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Hidden Markov Models
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@ In Problem with inherent temporality, we may have states
at time ¢ that are influenced directly by state at ¢t — 1.

@ There are transition from one state to another (with certain
probability) — Markov Model

@ The states have a certain probability of generating various
output symbols — the observations.

@ Human can only see the obervation, but not the underlying
Markov Model. (Hence Hidden)

@ For example, HMM has been used in Speech Recognition,
Handwritten Character Recognition.
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First-order Markov Models
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@ The state at any time ¢ is denoted w(t).
@ A sequence of states of length T' is denoted by

wT = {w(l)aw(Q)’ e ’w(T)}
@ The system can revisit a state at diffferent step, e.g.
w® = {w1, Wy, we, wa, w1, wa}

@ Production of any sequence is described by the transition

probability:
P(wj(t + 1)|wi(t)) = ag

@ Transition prob. need not be symmetric, i.e. a;; # aj; in
general.

@ A Markov Model, #: the full set of a;;.

@ Given the model 0, the prior prob. of the 1st state
P(w(1) = w;), we can compute the prob. of a particular

sequence w’.
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Markov Model
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FIGURE 3.8. Thediscrete states, w;, in a hasic Markov model are represented by nodes,
and the transition probabilities, ag, are represented by links. In a first-order discrete-time
Markov model, at any step ¢ the full system is in a particular state w(t). The state at step
t 4+ 1 s a random function that depends solely on the state at step ¢ and the transi-
tion probahilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright @ 2001 by John Wiley & Sons, Inc.

7. Hidden Markov Models



Example

For example, in speech:
@ The Markov model for the word “cat”,
e States for /k/, /a/, and /t/
e Transition from /k/ to /a/,; transition from /a/ to /t/; and
transition from // to silent.
@ Other possible applications

e Online character recognition.
e Facial Expression Recognition
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First Order Hidden Markov Model

@ We can observe some visible symbols v(t) at time ¢.
@ However, the underlying state is unknown, i.e. hidden.

@ in any state w(t), we have a probability of emitting a
particular visible state v(¢), i.e. the same state may emit
different symbols, and the same symbol may be emitted by
different states.

@ We denote this prob.

P(ug(t)|w; (1)) = bjk

@ Because we can only observe the visible states, while the
w; are unobservabile, it is called Hidden Markov Model.
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HMM Computation
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FIGURE 3.9. Three hidden units in an HMM and the transitions between them are
shown in black while the visible states and the emission probabilities of visible states
are shown in red. This model shows all transitions as being possible; in other HhiMs,
some such candidate ransitions are not allowed. From: Richard ©. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.
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HMM Computation
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@ The underlying network is a finite state machine, and when
associated with transition probabilities, they are called
Markov networks.

@ They are strictly causal (the prob. depend only on previous
states).

@ A Markov model is called ergodic if every one of the states
has a nonzero prob. of occurring, given some starting
states.

@ A final or absorbing state wy is one which if entered, is
never left. (i.e. agp = 1).

@ We require some transition must occur at each step (may
be to the same state), and some symbol must be emitted.
Thus, we have the normalized conditions:

Zaijzl Vi and Zb]kzl Vj
J k
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Central Issues

There are 3 central issues:

@ Evaluation Problem
Given a;; and b, Determine the prob. that a particular
sequence of visible states V7 was generated by that
model.

@ Decoding Problem
Given the model and a set of observation V7', determine
the most likely sequence of hidden state wr that led to
those observation.

@ Learning Problem
Given the coarse structure of the model (i.e. number of
states, number of visible symbols), and a set of training
observation of visible symbols, determine the parameters
Qij and bjk:-
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Evaluation

@ The prob. of the model produces a sequence V7 of visible
state is

Tmax

=Y PV PWT)
r=1

where each r indexes a particular sequence

= {w(1),w(2), - ,w(T)}
of T hidden states.

@ In the general case of ¢ hidden states, there will be
rmax = ¢! possible terms.

@ Since we are working with a 1st order Markov prcoess,

HP )|w(t — 1))

i.e. a products of a;;'s.
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Evaluation

@ Note that the output symbol only depends on the hidden
states, we can write

T
PV =[] Pw(t)lw(t)
t=1
i.e. a product of b;;’s.
@ Hence
Tmax 1
Py = 3" T Po®)]w(®)Plwt)w(t — 1))
r=1 t=1

@ Interpretation: The prob. that we observe states V7 is
equal to the sum over all .« possible sequence of hidden
states of the conditional prob. that the system has made a
particular transition, multiplied by the prob. that it then
emitted the visible symbol in the target sequence.

@ Extremely high computation if computed directly.
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Evaluation
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@ We can compute recursively. Define

0 t = 0 and i # initial state
1 t = 0 and 7 = initial state

a;(t) =
[Z o (t — 1)%] b;(v(t)) otherwise

@ «;(t) denotes the probability of observing the sequence up
to time ¢, and ending in state j.

@ For the final state wg, we return «(7') for the final state.
@ Computation Complexity O(c*T).
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Evaluation
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FIGURE 3.10. The computation of probabilities by the Forward algorthm can be visu-
alized by means of a trellis—a sort of “unfolding” of the HMM through time. Suppose
we seek the probability that the HMM was in state w, at { = 3 and generated the ob-
served visible symbol up through that step (including the observed visible symbol vg).
The probability the HMM was in state w;(t = 2) and generated the observed sequence
through ¢ =2 is a;(2) for j=1,2,...,c To find & (3) we must sum these and multiply
the probahility that state w, emitted the observed symbol v;. Formally, forthis particular
illustration we have «2(3) = b 3.1, a;(2)ap. From: Richard O. Duda, Peter E Har,
and David G. Stock, Pattern Classification. Copyright (@ 2001 by John Wiley & Sons,
Inc.
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Algorithm — HMM Forward

o Initialize: t = 0, a;j, b;x, visible sequence V7, and «;(0)
@ Fort—t+1

C

a;(t) — Y [ou(t — 1)ag] bj(v(t))

i=1
Until t =T

@ Return P(VT) « ao(T) for the final state.

@ end.
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Backward Procedure

@ We define backward variable:

@ (;(t) is the probability of starting from state j at time ¢,

going through the observations and reach the final state.
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Algorithm — HMM Backward

o Initialize t = T, a;j, b;x, visible sequence VT, and 3;(T)
@ Fort—t—1

Bit) — > Bit+ Daybi(v(t+1))
=0

Until ¢t = 1.
@ Return P(VT) « 3;(0) for the known initial state
@ end.
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Recognition by HMM

@ In a recognition task, we have a number of HMMs, usually
one for each class. We have to apply the Bayes rule:

P(VT]0)P(6)

POVT) = =5

as the evaluation process only returns P(V1|6), where 0 is
the classification. (the symobl w has been used)

@ Nearly all HMMs for speech recognition are left-to-right
models.
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Example
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FIGURE 3.11. A leftto-right HMM commonly used in speech recognition. For instance,
such a mode] could describe the utterance “viterhi,” where w represents the phoname
Avl, wy represents /... ., and wg a final silent state. Such a leftto-right model is more
restrictive than the general HMM in Fig. 3.9 because it precludes transitions “hack” in
time. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright & 2001 by John Wiley & Sons, Inc.
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Decoding

@ to find the most probable sequence of hidden states.

@ Brute force: enumerating every possible path, and
calculate the prob.

@ complexity: O(cI'T).
@ Figure 3.12 shows a simple decoding method.

@ can use logarithm of prob, as it involves products of prob.
which can cause underflow error.

time complexity: O(c*T).
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Example
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FIGURE 3.12. The decoding algerithm finds at each time step t the state that has the
highest probability of having come from the previous step and generated the chserved
visible state vi. The full path is the sequence of such states. Because this is a local
optimization (dependent enly upon the single previous time step, notthe full sequence),
the algorithm does not guarantee that the path is indeed allowable. For instance, it
might be possible that the maximum at ¢ = 5 is wy and at £ = 6 is ws, and thus
these would appear in the path. This can even occur if ai; = Plw, (84 Dwy (1) =,
precluding that transition. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright @ 2001 by John Wiley & Sons, Inc.
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Viterbi Decoding Algorthm
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@ Essentially a Dynamic Programming algorithm

@ Assume the output sequence O = v(1)v(2)...v(T).
@ Let the sequence of states I = w(1)w(2) - w(T)
@ We have

PO,I) = P(O|I)P(I)
= b (U(l))ai1i2bi2 (v(2>) o Qip_yipbip (U(T)>

@ Taking logarithm,

logP(O,Z) log b@l +Zlog azt 11t Zt )))
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Viterbi Decoding Algorthm

@ To find
maXP(O I) = max P(O,iy,- - ,ir)
7,1 lT
@ Denote
U(ilaiQa o 'iT) log 11 + Zlog Qjy_qiy lt ( )))
It becomes
.min. U(il,ig, e ,iT)

11,0507

@ We can use dynamic programming to achieve this.
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Viterbi Decoding Algorthm
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@ Let W(k,t) be the accumulated smallest U value (as in
previous slide, i.e. largest prob.) up to time ¢, generating
the observed output and residing in state k.

@ Initial weight
W(kv 1) - = log(aiokbk(v(l)))
@ Dynamic Programming Steps:

W (k.t) = min (W (i,t — 1) — log(a;br(v(1))))

7

@ This is repeated until we reach the final state at¢t = T'.

@ The path can be traced backward, just like other dynamic
programming algorithm.

@ This algorithm has a complexity of O(c?T).

7. Hidden Markov Models
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Learning
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@ to determine the model parameters, a;; and b, from
training data.

@ Use Baum-Welch or forward-backward algorithm: an
instance of a generalized expectation maximization
algorithm

@ iteratively update the parameters in order to better explain
the observed training sequence.

@ We can define «;(t) as the prob. that the model is in state
w;(t) and has generated the target sequence up to step ¢,
which has been defined before.
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Baum-Welch Algorithm

@ We can define f;(t) as the prob. that the state is in w;(¢)
and will generate the remainder of the given sequence.

0 w;(t) # sequence’s final state
1 w;(t) = sequence’s final state

Bi(t) = 3" 85t + Daibs(v(t + 1)) otherwise

@ Imagine we know g;(t) up to step 7', then the prob. of
transition back to 7" — 1 will be the prob. of making a
transition to w;(¢) and the prob. that the final visible symbol
is emitted from this state. Hence.

Bi(T —1) = Z aijb;i(v(T))B;(T)

We can then go backward fromT —1to T —2 - --
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Baum-Welch Algorithm

@ Note that these values are calculated based on a;; and bjy,
which is just an estimation. We have to update their value
based on the new a’s and g’s.

@ We can define the prob. of transition between w; (¢t — 1) and
w;(t), given the model generated the entire training
sequence VT by any path:

(67 t—1 aijb- ' t
= S Db

where bj;, = b;(k).
e P(VT9) is the prob. that the model generated sequence
VT by any path.
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Baum-Welch Algorithm

@ The expected number of transition between state w;(t — 1)
T

and w;(t) at any time in the sequence is Z i ()

t=1
whereas the total expected number of any transition from

wi is Z Z’Y@k

° Hence the improved version of a;; is given by:

T
PIRAI10)

__t=
(lij— T

Z Z Yik ()

t=1 k
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Baum-Welch Algorithm

@ Similarly, the improved version of b, is given by:

T

D> w)
l

t=1
> v(t) = vy

by = "

D> )
t=1 1

@ Repeat until convergence.
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Baum-Welch Algorithm
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@ Begin initialize a;;, bjy, training sequence V7, and
convergence criteria ¢

@ until

Doz« 2z+1

compute a(z) from a(z — 1) and b(z — 1)
compute b(z) from a(z — 1) and b(z — 1)
aij(z) < aij(z —1)

bZJ(Z) — bZJ(Z — 1)

max [aij(2) — aij(z = 1), bjr(2) = bju(z = 1)] <0
7,

@ Return a;; < a;;(2); bj. — bj(2).
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HMM Toolkit (HTK)
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@ HMM Tool Kit developed by Machine Intelligence
Laboratory in Cambridge University.

@ A portable toolkit for building and manipulating HMMs.

@ Current Version 3.4

@ Available at:
http://htk.eng.cam.ac.uk/download.shtml
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