portals near the boundary of different clusters might be too close
together. We resolve this by using Bartal’s decomposition [Bar96] twice. After obtaining a stan-
dard decomposition, we apply the decomposition technique again to make minor adjustment to
the boundaries of clusters. Here is the main result that describes the properties of the hierarchical
decomposition and portaling scheme.

Theorem 4.6.3 (Main Partition-&-Portal Theorem) Given a metric (V, d) with dimC = k,
and a parameter β ≤ 1, there is a polynomial-time procedure that returns a probabilistic hier-
archical partition of the metric with

(A1) The diameter of a height-i cluster is guaranteed to be at most Di + βDi−1, where
Di = 4

i.
(A2) The probability of (u, v) being separated at height i is at most O(log2 n)× d(u,v)

Di
.

Moreover, each cluster C is equipped with a set of portals U(C) such that the following proper-
ties hold:

(B1) For each non-root cluster C at height-i, the set of portals U(C) forms a β Di-covering
of C.

(B2) Moreover, the set of portals in C and all its children form a (β/4)Di−1-packing.

The Randomized Partitioning and Portaling Algorithm

Consider the metric (V, d) with unit minimum distance, and hence the aspect ratio being the
diameter ∆ of the metric. (Moreover, ∆ ≤ n/ε, as noted before.) Let H := 4, and L :=
dlogH(n/ε)e. Set DL := ∆, and Di−1 := Di/4, as discussed before. We will give a hierarchical
decomposition of (V, d) such that for each height-i cluster cluster C, the set U(C) of portals is a
is a βDi-covering of C and its child portals is a 1

4
βDi−1-packing, as described in the statement

of Theorem 4.6.3.

1. Let PL = {V } and U(V ) = ∅.
2. For i = L− 1 down to 0,
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For each height-(i+ 1) cluster C ∈ Pi+1,
(a) Apply Bartal’s probabilistic decomposition [Bar96] on cluster C, using n as an upper

bound on the number of points in C, such that the diameter of each resulting sub-
cluster is at most Di. This induces an initial partition P̃i on C.

(b) Boundary Adjustment using Bartal’s decomposition [Bar96]

i. Note that U(C) is a 1
4
βDi+1-packing and Di+1 = 4Di. Augment U(C) to a

βDi-net Û(C) of C. Let Z be the set of points z in C that has no point in
Û(C) ∩ P̃i(z) within distance βDi.

ii. Let W := Z, X := C, and U(C) := ∅.
iii. While W is non-empty,

A. Pick any point u fromW . Let r := βDi/4 lnn. Pick z ∈ [0, 1
4
βDi] randomly

from the distribution p(z) := n
n−1 · 1re−z/r. Let B := B(u, 1

4
βDi + z).

B. If B contains some point c in Û(C), then all points in B ∩ X are moved
to the height-i cluster currently containing c, otherwise, add u to U(C), and
move all points in B ∩X to the height-i cluster currently containing u.

C. Remove points in B from both X and W .

iv. Let the new partition on C be Pi. For each new height-i cluster C ′, let U(C ′) :=
C ′ ∩ (Û(C) ∪ U(C)).

The Analysis

Lemma 4.6.4 (Correctness) For i < L, for any height-(i + 1) cluster C produced by the De-
composition Algorithm, then (1) for any child cluster C ′ of C, the set U(C ′) is a βDi-covering
of C ′, and (2) the union of U(C ′)’s, over all the child clusters C ′ of C, is a 1

4
βDi-packing.

Proof: We show that if for a height-(i + 1) cluster C, the set U(C) is a 1
4
βDi+1-packing, then

for any child cluster C ′ of C, U(C ′) is a βDi-covering of C ′, and the union of U(C ′)’s, over all
the child clusters C ′ of C, is a 1

4
βDi-packing. Then, the result follows by induction on i, with

the base case starting at i = L, as the empty set U(V ) is trivially 1
4
βDL-separated.

Suppose C is a height-(i+ 1) cluster returned by the algorithm and the corresponding U(C) is a
1
4
βDi+1-packing. We first show the covering property for each child cluster C ′ of C.

Since the subset U(C) is a 1
4
βDi+1-packing and Di+1 = HDi ≥ 4Di, it can be augmented to

be a βDi-net Û(C) for C. Observe that points in Û(C) are not reassigned to different height-i
clusters in the boundary adjustment step.

Let x be a point in C. We show that there is a point in Û(C) ∪ U(C) that is in the same height-i
cluster induced by Pi and also within distance βDi of x. Recall that Z is the set of points z in C
that has no point in Û(C) ∩ P̃i(z) within distance βDi.

Suppose x is not in Z. Then, there is a point v ∈ Û(C) ∩ P̃i(x) such that d(x, v) ≤ βDi. Note
again that points in Û(C) stay in the same clusters. Hence, if point x is not reassigned to another
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height-i cluster, then it is still covered by the point v after boundary adjustment. Otherwise,
point x is in some ball B with radius at most βDi, which contains a point in Û(C)∪U(C). After
that, all points in B will be removed from G and stay in the same height-i cluster throughout the
boundary adjustment process.

If x is in Z, then at some point it must be removed from list L. Then, by a similar argument,
at some point x must be in some ball B with diameter at most βDi, which contains a point in
Û(C) ∪ U(C). The same argument follows.

We next show that Û(C)∪U(C) is a 1
4
βDi-packing. First, observe that Û(C) is a βDi-net and so

is trivially also a 1
4
βDi-packing. Next, observe that whenever a new point u is added to U(C), it

must be at distance more than 1
4
βDi from Û(C) and existing points in U(C). Hence, the packing

property follows.

Lemma 4.6.5 (Separation Probability) For each level i, Pr[(u, v) separated by Pi] ≤
O(log2 n)d(u,v)

Di
.

To prove Lemma 4.6.5, we use the following results which can be proved using techniques
in [Bar96].

Lemma 4.6.6 Suppose Bu and Bv are balls centered at u, v ∈ V respectively with radius r.
Then, for each i, the probability that the union Bu ∪ Bv is cut apart by P̃i in the first phase is at
most O(log n) · d(u,v)+2r

Di
.

Lemma 4.6.7 Suppose u, v ∈ V . Then, the probability that u and v are separated in the bound-
ary adjustment step is at most O(log n) · d(u,v)

βDi
, and this is independent of what happens in the

first phase.

Proof of Lemma 4.6.5: Consider u, v ∈ V . Let Bu and Bv be the balls centered at u and v
respectively with radius 1

2
βDi. First consider the case when d(u, v) ≥ βDi. Note that if the

union of Bu and Bv is not separated by P̃i, then u and v cannot be separated by Pi. Hence,
the probability that Pi separates u and v is upper bounded by that of the former event, which
is at most O(log n) · d(u,v)+βDi

Di
, by Lemma 4.6.6. By the assumption that d(u, v) ≥ βDi, the

probability is at most O(log n) · d(u,v)
Di

.

Consider the case when d(u, v) < βDi. Note that if u and v are separated eventually, then the
union of Bu and Bv must be cut apart by P̃i. Moreover, in the boundary adjustment step, the
points u and v must also be separated.

Hence, by Lemmas 4.6.6 and 4.6.7, this probability is upper bounded by

O(log n) · d(u,v)+βDi

Di
·O(log n)d(u,v)

βDi
≤ O(log2 n)d(u,v)

Di
.

Thus, we have analyzed both cases and this completes the proof.

Observe that we have not used the notion of correlation dimension so far. In the following lemma,
we use the definition of correlation dimension to bound the number of child portals in a cluster.
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Lemma 4.6.8 (Small Number of Child Portals) Suppose the metric space (V, d) has correla-
tion dimension at most k. For all clusters C, the union of U(C ′) over all child clusters C ′ of C
has size at most (16/β + 4)k/2

√
n.

Proof: Suppose cluster C is at height i + 1. By Lemma 4.6.4, the union S of U(C ′) over
all child clusters C ′ of C is a 1

4
βDi-packing. Hence, it can be extended to a 1

4
βDi-net N for

the whole space V . Observe that from the construction, all points in C is contained in a ball
with radius at most (Di+1 + βDi)/2, though not necessarily centered at a point in N . Since
N is a 4iβ-net, C is contained in a ball of radius at most Di+1 + βDi centered at some net
point u ∈ N . Hence, S ⊆ BN(u,Di+1 + βDi), which by Lemma 4.2.3 has size at most
(16/β + 4)k/2

√
|N | ≤ (16/β + 4)k/2√n.

4.6.4 Dynamic Programming for Solving TSP

We briefly outline a dynamic program to solve TSP, given a hierarchical decomposition and its
corresponding portals for each cluster. The basic idea is similar to the constructions used by
by Arnbourg and Proskurowski [AP89] and Arora [Aro02], and we give the details here for
completeness.

For each cluster C with its portals U(C), there are entries indexed by (J, I), where J is a set of
unordered pairs of portals from U(C) and I is a subset of U(C). Any portal that appears in a
pair in J does not appear in I . Note that if r = |U(C)|, then there are at most r!r2 such entries.

An entry index by (J, I) represents the scenario in which a tour visits the non-portals of cluster C
using entry and exit portals described by pairs in J . Moreover, for each point in I , the two points
adjacent to it in the tour are in the cluster C. Hence, the points in I are not behaving as portals in
the sense that the tour does not enter or exit the cluster C through the points in I . For each portal
x in U(C) that does not appear in J or I , the adjacent points in the tour are both not in U(C),
i.e., the tour enters the cluster through that portal x and leaves immediately afterward. We keep
track of the length of the portion of the tour that is within the cluster C. More precisely, we only
count the part of tour that is between u and v for some pair {u, v} in J . The entry indexed by
(J, I) keeps the smallest possible sum of the lengths of the internal segments, for tours consistent
with the scenario imposed by (J, I). Note that if we have to construct the tour, under each entry
we have to store the internal segments of the tour as well.

There are special entries each of which is indexed by only a single portal x ∈ U(C). This
corresponds to the (sub-optimal) case where we enter the cluster C through x, perform a tour
visiting all points in C, and leave through x. The value of such an entry corresponds to the
length of a tour for points in cluster C.

As outlined in [AP89], for a cluster such that the number of child portals is at most B, the time
to complete all entries for that cluster is 2O(B logB). Note that if this holds for all clusters in the
decomposition, the total running time is at most nL · 2O(B logB), though typically nL is absorbed
in the exponential term.
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4.6.5 The First TSP Algorithm

Using the partitioning and portaling scheme described in Section 4.6.3 and the dynamic program
described in Section 4.6.4, we have an algorithm for approximating TSP.

Theorem 4.6.9 (The First TSP Algorithm) There is a randomized algorithm for metric TSP,
which for metrics with dimC = k, returns a tour of expected length at most (1 + ε)OPT in time
2((logn)/ε)

O(k)√n.

Proof: Since the aspect ratio of the metric is at most n/ε, and the hierarchical partition decreases
the diameter of components by a constant factor at each level, the height of the decomposition
is L = O(log n

ε
). By Theorem 4.6.3, each edge (u, v) of the optimal tour is cut at height-i with

probability α d(u,v)
Di

with α = O(log2 n).

We set β := ε
6Lα

. By Proposition 4.6.2, the expected length of this tour (and hence the length of
the optimal portal-respecting tour) is at most (1 + 6Lαβ) = (1 + ε)OPT.

We need to also bound the running time of the dynamic program: recall that an upper bound B
for the number of portals in each cluster and its children would imply a BO(B) runtime.

By Lemma 4.6.8, it follows thatB ≤ (16/β+4)k/2√n. Hence, the running time of the algorithm
is nL · 2O(B logB) = exp{(ε−1 log n)O(k)√n}, as required.

4.6.6 Embedding into Small Treewidth Graphs

Observe that our probabilistic hierarchical decomposition procedure actually gives an embed-
ding into a distribution of low treewidth graphs. Suppose we are given a particular hierarchical
decomposition together with the portals for each cluster. We start with the complete weighted
graph consistent with the metric, and delete any edge that is going out of a cluster but not via
a portal. If the number of child portals for each cluster is at most B, then the treewidth of the
resulting graph is at most B. From Lemma 4.6.1, the expected distortion of the distance between
any pair of points is small. Using the same parameters as in the proof of Theorem 4.6.9, we have
the following theorem.

Theorem 4.6.10 (Embedding into Small Treewidth Graphs) Given any constant 0 < ε < 1
and k, metrics with correlation dimension at most k can be embedded into a distribution of
graphs with treewidth ((log n)/ε)O(k)

√
n) and distortion 1 + ε.

4.7 A Sub-Exponential Time (1 + ε)-Approximation for TSP
In the previous section, we saw how to get a (1+ ε)-approximation algorithm for TSP on metrics
with bounded correlation dimension, essentially using the idea of random embeddings into small
treewidth graphs. The approach gives approximations for any problem on metric spaces which
can be solved for small-treewidth graphs: however, it is limited by the fact that the

√
n-lollipop

graph metric has bounded correlation dimension, and randomly (1+ε)-approximating this graph
requires the use of graphs with large treewidth.
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In this section, we get an improved approximation for TSP using another useful observation.
Consider the bad examples in Figure 4.1: the contribution to OPT due to the dense structure
is much smaller than that from the low-dimensional ambient structure. For example, for the
sub-grid with a (1, 2)-TSP instance tacked onto it (Figure 4.1(b)), we can obtain a (1 + ε)-
approximation to TSP on the grid (which contributes about Θ(n) to OPT), and stitch it together
with a naı̈ve 2-approximation to the hard instance (which only contributes Θ(

√
n) to OPT). Of

course, this is a simple case where the clustering is obvious; our algorithm must do some kind
of clustering for all instances. Moreover, this indicates that we need to do a global accounting of
cost: the sloppy approximation of the “hard” subproblem needs to be charged to the entire OPT,
and not just the optimal tour on the subproblem.

Here are some of the issues we need to address (most of which are tied to each other), along with
descriptions of how we handle them:

• Avoiding Large Tables. The immediate hurdle to a better runtime is that some cluster
may have Θ(

√
n) child portals and we have to spend

√
n
√
n time to compute the tables.

Our idea here is to set a threshold B0 such that in the dynamic program, if a cluster has
more than B > B0 portals among its children, we compute, in linear time, a tour on C that
only enters and leaves C once, but now we incur an extra length of B × diam(C) in the
final tour we compute. In the sequel, we call this extra length the “MST-loss”. This step
implies that we need only spend min{O(B), 2O(B0 logB0)} time on any table computation.
The patching procedure used here is reminiscent of the patching from [Aro96], and is
described in Section 4.7.2.

• Paying for this Loss. In contrast to previous works, the “MST-loss” due to patching
cannot be charged locally, and hence we need to charge this to the cost of the global OPT.
Moreover, we may need to account for the MST-loss at many clusters; hence we need to
show that OPT is large enough, and the MST-loss is incurred infrequently enough, so that
we can charge all the MST-losses over the entire run of the algorithm to εOPT.

• A Potential Charging Scheme. To be able to charge MST-losses in a global manner, we
look at the hierarchical decomposition. The extra length incurred for patching height-i
clusters is proportional to the number of child portals of the clusters to which patching is
applied. If the union of all the height-(i − 1) portals in the decomposition satisfied some
packing condition, we could use Lemma 4.2.3 to bound the number of them, and hence the
total MST-loss at height-i of the decomposition tree. However, the techniques developed
so far (in Section 4.6.1) can only ensure that the child portals of a single cluster form a
packing: we clearly need new techniques.

• A New Partitioning & Portaling Procedure. The method in the last section took a cluster
C at height-(i + 1), cut it up, and then adjusted the boundaries of the subclusters created
at height-i to ensure that the union of the portals in these subclusters formed a packing.
However, the portals in all the grand-children of C (i.e., all the clusters at height-(i − 1)
below C) may not form a packing: hence we have to re-adjust the boundaries created at
height-i yet again. In fact, when clusters at a certain level are created, the boundaries
for clusters in all higher levels have to be readjusted. This can potentially increase the
probability that a pair of points are separated at each level. This is resolved by ensuring
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that cluster diameters fall by logarithmic factors instead of by constants. The details are
given in Section 4.7.1.

• Avoiding Computation of Correlation Dimension. As given in Theorem 4.2.4, it is hard
to approximate the correlation dimension of a given metric. However, the algorithm can
guess the correlation dimension k of the input metric. It starts from small values of k and
for each net encountered, it takes polynomial time to verify the bounded average growth
rate property (4.2). Whenever property (4.2) is violated for some net, we know the current
estimation of the correlation dimension is too small. The value of k is increased and the
algorithm is restarted. Since the correlation dimension is at most O(log n) and the running
time is doubly exponential in k, the extra time incurred for trying out smaller values of k
would not affect the asymptotic running time.

We formalize the ideas sketched above in the following. The general framework described in
Section 4.6.2 of using hierarchical decomposition and portals to approximate TSP still applies
here. We give a more sophisticated partitioning and portaling scheme in Section 4.7.1, and
analyze the MST-loss incurred from patching in Section 4.7.2.

4.7.1 The Modified Partitioning and Portaling Algorithm

The main difference is that when a height-i partition is performed, all higher height partitions are
modified, in order to ensure that all height-i portals form a packing. Let H ≥ 4 be a parameter
(possibly depending on n) that will be determined later. Let L := dlogH(n/ε)e. Set DL := ∆,
the diameter of (V, d); Di−1 := Di/H .

We are going to give a hierarchical decomposition of (V, d) such that for each height i, Ui is the
set of height-i portals such that for each height-i cluster C, the set Ui ∩ C of portals is a is a
βDi-covering of C and Ui is a 1

4
βDi−1-packing. Observe that once a Ui is formed, it will not be

modified; moreover, once a point is chosen to be a portal for a cluster, it will not be moved to
another cluster.

1. Let PL = {V } and UL = ∅.
2. For i = L− 1 down to 0,

(a) For each height-(i + 1) cluster C ∈ Pi+1, apply Bartal’s probabilistic decomposi-
tion [Bar96] on cluster C, using n as an upper bound on the number of points in C,
such that the diameter of each resulting sub-cluster is at most Di. This induces a
temporary partition P̃i on C.

(b) Boundary Adjustment using Bartal’s decomposition [Bar96]:

i. Note that Ui+1 is a 1
4
βDi+1-packing and Di+1 = HDi ≥ 4Di. Augment Ui+1

to a βDi-net Ûi of V . Let Z be the set of points z in V that has no point in
Ûi ∩ P̃i(z) within distance βDi.

ii. Let W := Z, X := V , and U i := ∅.
iii. While W is non-empty,

A. Pick any point u fromW . Let r := βDi/4 lnn. Pick z ∈ [0, 1
4
βDi] randomly

from the distribution p(z) := n
n−1 · 1re−z/r. Let B := B(u, 1

4
βDi + z).

69



B. If B contains some point c in Ûi, then all points in B ∩X are moved to the
height-i cluster currently containing c, otherwise, add u to U i, and move all
points in B ∩X to the height-i cluster currently containing u.

C. Remove points in B from both X and W .

iv. Observe that the partitions Pj for j > i can be modified. Let the new height-i
partition on V be Pi. Set Ui := Ûi ∪ U i.

Analyzing the probability of a pair being separated

We first analyze the probability that a pair of points u, v are separated right after some partition
Pi is formed for the first time. Since the decomposition procedure is quite sophisticated, the
analysis is done more carefully than before. First, we rephrase a result concerning the Bartal’s
decomposition [Bar96].

Fact 4.7.1 There exists t > 0 such that any n point metric space can be probabilistically de-
composed into clusters with diameter at most D such that for all points u, v and r > 0, the
probability that B(u, r) ∪B(v, r) is partitioned is at most

t log n · d(u,v)+2r
D

.

Throughout this subsection, the parameter t refers to the one that comes from Fact 4.7.1. How-
ever, we prove the following lemma, which is more general and is used later. Recall that
Di+1 := HDi. For technical reason, we assume that H ≥ 4t log n, which we shall see is
not a problem.

Lemma 4.7.2 Suppose u, v ∈ V , and Bu and Bv are balls of radius r centered at u and v
respectively. Then, the probability that Bu ∪ Bv is separated by Pi, right after Pi is formed for
the first time, is at most 4t2 log2 n · d(u,v)+2r

Di
.

Proof: We show by induction on i. For i = L, the statement is trivial because PL = {V }
and no points are separated from one another. Now consider i < L. Let δ := d(u, v) + 2r and
r′ := r + 1

2
βDi. Observe that if Pi separates Bu ∪ Bv, then one or both of the following events

happen.

1. Event A: The partition Pi+1 separates B(u, r′) ∪B(v, r′) right after it is formed.
2. Event B: The partition P̃i separates B(u, r′) ∪B(v, r′).

The probability of event A is, by the induction hypothesis, at most 4t2 log2 n · δ+βDi

Di+1
; the prob-

ability of the event B \ A is at most t log n · δ+βDi

Di
, by Fact 4.7.1. Hence, observing that

Di+1 = HDi ≥ 4tDi log n, the probability of the event A ∪B is at most

2t log n · δ+βDi

Di
.

Case 1: δ ≥ βDi. Then, the above probability is at most 4t log n · δ
Di

.

Case 2: δ < βDi. Observe that in order for Pi to separateBu∪Bv, in addition to the eventA∪B,
the event that Bu ∪ Bv is separated during the boundary adjustment step must also occur. Note
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that the probability that this latter event happens given the event A ∪ B is at most t log n · δ
βDi

.
Hence, it follows that the required probability is at most

2t log n · δ+βDi

Di
· t log n · δ

βDi
≤ 4t2 log2 n · δ

Di
.

Using Lemma 4.7.2, we show the following lemma.

Lemma 4.7.3 The probability that a pair (u, v) of points is separated by the final Pi is at most
(4t log n)L · d(u,v)

Di
= O(log n)L · d(u,v)

Di
.

Proof: Observe that if the final Pi separates u and v, then Pi must separates u and v right after
some Pj , where j ≤ i, is formed. Let this event be Ej . We consider the probability of such
event Ej . Observe that in order for this to happen, then for each j ≤ l < i, the partition Pi has
to separate B(u, βDl−1) ∪ B(v, βDl−1), due to boundary adjustment at height l, right after Pl
is formed. Let k be the integer such that 2βDk ≤ d(u, v) < 2βDk+1, and i := max{k + 1, j}.
Hence, the probability of the event Ej is at most:

4t2 log2 n · d(u, v) + 2βDi−1
Di

· (
i−1∏

l=i−1

t log n · d(u, v) + 2βDl−1
Dl

) · t log n · 2d(u, v)
βDi

≤ 1

2
· (4t log n)i−j+2 · d(u, v)

Di

,

where the first term comes from Lemma 4.7.2, and each subsequent terms comes from Fact 4.7.1
applied to each boundary adjustment step. Now, summing Pr[Ej] over j ≤ i shows that the
probability that (u, v) is cut by the final Pi is at most (4t log n)L · d(u,v)

Di
.

All portals in each level form a packing

Using the same argument as in Lemma 4.6.4, we can prove the following lemma.

Lemma 4.7.4 For each height i, the set Ui of height-i portals is a 1
4
βDi−1-packing and for each

height-i cluster C, the set Ui ∩ C of portals is a βDi-covering of C.

The only thing to watch out is that when a point x is being assigned to another cluster during
boundary adjustment at height i, how do we know x still has a near portal for higher heights? The
observation is that portals are not re-assigned to another cluster once they are chosen. Since the
point x is near some height-i portal y, which has all higher height portals nearby, we conclude
that x still has higher height portals nearby.

4.7.2 Handling Large Portal Sets via Patching

Patching a single cluster

If a cluster C has many child portals (say about
√
n portals), it is too expensive to compute

the entries corresponding to C. In particular, computing the standard TSP table for this cluster
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would require O(
√
n
√
n
) = 2Õ(

√
n) time, which in itself would dash all hopes of obtaining a sub-

exponential time algorithm. To avoid this, we do a two step patching described in the following.
The first idea is simple: if we are willing to pay an extra O(BD) amount, where B is the number
of portals, and D the diameter of the cluster, then we can find a tour that enters and leaves at a
single portal. Indeed, we can find a tour that enters cluster C through some portal x, performs a
traveling salesperson tour on points in cluster C, and leaves cluster C through x.

Proposition 4.7.5 (Patching to get a Single Portal) Suppose cluster C has diameter D, and
that there are at most B portals in the cluster C. Then, given any tour on the vertices V , the
tour can be modified such that it enters and leaves the cluster C through a single portal with
additional length at most BD.

However, computing such a tour requires work as well, and we need to ensure that this com-
putation can be done fast: if cluster C has too many child portals, it would be too expensive to
compute the optimal tour inside C. Hence, we need a second patching step.

Proposition 4.7.6 Consider the dynamic program in Section 4.6.4, and look at a cluster C with
diameter D and B child portals. Suppose l is the length of the shortest tour for the points in C
that is computable from the entries in the child clusters of C (possibly in 2Ω(B logB) extra time).
Then, it is possible to obtain a tour for cluster C, again from the entries in the child clusters of
C, that has length at most l +BD, but now only takes time O(B).

Proof: From each child cluster Cλ of C, pick the entry such that the length lλ of its partial
segments is smallest. Note that the length l of the optimal tour on C is at least

∑
λ lλ. Since there

are at most B child portals and the diameter of C is D, it takes an extra length of BD to join the
partial segments returned by each child cluster to form a tour on C.

Observe that any portal ofC is also a child portal ofC. Hence, using Propositions 4.7.5 and 4.7.6,
for any cluster C with diameter D and B child portals, we can do the patching procedure in time
O(B) from the entries of its child clusters. After the procedure, each entry of clusterC is indexed
by a single portal and has a value corresponding to the length of some tour on cluster C. The
resulting increase in length for the overall tour is at most 2BD.

Applying Patching Technique in Dynamic Program

We analyze the increase in tour lengths when we apply the patching procedure described in Sec-
tion 4.7.2. Recall that OPT0 is the length of the optimal tour returned by the dynamic program
(without patching) described in Section 4.6.4.

Suppose patching is applied for clusters with more than B0 child portals, but only up to height-i
clusters, and no patching is applied for clusters in height higher than i. Let the length of the
optimal tour returned in such a way be OPTi. Observe that OPTL is the length of the tour
returned by the dynamic program if patching is applied whenever appropriate.

The following lemma shows that the extra length incurred by patching all clusters in one level is
small. Recall k is the correlation dimension of the metric.

Lemma 4.7.7 For 0 ≤ i < L, OPTi+1 ≤ OPTi + 1
B0
(8H
β
)k+1OPT.
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Proof: Suppose {Cλ : λ ∈ Λ} is the set of height-(i + 1) clusters such that each one has
Bλ > B0 child portals. Observe that the set of height-i portals is a 1

4
βDi-packing. Hence, we

can extend it to a 1
4
βDi-net Ni for V .

From Section 4.7.2, it follows the extra length to patch up all appropriate height-(i+ 1) clusters
is at most 2

∑
λBλDi+1. Now, from the definition of correlation dimension, we have for all

integers t, ∑
x∈Ni
|BNi

(x,Di+1)| ≤ 2kt
∑

x∈Ni
|BNi

(x, 2−t ·Di+1)|.
By setting t := dlog2(4Di+1/βDi)e and recalling Di+1 = HDi, we have

∑
λB

2
λ ≤

∑
x∈Ni
|BNi

(x,Di+1)| ≤ (8Hβ )k|Ni|. (4.11)

Observing that each Bλ > B0, we have

|Λ| ≤ 1
B2

0
(8H
β
)k|Ni|. (4.12)

Using the Cauchy-Schwartz inequality, we have
∑

λBλ ≤
√
|Λ| ·∑λB

2
λ. (4.13)

By substituting (4.11) and (4.12) into (4.13), we have
∑

λBλ ≤ 1
B0
(8H
β
)k|Ni|.

Finally, observing that OPT ≥ 1
4
βDi|Ni|, we conclude that the extra length incurred by patching

all appropriate height-(i+ 1) clusters is at most

2
∑

λBλDi+1 ≤ 1
B0
(8H
β
)k+1OPT.

Lemma 4.7.7 implies that the total extra length incurred by patching is small.

OPTL ≤ OPT0 + L
B0
(8H
β
)k+1OPT. (4.14)

4.7.3 The Second TSP Algorithm

Theorem 4.7.8 (Sub-exponential time algorithm for TSP) For any metric with correlation
dimension k, we can give a randomized (1 + ε)-approximation for TSP in time
exp{(ε−12

√
log n log logn)4k} = 2Oε,k(n

δ), for any δ > 0.

Proof: We create a probabilistic hierarchical decomposition, where the diameter at height-i is
Di = H i for some parameter H ≥ 4. Hence the depth of the tree is L := Θ(logH(n/ε)). As
indicated above (and proved in Lemma 4.7.3), the probability that (u, v) are separated at level-i
is at most α d(u,v)

Di
, with α = O(log n)L. Moreover, portals in clusters of diameter Di form a

βDi-covering and since there are L levels, the total increase in the TSP length is O(αβ L)OPT.
To make this at most ε/2, we set β = O(ε/Lα).
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Finally, from an analysis in Section 4.7.2, the length increase from patching (the “MST-loss”) is
L
B0
(8H
β
)k+1OPT. To make this at most ε/2 as well, we set pick B0 such that L

B0
(8H
β
)k+1 = ε/2.

The only parameter left to be chosen is H . Observe that the running time depends on B0 and so
H is chosen to minimize B0. Note that

B0 = (
L

ε
)k+2O(Hα)k+1.

Observe that Hα is the dominating term, and also that as H increases, α decreases. It
happens that in this case the best value is attained when H = α. This is satisfied when
logH =

√
log n

ε
log log n.

It follows that it suffices to set the threshold B0 = ε−(k+1)22(k+1)
√
log n

ε
log logn = (ε−1 ·

2
√
log n log logn)3k, recalling ε > 1

n
. Hence, we obtain a tour with expected length (1+ ε) times that

of the optimal tour in time

nL · 2O(B logB) = exp{(ε−1 · 2
√
logn log logn)4k} = 2Oε,k(n

δ),

for any δ > 0.

4.8 Summary and Conclusions
We have considered a global notion of dimension, which tries to capture the “average” complex-
ity of metrics: our notion of correlation dimension captures metrics that potentially contain small
dense clusters (of size up to O(

√
n)) but have small average growth-rate. We show that metrics

with a low correlation dimension do indeed admit efficient algorithms for a variety of problems.

Many questions remain open: can we improve the running time of our algorithm for TSP? A
more open-ended question is defining other notions of dimension for metric spaces: it is fairly
unlikely that one notion can capture the complexity of metrics (both the local complexity, as
in doubling, as well as the global behavior). Since one definition may not fit all situations, it
seems reasonable to consider several definitions, whose properties can then be exploited under
the appropriate circumstances.

74



Chapter 5

Conclusion

We have seen in this thesis that there are notions of dimension that are useful in measuring
the complexity of a general metric with respect to certain problems. There are other classes of
metrics for which good algorithmic guarantees can be obtained, for instance metrics induced by
planar graphs have been extensively studied [OS81, GT87, KPR93, AGK+98]. However, it is not
always clear how these classes of metrics can be used to measure the complexity of an arbitrary
metric. For example, there are polynomial time algorithms [AGK+98, Kle05] for approximating
TSP for planar graphs, yet such algorithms do not apply to general metrics, nor do they provide
guarantees in terms of the “planarness” of a given metric, a concept which is hard to define or be
exploited in the first place. We conclude this thesis by discussing extensions and future directions
for the work in each chapter.

5.1 Spanners for Doubling Metrics
In this thesis, the compactness of a spanner is measured by the number of edges in the span-
ner. However, for applications in which a spanner is used for maintaining physical connections
between sites, the weight of the spanner serves as a better objective than the number of edges.
For any bounded dimensional Euclidean metric, Narasimhan and Smid [NS07] showed that for
any t > 1, there is a t-spanner with weight O(MST ), where MST is the weight of a minimum
spanning tree.

The construction of low weight spanner for Euclidean metrics relies highly on the geometric
properties of Euclidean space. However, some standard ideas are still applicable, such as the
Kruskal-like construction.

Kruskal’s algorithm for constructing low weight spanner. Arrange the edges
(u, v) in increasing order of d(u, v) in a list. Start with an empty spanner and con-
sider each edge e = (u, v) in the list. If the distance between u and v in the current
spanner is already at most t ·d(u, v), then discard the edge e, otherwise include edge
e in the spanner.

Such a construction would guarantee that the spanner returned has stretch at most t. The more
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technical part is how to show that the spanner has low weight. It would be interesting to see if
the geometric assumptions used for Euclidean metrics can be replaced by properties ensured by
bounded doubling dimension, which are more combinatorial in nature.

5.2 Low Dimensional Embeddings for Doubling Metrics
In Chapter 3, we show that for embedding doubling metrics into Euclidean space, there is
a tradeoff between the target dimension and the distortion of the embedding: given an n-
point metric (V, d) with doubling dimension dimD, and any target dimension T in the range
Ω(dimD log log n) ≤ T ≤ O(log n), we show that the metric embeds into Euclidean space R

T

with O(log n
√
dimD /T ) distortion.

A question one can ask is: does this tradeoff extend to smaller values of T ? We know that for
large T = O(log n). The result is tight with respect to n, because there exists doubling metrics
that embed into Euclidean space with distortion at least Ω(

√
log n). Yet our result does not

apply when the target dimension is small, e.g. T = O(dimD). However, from a manuscript of
Abraham, Bartal and Neiman, it is possible to obtain target dimension O(dimD) at the expense
of increasing the distortion to O(log1+ε n), for some small ε > 0. An interesting question would
be if our tradeoff actually holds for small target dimension as well. In particular, is it possible to
obtain target dimension O(dimD) with distortion O(log n)?

Another question is how good this tradeoff is. For example, is it possible to embed a doubling
metric into O(log log n) dimensions with O(

√
log n) distortion? Observe that some lower bound

for this tradeoff would imply some kind of lower bound for dimension reduction of Euclidean
metrics with constant doubling dimension. In particular, the following ideal result would be
impossible.

Ideal Result for Dimension Reduction in Euclidean Spaces. Any Euclidean met-
ric with doubling dimension dimD can be reduced to O(dimD) dimensions with
O(dimD) distortion.

Suppose we have an arbitrary metric (V, d) with constant doubling dimension. Then, it can be
embedded into Euclidean space with distortion O(

√
log n) (and O(log n) dimensions). Observe

this would increase the doubling dimension up to at most O(log log n). Hence, the ideal result
would imply that any doubling metric can be embedded into Euclidean space with O(log log n)
dimensions and O(

√
log n log log n) distortion. Hence, the ideal result would be impossible if

there exists some ε > 0, such that there are doubling metrics for which embedding them into
Euclidean space with O(log log n) dimensions would incur distortion at least Ω(log0.5+ε n).

5.3 Global Notion of Dimension
We have introduced net correlation dimension, a global notion of dimension for which we give a
sub-exponential time algorithm for approximating TSP on such globally bounded metrics. The
question is whether such notion of global dimension has application to other problems. It is
conceivable that a different notion of global dimension needs to be considered for a different
problem. For instance, with respect to TSP, a global notion of dimension should rule out a metric
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with a short tail with linear number of points as a simple metric (see Section 4.3.2). However,
for a problem like nearest-neighbor query, this metric should be considered as simple, because if
query points are uniformly sampled, then for a constant fraction of the time, the simple part of
the metric is being queried.

One can imagine that our techniques could be applied to the setting described in Arora’s sur-
vey on approximation schemes for hard geometric optimization problems [Aro03] to get sub-
exponential time algorithms, in a way analogous to how we tackle TSP. Although our defini-
tion of correlation dimension was not tailored to specifically solve TSP, in retrospect TSP has
a nice structure which allows the techniques of hierarchical decomposition, portal assignment
and dynamic program (DP) to be employed for metrics with bounded correlation dimension. We
describe some properties of TSP that are essential for our techniques to be applied, and mention
how some of the other geometric problems do not satisfy them.

1. Each entry in the DP can be computed in 2Õ(B) time, where B is the number of child
portals. For TSP, each entry can be computed in 2O(B logB) time. However, for other
problems such as k-connectivity, the time for computing an entry in the dynamic program
described in [CL00] is doubly exponential in B. Hence, even if B is polylog(n), the
algorithm is still too inefficient.

2. In the DP, any valid configurations for child entries can be combined to form a valid
configuration for the parent entry. This is essential because we cannot even afford to
consider more than one configuration per child entry, because there can be as many as
O(
√
n) child entries. For TSP, we show how this can be done in Proposition 4.7.6. How-

ever, in the dynamic program for minimum latency described in [AK01], each configu-
ration carries too much information and so arbitrary valid configurations of child entries
cannot be combined to form a consistent valid parent configuration.

3. In the case when the number B of child portals in a cluster is too large, a patching
argument should be applicable to reduce the number of active portals, at a cost of
O(BD), where D is the diameter of the cluster in question. Perhaps this is the most re-
stricting condition in using our definition of correlation dimension. This condition allows
us to use our definition in making a global charging argument (see Section 4.7.2). How-
ever, for problems like k-median, such patching argument cannot be applied. Although
k-median can be somehow tackled for low-dimensional Euclidean metrics [ARR99] with-
out reducing the number of portals, in our case the number of portals can be potentially
too large to be handled without any reduction technique.

In light of the limitations outlined above, we think that for approximating the hard geometric
optimization problems on metrics that somehow behave well globally, one would need to find
alternative ways to characterize the global behavior of a metric or employ different techniques
outside Arora’s framework [Aro03, Aro02].
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[Bec91] József Beck. An algorithmic approach to the Lovász local lemma. I. Random
Structures Algorithms, 2(4):343–365, 1991.

79



[BF95] Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queries
using the ‘correlation’ fractal dimension. In Proc. 21st Int. Conf. Very Large Data
Bases, VLDB, 11–15 1995.

[BKL06] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In
In Proceedings of 23rd International Conference on Machine Learning, 2006.

[Bou85] Jean Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space.
Israel Journal of Mathematics, 52(1-2):46–52, 1985.

[CDNS95] Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness
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