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Abstract

This paper presents a method, infrastructure,
and prototype that enables adaptive application task
migration among a Grid environment. Our infrastructure
automatically reconfigures distributed applications in
response to network performance failures and denial of
service (DoS) attacks. Through the use of performance
monitoring software we enable network connection failover
and automatic application task migration within a
heterogeneous distributed computing environment. Our
system distinguishes itself from other available adaptive
computing frameworks because it is wholly composed of
open source Grid-enabled components capable of both
transparent and dynamic selection of message passing
transports based on resource performance.

1. Introduction

Our framework monitors the performance of a diverse
set of network connections and initiates application
task migration in response to anomalies. We develop a
sensor network with integrated effectors, which recognizes
certain performance failures and follows a reconfiguration
plan. Additionally, our framework enables applications
distributed across a wide-area network of standard Ethernet
connections to also utilize any high speed System Area
Network (SAN) connection. Unlike previous task migration
infrastructures, our software is wholly composed of Grid-
enabled components encompassed within a C library, which
automatically selects a message passing transport medium
based on performance measurements.

Our Task Management C Library, and Self-Monitoring
system, follows the Open Grid Service Architecture
(OGSA) [4]. Our contribution is a novel message passing
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layer and a unique framework for the migration and
management of application tasks. Network connections
automatically reconfigure, and application tasks migrate,
in response to network performance failures, resource
consuming DoS attacks, or legitimate resource loads not
attributed to the distributed application. The design and
implementation of an open source, Grid-enabled, adaptive
computing environment is described.

The remainder of the paper is organized as follows.
The next subsection notes other application task migration
infrastructures. Section 2 details the many components
that compose the framework and gives an overview
of the methodologies. Section 3 details the setup of
experiments, which demonstrate the beneficial use of
adaptive computing in the presence of network performance
failures and DoS attacks. The results, presented in Section
4, demonstrate an improvement in the performance of
a distributed application, which employs our adaptive
computing framework and automatically reconfigures the
environment in response to network performance failures
and DoS attacks. Future work is presented in Section 5. The
findings and conclusion are given in Section 6. Lastly, the
Appendix contains in depth details about the sensors and
the reporting mechanisms of the framework.

1.1. Related Work

Currently, there are a few Message Passing Interface
(MPI) library based approaches that institute adaptive
distributed computing environments. CoCheck MPI [3] is
the first MPI implementation that uses the Condor library
[28] for check-pointing and task migration. Our framework
differs greatly from CoCheck MPI, in that it utilizes both
SAN and wide-area network connections in addition to
monitoring the network traffic via Grid-enabled tools. Other
MPI implementations capable of task migration include
FT-MPI [1], and MPICH-V [2]. The following packages
represent current generation adaptive computing systems.

The GrADS system [8], which is currently evolving, is
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a performance oriented migration framework for the Grid.
Both GrADS and the HARNESS framework [15] envision
a library of Grid aware components for adaptive Grid
computing. The GrADS system employs an application
manager that creates performance contracts, which are
used as initiators for application task migration [23].
The Application Level Scheduling (AppLeS) system
[11] implements adaptive distributed computing, although,
unlike other infrastructures it is not encompassed within
a library. An attractive feature of AppLeS is its ability to
employ various scheduling heuristics. This use of historical
performance data as an aid for scheduling is described in
[9], [18]. A fully functional and scalable Grid environment
monitor is described in [16]. The AutoMate system [21]
builds on Grid middleware and follows the OGSA. The
core services detailed in OGSA entail the security and
management of information, resources, and data.

2. Structural Overview

The interaction of our components, which enable the
automatic reconfiguration of an application distributed
across a heterogeneity of network connections, is illustrated
in Fig. 1. Our framework, accessible via C Library
functions, enables distributed applications to pass messages
through both a wide-area network and a high-speed
SAN. Through the creation of a SAN application level
message passing service, a single application distributed
across the Grid can seamlessly utilize 10 Gb/s InfiniBand
SAN connections in conjunction with wide-area network
connections. Although there currently exists an MPI
implementation for InfiniBand, our framework differs in
that it is capable of anomaly detection and enables an
InfiniBand SAN connection to failover to a standard
Ethernet connection.

The framework facilitates the use of high-speed SAN
connections by applications distributed across a wide-area
network. Our Task Management ANSI C Library creates
and manages application tasks, which enable the developer
to program an adaptive distributed application at a high
level, thus the programmer is not over-burdened by all
the complexities necessary for application task migration.
Our framework improves the dependability of distributed
applications in the presence of DoS attacks and network
performance failures.

The distributed applications targeted for improvement by
this paper use the standard MPI 1.1 library convention. We
employ the Grid-enabled MPICH-G2 library [6], [7], which
is an extension of the Argonne MPICH implementation of
the standardized Message Passing Interface (MPI) version
1.1 [19]. This extension enables the use of services
provided by the Globus Toolkit [29] for authentication,
authorization, resource allocation, staging of executables,

and startup/collective operations. The MPICH-G2 MPI
implementation enables applications distributed across a
Grid environment to use an MPI library.

2.1. Message Passing Service

An application level service is created to provide a
message passing mechanism within the SAN via high-
speed intracluster network links. This architecture reflects a
modularization of communications mechanisms within the
SAN network. This service provides a standard interface for
an MPICH-G2 MPI program to seamlessly communicate
with a limited set of MPI functions through a 4X InfiniBand
network connection via IP over InfiniBand [24].

The message passing service responds to the following
MPI functions: MPIV Send and MPIV Recv. The minor
difference between these functions and the standard MPI
1.1 MPI Send and MPI Recv is the addition of pointers
to the node structure structures of the source and
destination nodes. The node structure is a C structure
that contains the information necessary for task migration,
node structure structure is declared in Fig. 2 and read in
Fig. 3.

The Task Management C Library enables the
MPIV Send and MPIV Recv functions to pass mes-
sages through high-speed SAN network connections.
The MPI 1.1 standard contains an MPI profiling conven-
tion; the purpose of the interface is to implement a profiling
tool and additionally to internetwork multiple MPI imple-
mentations [26]. Through the use of our MPI functions,
with the prefix MPIV, we enable the seamless use of multi-
ple communication libraries by a single distributed applica-
tion.

This SAN message passing service handles the
MPIV Send calls and immediately sends the message
to the destination’s Global Access to Secondary Storage

MPICH-G2 MPI

(Limited set)
MPIV Functions
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Figure 1. Message passing layer overview.
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(GASS) server [12], which is included in the Globus
Toolkit. The GASS server acts as a secure file server and
is employed for message passing within the SAN, the
Appendix contains more details about our use of the GASS
server. The corresponding MPIV Recv function polls the
local machine for the sent message. The service may use
various system level message passing mechanisms, such as
either the InfiniBand Socket Direct Protocol [25], which
takes full advantage of Remote Direct Memory Access
(RDMA), or IP over InfiniBand. The Socket Direct Protocol
exhibits a 2.7x higher throughput compare to the IP over
InfiniBand protocol [20]. The wide-area message passing
service and the control signals of the distributed application
are passed via the open source Grid-enabled MPICH-G2
MPI library. Through the use of the MPICH-G2 MPI
library our framework supports all MPI v1.1 functions for
communication over the wide-area network.

2.2. Sensors

The Grid-enabled Ganglia monitor system [5] serves as
the network monitoring system. Passive sensors are used to
monitor both the SAN and the wide-area network. Ganglia
monitors the CPU load, memory usage, disk usage, number
of open TCP/IP connections, as well as over fifteen other
statistics. Over 500 deployments of the Ganglia monitoring
system are used by clusters throughout the world.

A localized network-centric approach is used to detect
DoS attacks. The throughput of each computational
node is determined by the number of bytes per second
of application data sent over the given link by the
node. The outgoing application level throughput of
each computational node is measured passively at every
call of the MPIV Send function. This passive method
of measuring performance statistics, and determining
application behavior, is employed by various MPI profiling
tools [23]. When the distributed application reports the
throughput to Ganglia, if the throughput is below a
predetermined threshold, then the performance degradation
is detected within 30 seconds.

The sensors employed in this paper detects anomalies
in Grid environments. Our monitoring system is scalable,
accurate, timely, flexible, and incurs low overhead, these are
important attributed for a computational Grid’s monitoring
system [22]. Our closed-loop controller, composed of
sensors and effectors, is detailed in the Appendix.

2.3. Task Management Library

The Task Management Library integrates the sensors
and effectors, which are described in the next subsection.
Additionally, in order to support task migration, the Task
Management Library provides a data structure for a virtual

Task Management Library Function Declarations:

typedef struct
{
int Interest_Group[MAX_NUMBER_OF_NODES];

int InfiniBand_GroupA; #1 if INFB conn., 0 otherwise
int Global_ID;
char Machine;
char[30] GASS_URL;
int job_description;

} node_structure;

MPIV_Send(void *buf, int count, MPI_Datatype datatype
,node_structure *source_pnode, node_structure *dest_pnode
,int message_id, int tag, MPI_Comm comm)

MPIV_Recv(void *buf, int count, MPI_Datatype datatype
,node_structure *source_pnode, node_structure *dest_pnode
,int message_id, int tag, MPI_Comm comm, MPI_Status *status)

Reconfiguration_decision(IN char *Global_status_file,
IN int *Performance_contract, OUT int *XYZ_score)

Virtual_topology_reconfiguration(IN int real_node,IN int virtual_node,
IN/OUT node_structure *nodes)

Virtual Topology Reconfiguration Function:

Virtual_topology_reconfiguration(new_node, old_node, nodes)
#MIGRATE old_node to new_node, i.e. put old_node to sleep and have
#new_node take its place.
{
nodes[virtual_node].Global_ID = real_node

#replace the occurrences of old_node in all .input and .output
#arrays with new_node
#package_reconfiguration_info contains new Global_ID
#(global specific) and #InfiniBand_GroupA (node specific).
foreeach (X -> nodes[new_node].Interest_Group)

FILL_recv_reconfig_node_info_variable(package_reconfiguration
_info[X], X, nodes);

#tell effected processes to reconfigure
foreeach (X -> nodes[new_node].Interest_Group)

MPIV_Send(packaged_reconfiguration_info[X], SIZE_OF_UPDATE
,MPI_INT, X, RECONFIGURATION_TAG, MPI_COMM_WORLD);

uneffacted_nodes = queue_sub(all_nodes - effected_nodes)
#tell other uneffected processes to continue
foreeach (X -> uneffacted_nodes)

MPIV_Send(for_null_ie_continue,SIZE_OF_UPDATE, MPI_INT
,uneffected_nodes[X], CONTINUE_TAG, MPI_COMM_WORLD);

}

Figure 2. Declarations of Task Management
Library and the virtual topology reconfigura-
tion function.

process topology. Each virtual process encapsulates and
executes a certain application task, thus the terms virtual
process and application task are used synonymously. The
pseudo code of the library is shown in Figures 2 and 3.

All application tasks are locally aware, i.e., they only
have knowledge of the application tasks with which they
directly interact. All local knowledge is contained in the
Interest Group array shown in Fig. 2. In order to avoid
deadlock during reconfiguration, a timeout will be included
in the reconfiguration function in future versions of our
library. Currently, even during a resource consuming DoS
attack, the victim is required to eventually respond to a
reconfiguration request.

2.4. Effectors

The Task Management Library contains Leaders
that enable task migration. The Leader process is re-
sponsible for the execution of the Reconfiguration
decision function, shown in Fig. 2. The Performance
contract array contains a list of point-to-point virtual pro-
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Measurement and Reporting Functionality

MPIV_Send(void *buf, int count, MPI_Datatype datatype, node_structure
*source_pnode, node_structure *dest_pnode, int message_id
, int tag, MPI_Comm comm)

{
byte_size = count
destination = (*dest_node). Global_ID
#Measure elapsed time for an MPI_Send.
If ((*dest_node). InfiniBand_GroupA AND (*source_node).InfiniBand_GroupA)

Fwrite(temp.bin, buf, byte_size)
Time0 = gettimeofday()
gass_copy(temp.bin, *dest_node. GASS_URL)
elapsed = gettimeofday() - Time0

End
Else #using MPICH-G2 TCP/IP connection

Time0 = gettimeofday()
MPI_Send(buf, byte_size, MPI_INT, destination, CONTINUE_TAG, MPI_COMM_WORLD);

elapsed = gettimeofday() - Time0
End
byte_rate = byte_size / elapsed #byte_rate for a byte_size copy to gmetad
exec(/usr/bin/gmetric --name net_Source_location --value byte_rate --type

double --units bytes/sec)
}

MPIV_Recv(void *buf, int count, MPI_Datatype datatype, node_structure
*source_pnode, node_structure *dest_pnode, int message_id
, int tag, MPI_Comm comm, MPI_Status *status)

{
byte_size = count
destination = (*dest_pnode). Global_ID
#Measure elapsed time for an MPI_Send.
If ((*dest_node). InfiniBand_GroupA AND (*source_node).InfiniBand_GroupA)

Timeout = 300
Time0 = gettimeepoch()
For (;;)

Time1 = gettimeepoch()
Sleep( 1 second)
successful_read = fread(temp.bin, buf, byte_size)
If (((Time1 - Time0) > Timeout ) || successful_read) #Timout

Break
End

End
Else
MPI_Recv((int*) buf, byte_size, datatype, (*source_pnode).Global_ID
, MPI_ANY_TAG, MPI_COMM_WORLD, status);
}

Figure 3. MPIV Send and MPIV Recv func-
tions within the Task Management Library.

cess connections and their corresponding throughput
threshold. The Global status file reports the through-
put of the connections within the virtual topologies,
when a measured throughput falls below the thresh-
old listed in the Performance contract array, then
the tasks which execute on the nodes that receive mes-
sages from the effected links are selected for migra-
tion. The Reconfiguration decision function de-
cides upon a reconfiguration based on information in the
Global status file and the Performance contract ar-
ray. The Performance contract array serves as a contract
and when it is violated the task is selected for migra-
tion by the Reconfiguration decision function and the
task subsequently migrates.

In our simple scheme whenever a Performance
contract is broken an application task is selected for
migration, and the task migrates to the computational node
that receives the largest volume of that task’s data. The
Performance contracts are created during the execution
of the distributed application under normal load conditions
without any DoS attacks. An increase in traffic due to a DoS,
or a spike in resource usage, negatively effects the available
bandwidth, CPU time, memory, or some combination of
thereof. Our system reacts to any surge in non-application

load, it does not attempt to distinguish between DoS attacks
and load spikes caused by legitimate traffic.

This paper does not address the decision of when it is
best to migrate an application task, and ignores the potential
problem of the creation of a clusters of application tasks
that all migrate to the same resource, resulting in heavy
loads which may cascade through the physical network.
When the Performance contract is broken we simply
migrate an application task to the computational node that
receives the largest volume of that task’s data. The problem
of determining when a task should be migrated off a
node, taking into account all the scheduling and resource
availability factors, is studied in more detail in book edited
by one of the authors [30]. Due to the NP-Completeness
of the scheduling of a parallel program represented by
a weighted directed acyclic graph (DAG) to a set of
heterogeneous processors [32], an optimal solution to this
problem cannot be calculated in polynomial time for every
instance, and we do not address this scheduling problem.

2.5. Task Migration

The virtual processes are created within the data
structure of the Task Management Library. The MPI
version 1.1 standard does not contain the functionality to
spawn additional MPI processes after application startup,
therefore it is required that spare processes are created
at application startup. At application startup the Leader
process maps virtual processes to the physical topology.
During application runtime the virtual processes can be
dynamically migrated within the physical topology, in
response to anomalies.

The Leader process contains the Task Management
Library’s Reconfiguration decision function and the
globally aware virtual topology structure, which is
composed of an array of node structures. This array of
node structures may reside in any machine within the
distributed system, and our framework could allow for its
migration. Currently, our framework does not have the
functionality to migrate the Leader process. A virtual
topology consisting of virtual processes (1,2,3,4), is shown
in Fig. 4, the remainder of the processes are spare and
denoted by an e.

Figure 4 illustrates the migration of virtual process 2, i.e.,
application task 2, from machine X to machine Z. The code
that executes an application task does not actually migrate
from machine X to machine Z. An example of the migration
of virtual processes is detailed as follows: once migration
is decided on, a virtual process is signaled to become
inactive on machine X and a spare process is signaled to
become active on Machine Z, then configuration data is
subsequently sent to the newly activated spare process. The
spare MPI process, denoted by an e in Fig. 4, is in an idle
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state until reconfigured and assigned a virtual process by
the Leader. In response to either a network performance
failure, or DoS attack, a spare process e in machine Z is
assigned virtual process 2.

Machine Y and Z are connected by both an InfiniBand
SAN network connection and a Standard Ethernet
connection. The Leader ensures that the nodes effected by
the task migration contain valid and updated configuration
data. All the nodes in the Interest Group array, seen in
Fig. 2, are synchronized before reconfiguration.

When the signal is sent for a real process to become
active six items are included in the signal. These items are
listed in the node structure of Fig. 2. The items in the
node structure include the following information: virtual
process ID, the virtual process IDs of the neighbors found
in the Interest Group array, whether or not the SAN can
be accessed and if so, the URL of the GASS server.

3. Experimental Setup

We inject a network performance failure and launch a
DoS attack upon a computational node, which participates
in the execution of a distributed application. The
experimental data presented in Section 4 is generated using
three Intel Xeon/2.4 GHz dual processor machines and one
Intel PentiumIII/1 GHz dual processor machine, all with
Linux 2.4 kernels.

3.1. Setup of a Network Performance Failure
(Standard Ethernet only)

The first experiment consists of an application task
migration, in response to a network performance failure,
within a Grid environment that exclusively consists of
standard Ethernet network connections. Figure 5 illustrates
a physical topology and an application task migration
in response to either a network performance failure or
a DoS attack. In this experiment, an existing distributed
data compression application [27] is slightly altered to
utilize our Task Management Library, then the application
is monitored during a network performance failure.

In this paper, we define a network performance
failure as a significant decrease of the available point-to-
point throughput between machines within the distributed
computing system, that persists for more than 30 seconds.
An injected network performance failure is illustrated in
Fig. 5. The network performance failure is created by an 80
MB copy from a remote machine to machine X, resulting in
a degradation of Machine X’s available throughput.

3.2. Setup of a DoS Attack (Standard Ethernet
only)

The term DoS attack is defined as any attack, in which
the attacker attempts to cause a system’s resources to
become too busy to respond to other clients. DoS attacks
work on the premise that the Internet and computers are
composed of a limited set of vulnerable resources such
as bandwidth, disk space, and CPU cycles. There are
many different types of DoS attacks, one is a bandwidth
consumption attack. A bandwidth consumption attack
entails the posting or request of large amounts of data to
or from the victim computer via packet streaming. This type
of attack is successful if it degrades the network throughput,
thus negatively affecting other clients attempting access.

The chosen form of DoS attack for this experiment
is a bandwidth consuming DoS attack, selected for its
ease of use and controllability. The Apachebench [14]
and an Apache http server are employed to implement
the attack. One remote machine initiates a DoS attack
against a target computer by issuing an Apachebench
command, which opens 200 concurrent connections to
the http server running on the target computer. Each
concurrent connection requested 8 MB of data from the
target computer. Control of the consumed bandwidth is
achieved through the adjustment of both the number of
concurrent requests that are generated from the remote
machine and the size of the requests.

3.3. Setup of a Grid-Enabled SAN Network
(InfiniBand and Standard Ethernet)

The last experiment consists of a DoS attack on a
computational Grid environment that consists of both
10 Gb/s InfiniBand and Standard Ethernet network
connections, which is illustrated in Fig. 4. This experiment
does not measure the performance of an application,
but rather measures the volume of messages sent from
application task 1 to application task 4. These messages are
sent over both InfiniBand and standard Ethernet network
connections, they originate at task 1 and are passed along
by task 2 and task 3, then arrive at the destination, task 4.

In this experiment a single machine in our computational
Grid environment is the victim of a DoS attack. Two of
the machines, Y and Z, are connected to a 10 Gb/s 4X
InfiniBand switch, in addition to the standard Ethernet
connection. The InfiniBand SAN network connection uses
Mellonox drivers and the IP over InfiniBand protocol to
pass messages via writes to the Globus Toolkit’s GASS
server [12]. Figure 4 is an illustration of the physical
topology of a small cluster consisting of Grid-enabled
components, which our framework is implemented upon.
The system performance, in terms of the number of MPI
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messages received by task 4, is experimentally determined
and presented in the next section.

4. Experimental Results

4.1. Network Performance Failure

The setup for this experiment is detailed in subsection
3.1. The runtimes of two trials of a data compression
application were measured. The first trial exhibited a
compression ratio of 0% and the second a compression ratio
of 60%. For this particular data compression application the
compression ratio corresponds to the compressibility of the
input data. Both data compression applications received 524
kB of data as an input. The different compression ratios
exhibited reflect the different profiles of the input data, and
affect the amount of data passed between the nodes.

The runtime of the two trials are illustrated in Fig. 6a
and Fig. 6b respectively. A moderate improvement in the
performance of the application was measured. While the
distributed application experiences a network performance
failure, which begins at iteration 3, a 17% decrease
in runtime was observed through the employment of
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Figure 6. Runtime of a data compression
algorithm, a network performance failure
began at iteration 6 in figure a) and iteration
3 in figure b).

adaptive task migration compared with task migration
disabled, as seen in Fig. 6a. The reconfiguration was
performed automatically by the Task Management Library
and initiated by a network performance failure.

Figure 6b illustrates the runtime of trial 2, which exhibits
a compression ratio of 60%. A 16% decrease in runtime was
realized through the use of the task migration framework,
compared to a run without task migration enabled.

4.2. DoS Attack

The setup for this experiment is detailed in subsection
3.2. The performance of the distributed data compression
application was monitored during a DoS attack. The
distributed application consists of four application tasks
capable of migration among the SAN network. Figures 7a
and 7b plot the execution time of the data compression
distributed application corresponding to the different
compression ratios. The reconfiguration transition period,
lasting from iteration 3 to 8, is seen in Figures 7a and 7b.
During this period the DoS attack is detected by the
Reconfiguration decision function, which periodically
analyzes the Performance contract array and the
Global status file. Next, the Task Management Library
sends the signals for an application task to migrate. Through
the use of adaptive reconfiguration the data compression
algorithm with a compression ratio of 0% exhibited
an improvement in the runtime by more than 2,600%,
compared to the case without task migration. A 900%
improvement in the execution time of the data compression
algorithm with a 60% compression ratio was also measured.

In the last experiment a DoS attack is implemented
against machine X, seen in Fig. 4. The setup for
the last experiment is described in subsection 3.3. The
distributed application experiment utilizes both InfiniBand
and standard Ethernet network connections, seen in Fig. 4,
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Figure 7. DoS attack at iteration 3, shown
in Fig. 5, upon one of the computational
nodes that took part in the distributed data
compression algorithm.

between machine Y and machine Z. This attack causes
task 2 to migrate from machine X to machine Z. Figure 8
plots the cumulative volume of MPI messages sent to task
4, of Fig. 4, with and without adaptive reconfiguration
enabled. The DoS attack begins at time 1. Compared
to the volume of task completion messages received
with adaptive reconfiguration disabled, and after an initial
settling time, a 20% improvement in the volume of
messages received in the given time period was measured
through the use of adaptive reconfiguration during a DoS
attack. During the first 10 seconds of execution, the trial
with adaptive reconfiguration enabled receives more task
completion messages than the trial in which no attack is
committed. This is due to the fact that during the adaptive
reconfiguration task 2 migrates to the same machine where
task 4 resides. As a result of this, messages will not traverse
through machine X. Therefore, more task completion
messages will be received before the system settles to a
steady state, at time 14.

5. Future Work

The prototype implemented in this paper contains
only four processes, which are synchronized by the
Leader processes before reconfiguration. Future work
could include distributed synchronization that allows for
multiple groups or multiple Leader processes within the
distributed application to concurrently reconfigure. The
algorithm selected for distributed synchronization must
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Figure 8. Sequence of MPI messages re-
ceived by task 4, seen in Fig. 4, from both In-
finiBand and standard Ethernet network con-
nections.

exhibit freedom from both deadlock and starvation, in
addition to fairness, and fault tolerance. Additionally,
the prototype only reports the throughput of data passed
via MPIV Send. Future work could include the passive
monitoring of all the application’s traffic; subsequently the
Reconfiguration decision function would decide if the
performance contract is violated.

With the additional functionality of a fault tolerant
version of MPI, FT-MPI [1], a distributed application
could dynamically spawn and kill processes to adjust as
a networks unexpectedly scales up and down. One of the
autonomic computing paradigms of self-management could
be met, within an a distributed application which uses
the FT-MPI library, through the employment of our Task
Management Library and monitoring system.

6. Conclusion

Our framework improves the utilization of high value re-
sources within a Grid environment by enabling the seam-
less use of high-speed SAN network connections by an ap-
plication distributed and managed across a wide-area net-
work. The open source Grid-enabled framework enables ap-
plication task migration in response to DoS attacks and per-
formance failures, thus improving the dependability of ap-
plications distributed across a heterogeneous Grid environ-
ment. Additionally, our infrastructure enables a distributed
application to seamlessly pass certain MPI messages over
both a high-speed SAN and standard Ethernet network con-
nections. Our results show an improvement in the depend-
ability of distributed applications that are dependent upon
resources vulnerable to DoS attacks and performance fail-
ures.
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Appendix
DESCRIPTION OF THE CLOSED-LOOP SENSOR NETWORK: Each computational node executes Ganglia’s

gmond (B) daemon, Fig. 9, which monitors and broadcasts the statistics. Each cluster contains one or more
gmetad (D) daemons, Fig. 9, which aggregates the statistics from all nodes within the cluster. This information is
stored in an open XML-based format, which allows for standard access. The Globus Toolkit’s Monitoring and Discovery
Service (MDS) [10] contains the URL that points to these statistics. At every MPIV Send call Ganglia’s gmetric
(C) daemon, which can report any arbitrary statistic, reports the measured throughput to Ganglia’s gmetad (D)
daemon.

The globally aware gmetad daemon pulls and summarizes the aggregate data from each cluster’s gmetad
(D) daemon and stores the data in an XML-based round robin database (rrd) file format. This aggregate data could be
accessed by the Ganglia web front-end (E), which displays summary statistics of the state of each cluster over time. If
implemented in a large-scale network the aggregate data could reside within a hierarchy of servers [13]. If a hierarchy
of gmetad (D) daemons, which hold a summary of the descendant’s data, is deployed then Ganglia exhibits a
linear increase of network bandwidth as additional computational nodes are added to the environment [17]; therefore
the monitoring system is scalable. It is worth noting that the gmond (B) daemon consumes less then 1% of the
CPU’s cycles [17]. The overhead was measured as the difference in runtime of the data compression application with
the following components alternately enabled and disabled: the gmond (B) and gmetad (D) Ganglia monitoring
daemons and the Task Management Library’s sensors and effectors. A 1% overhead was incurred upon the distributed
application when adaptive reconfiguration effectors and the network sensors were enabled.

The GASS server resides on the machines connected via link A, as shown in Fig. 9.
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Figure 9. Framework of the adaptive dis-
tributed computing system.
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