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Abstract

This paper presents a robust human tracking system
which incorporates automatic detection of head shape ob-
jects with decentralized tracking approach. A fast and ro-
bust probabilistic shape contour matching algorithm is ap-
plied to the input image frame to detect and locate head
shape objects. The detected objects are then tracked by de-
centralized trackers. Here, a decentralized tracker refers to
the tracker that tracks exactly one object. Essentially, each
newly detected object will instantiate an individual tracker,
which tracks the object and destroys itself when the object
disappears. Two trackers communicate with each other only
when they are getting close enough. This approach simpli-
fies the competition of targets between trackers, and is more
efficient than the centralized approach whose time complex-
ity is greatly depends on the number of tracked objects.
The system has been tested with several challenging digi-
tal surveillance video sequences, and the results show the
robustness and the efficiency of the system under crowded
and clutter environment.

1 Introduction

In recent years, multiple targets tracking systems have
been widely applied in video surveillance applications.
These intelligent applications help monitoring public area,
counting interested objects passing through, reporting any
suspicious behavior, etc. As more and more intelligence
is sought by video surveillance applications, there is an in-
creasing demand for more robust tracking systems which
can automatically detect and track multiple interested tar-
gets in real-time. For instance, real-time human detection
and tracking is one of the key issues [3, 5, 9, 13, 14, 16, 17].

In general, human detection and tracking is an extremely
difficult problem due to the articulation of human body.

Some researchers used a fully descriptive 3D human body
model to track human motions [10]. However, this approach
is highly computational intensive, and therefore, is not ap-
plicable to real-time applications. A faster approach is to
employ motion model to analyze and track the object mo-
tion. e.g., Haritaoglu et al. [3] proposed to identify human
by analysis of periodic motion. However, it is a difficult task
to capture accurate object motion in a crowded and clutter
environment.

Another approach is to utilize pre-defined shape or tem-
plate model in detection and tracking algorithm. [2, 6, 7,
15, 17]. For instance, Yiu et al. [15] proposed a 2.5D con-
tour approach for vehicle tracking. Zhao and Nevatia [17],
on the other hand, used multiple hypotheses, including ver-
tical projection and omega (Ω) shape matching, to build a
simplified human shape model. Their approach can suc-
cessfully track multiple human objects in a crowded situa-
tion, however, not in real-time. Blake and Isard [2] demon-
strated a fruitful approach of active contour tracking with a
pre-defined shape space. MacCormick [6, 7] introduced a
probabilistic model to further extended this approach with
condensation (particle filter) [4]. The system was shown to
be able to track the active contour of a specified object in a
clutter environment and with a certain degree of tolerance to
occlusions. However, the time complexity of this approach
grows exponentially when the number of tracked objects in-
crease, making it impractical for real-time applications.

Some researchers suggested to use training-based clas-
sifiers for the detection of desired objects, and then incor-
porate the detection results in tracking [8, 5, 9, 12, 13, 16].
Viola and Jones[12] proposed to perform the detection by
using Adaboost classifier which is based on integral images.
Okuma et al. [9] incorporated this approach into tracking
with mixture particle filter [11], and demonstrated success-
ful results in tracking inter-crossing ice hockey players. Yu
and Wu [16] further extended Okuma et al.’s approach with
the decentralized collaborative trackers. Their approach



was shown to be able to track multiple soccer/hockey play-
ers in real-time (15 fps). However, this approach limits the
number of trackers, and hence the number of tracked ob-
jects. Moreover, the performance of these classifiers greatly
depends on the training sets, which are sometimes too spe-
cific and not general enough.

In this paper, we propose to combine the active con-
tour tracking [2, 6] with decentralized trackers [16]. Un-
like [16], we allow the number of trackers to be variable
such that the number of tracked objects is not limited. The
decentralized approach also allows the system to be more
efficient to track multiple heads since the time complexity
is much less dependent to the number of tracked objects.
To achieve this, we first introduce a fast and robust head
shape detection based on a probabilistic framework. In this
framework, potential head candidates are first located by
fast hough transform. The candidates are then evaluated by
matching their shapes with those in the pre-defined shape
space. Only those candidates with a high probability of oc-
currence are then tracked by decentralized trackers. Each
decentralized tracker will automatically create and initial-
ize itself, and will be destroyed when the tracked target no
longer exists. We use two different shape spaces, denoted
by SM and ST , for the detection of head shape objects and
active contour tracking, respectively. In general, if we do
not assume any prior knowledge about the head shape when
performing the detection, and allow a large SM , the detec-
tion time can be very long. On the other hand, if ST is too
small, the tracking accuracy can be affected. Therefore, a
good strategy is to keep two shape spaces with SM ⊂ ST .

The details of the head shape detection and tracking are
described in Section 2 and 3, respectively. We also discuss
the experimental results of the proposed method in Section
4. Finally, we draw up the conclusions and discuss future
works in Section 5.

2 Head Shape Detection

We use a Bayesian probabilistic approach to model the
existence of a head shape. Specifically, the probability of
existing a set of heads H with the corresponding location
set L and a pre-defined head matching shape space SM is
formulated as:

P (H|SM ,L) =
∏

hi∈H

p(hi|SM , li)
∏

hj∈Ni

ψ(li, lj) (1)

by assuming the detected hi ∈ H is independent to each
other. The li is the location of hi. The term ψ(li, lj) is a
repelling function. It is defined as 1 − e−d(li,lj)2/2σ where
d(li, lj) is the Euclidean distance between li and lj , and
σ is set to be half of the average head shape dimension in
SM . The repelling function decreases when some detected

hj ∈ Ni is too close to hi, where Ni is the set of neigh-
borhood of hi. With the repelling function, the system dis-
courages the case in which multiple heads (usually heavily
overlapped) are detected for a single actual head. In our
actual implementation, we solve this by approximating a
single head from multiple detected heads which are heavily
overlapped. We group heavily overlapped hi together, and
consider the group as one head candidate with probability
1
n

∑
hi∈Ni

p(hi|SM , li), where n is the normalizing factor
and li is the mean location of hi ∈ Ni.

By Bayes rule, the posterior probability p(hi|SM , li) is
given by

p(hi|SM , li) =
p(SM |hi, li)p(hi|li)p(li)

p(SM , li)
(2)

With the assumption of independence of SM and li, and
the prior of the location li being uniformly distributed over
the whole image, the equation can be reduced to:

p(hi|SM , li) ∝ p(SM |hi)p(hi|li) (3)

A fast hough transform approach is described in Section
2.1, to locate the potential head candidate and this gives
p(hi|li). We also introduce a shape matching algorithm in
Section 2.2) to determine the likelihood, p(SM |hi), of the
predefined shape space matching the given head.

2.1 Locating the Potential Head Candi-
dates

Based on the observation of general head shapes in typ-
ical surveillance videos, we use an upper half circle as a
shape template for locating the potential head candidates in
image. Potential head shapes can then be located by ap-
plying fast hough transform [1] to the oriented sobel edges
of the image. Note that the time complexity of this hough
transform approach is linear. The probability p(h|l) of the
existence of a head given its location is then defined as:

p(h|l) = β
vl

v0
(4)

where β is a scaling factor. vl is the votes of hough trans-
form at location l, and v0 is the maximum possible hough
transform votes. We further apply a pre-defined threshold,
τ1, such that if p(h|l) < τ1, no further head shape matching
process described in Section 2.2 will be carried on. The
value of τ1 has been chosen from experiment, such that
most of the irrelevant noises can be pruned, while the ac-
tual head candidates are retained.

2.2 Head Shape Matching

Shape matching algorithm is used to determine how
likely SM matches the potential head candidates, i.e.,



Figure 1. An example of head shape in SM

with its normals as the measurement lines

p(SM |h). For each shape sj ∈ SM , we suggest to use
measurement lines [6, 17], which are in fact the normals
of the shape contour sj , to measure the likelihood p(sj |h).
p(SM |h) is then defined as the maximum of p(sj|h). Fig.
1 shows a particular example of a head shape in SM with
the corresponding measurement lines.

For each measurement line, it is considered to be
matched if its likelihood ratio Lpos

Lneg
is larger than a thresh-

old τ2, in which τ2 is calculated adaptively according to the
neighboring gradient values. Lpos is the positive likelihood:

Lpos =
∑

v

G(v, v0, σ)g(v) · n(v) (5)

and Lneg is the negative likelihood:

Lneg =
∑

v

G(v, v0, σ)g(v) · n(v) (6)

where v is a point along the measurement line. v0 is the cen-
ter of the measurement line, i.e. the intersection point of the
measurement line and sj . g(v) is the oriented sobel gradi-
ent at point v, and n(v) is the corresponding normal vector,
i.e. g(v) · n(v) gives the magnitude of the oriented gradient
at v. G(v, v0, σ) is a Gaussian function centered at v0 with
variance σ. and G(v, v0, σ) = G(v0, v0, σ) − G(v, v0, σ)
which is the inverse of the Gaussian function. We define
the positive and negative likelihood in this way due to the
observation that it is more likely to have a high gradient
value near the center of the measurement line if the shape is
matched. In contrast, when there is high gradient values far-
ther from the center of measurement lines, it is more likely
to be caused by noises due to clutter background.

Suppose sj consists of totally Mj measurement lines,
and mj of them are matched, p(sj |h) is then defined as mj

Mj

which is the portion of the matched measurement lines.

3 Decentralized Tracking

We use a similar decentralized tracking approach as de-
scribed in [16] to perform active contour tracking [6] of
each detected head. Another shape space ST , which is the

superset of SM is used for the active contour tracking. In
particular, SM consists of the most representative and gen-
eral head shapes in ST , while ST also contains deformed
head shapes other than those general head shapes. This not
only improves the accuracy of tracking when a tracked ob-
ject undergoes shape deformation, but also retains the effi-
ciency of the head shape detection.

As stated in previous sections, the number of trackers
is not fixed. A new tracker is created and initialized for
each newly detected head, and the tracker will automaticlly
destroy itself when the head disappears. During tracking,
a tracker evaluates itself for tracking the particular object,
and only communicate with other trackers when they are
getting too close. Each tracker has its own set of particles,
{ci, πi}n

i=1, where ci is the i-th particle and πi is its weight-
ing. The particle set is used to estimate the probability den-
sity of current state p(xt|xt−1) from previous state. When
calculating the weighting of each particle, we also incorpo-
rate the correlation rather than only use shape to improve
the tracker’s robustness under low contrast environment:

πi = λ1ωs(xi) + λ2ωcr(xi) (7)

where xi = {si, li} is the state vector of ci, with si ∈
ST and li is the particle location. ωs(xi) corresponds to
p(si|h) = Lpos/Lneg which is defined in the same way as
described in Section 2.2. ωcr(xi) is the typical correlation
function of the head image patch. We apply λ1 and λ2 to
weight the importance of ωs(xi) and ωcr(xi) respectively,
such that λ1 + λ2 = 1.

Similar to [9, 16], we also incorporate the detection re-
sults for determining the distribution of next state of the
tracked head q∗(xt|x0:t−1), i.e.

q∗(xt|x0:t−1,yt) = αqd(xt|xt−1,yt)+(1−α)p(xt|xt−1)
(8)

where qd(xt|xt−1,yt) is the probability density func-
tion of the detection results, which is defined as
G(xt,yt,Σ)p(h|SM , l). G(xt,yt,Σ) is the Gaussian
function with the covariance Σ and the detected state yt

as the mean. p(h|SM , l) is the posterior probability of the
head shape detection as described in Section 2. Here, α
can be variated within [0,1]. When α is zero, the tracking
is reduced to mixture particle filter. When α increases, the
importance of the detection results also increases.

4 Experiments and Results

The proposed approach was implemented and evalu-
ated with three challenging digital video sequences (see fig.
4), namely skating rink (3862 frames), outdoor pavement
(3786 frames), and indoor passage (2299 frames). We used
almost the same parameter settings for these three testing
sequences except the scaling of the shapes. In particular,



(a) Skating rink (b) Outdoor pavement with chessboard-
like background and heavy sun-shine

(c) Indoor passage with clutter back-
ground and crowded situations

Figure 2. Scenes of three testing sequences.

Sequences skating
rink

outdoor
pavement

indoor
passage

total # of people 48 26 56
# of tracked people 44 23 51
# of missed people 4 3 5
# of false positive 0 1 2

Table 1. Summary of the detection and track-
ing results of the proposed approach.

we allowed a newly detected head object h can initiate the
creation of a new tracker only if p(SM |h) > 80%. Another
20% was allowed to be unmatched due to the occlusions or
noises. For the tracking, each tracker used at most 100 par-
ticles in order to estimate p(xt|xt−1) of each head shape
object. We also set λ1 and λ2 in (7) to be 0.65 and 0.35
respectively. Under these settings, the system can process
15 fps on a P4 2.6GHz PC with 352x288 frame image size
and around 4 to 8 objects were being tracked concurrently.

Fig. 4, 5, 6, and 7 show some screen-shots of the test-
ing results. Each tracked target is shown by a rectangu-
lar bounding box, with its trajectory of last 50 frames in a
particular color. Fig. 4 demonstrates a simple case of the
tracking in the skating rink sequence. A tracker was cre-
ated and initialized for a newly detected head shape object,
and it successfully tracked the target which underwent sud-
den stop and changing of direction. The tracker was finally
destroyed when the tracked target went outside the image
frame. Fig. 5 shows the case of tracking inter-crossing
heads. Fig. 6 shows some typical results of multiple heads
tracking in the outdoor pavement sequence. The system was
able to track the pedestrians which were heavily overlapped
(see fig. 6(d)(e)). Fig. 7 demonstrates the system performed
well in an extremely crowed and clutter environment. How-
ever, in this case, some of the head shape objects were de-
tected and tracked with some delay. The delay is due to the
fact that the system was required to gather enough confi-

(a) Heavily deformed head shape

(b) Poorly contrasted image

Figure 3. Example of fail cases. The first
column shows the original image, the next
shows the sobel gradient magnitude map.

dence for the confirmation of those head objects in such a
clutter background before a tracker is created. This is neces-
sary in order to balance the detection and false alarm rates.

Table 1 summarizes the detection and tracking results.
The system achieved 91.67% detection rate with 0% false
alarm rate for the ice rink sequence, 88.46% detection
rate with 3.85% false alarm rate for the outdoor pave-
ment sequence, and 91.07% detection rate with 3.57% false
alarm rate for the indoor passage sequence. The results
show that the proposed approach performed well in the ex-
tremely crowded situations in indoor passage sequence. For
the outdoor pavement sequence which contains a complex
chessboard-like background and with heavy sun-shine, the
system still performed fairly good with high detection rate



and only one false alarm.
There are two major factors causing the fail cases. First,

the appearance of head shape in the scene may not be cov-
ered in SM . Fig. 3(a) shows an example in which the head
shape was heavily deformed. This problem can be reduced
by enriching the current shape space with a large head shape
training sequence. Second, the contrast of head is not high
enough and this results in extremely weak edge shown in
fig. 3(b), the system was unable to detect the head of the
child in red clothes. This case is much more challenging
since it is unable to recognize the existence of the head even
by human eyes without considering other body parts. In this
case, a model of body part geometry [8] may help. How-
ever, this kind of complicated model can seldom perform
real-time detection and tracking.

5 Conclusion and Discussion

A novel and fast head shape detection and decentralized
active contour tracking approach has been proposed. We
demonstrate the system based on this approach is able to
detect and track multiple head shape objects in real-time.
It works well even in challenging video sequences with
crowded and clutter environments. Although only results of
video sequence from static camera has been shown, the sys-
tem itself does not depend on any static background model-
ing, and therefore, can be further applied to motion camera
surveillance system as well (e.g. Pan-Tilt-Zoom camera).

Sometimes, some head shape like objects other than ac-
tual heads (e.g. shoulder) have been detected which causes
false alarm in the current system. These cases are expected
since we are focusing on auto-detection and tracking of
head shape in the current work. Further verification of head
objects, e.g. Adaboost detection approach [9, 16], can be in-
corporated in our future works to enhance the performance
of the system. It should also be noted that our proposed ap-
proach effectively reduces the search space of such compu-
tationally intensive detection, and hence improve the system
speed and performance.
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(a) frame 151 (b) frame 159 (c) frame 192 (d) frame 222 (e) frame 232

Figure 4. Typical tracking results of the ice rink sequence which shows (a)(b) creation and initiation
of a tracker, (c)(d) continue tracking with sudden stop and changing of direction, (e) and destruction
of the tracker.

(a) frame 1663 (b) frame 1669 (c) frame 1682 (d) frame 1720 (e) frame 1750

Figure 5. Successful tracking of inter-crossing heads in ice rink sequence.

(a) frame 473 (b) frame 499 (c) frame 518 (d) frame 3309 (e) frame 3332

Figure 6. Typical tracking results of outdoor pavement sequence. (a)(b)(c)show that the system is
able to track multiple head shape objects concurrently with a chessboard-like background. (d)(e)
show the tracking result of two heavily overlapped pedestrian.

(a) frame 488 (b) frame 529 (c) frame 549 (d) frame 628 (e) frame 647

Figure 7. Typical tracking results of indoor passage sequence. The system performs well even in an
extremely crowded and clutter environment, but with some cases being detected and tracked with
small delay.


