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Hidden Markov Models

In Problem with inherent temporality, we may have states
at time t that are influenced directly by state at t− 1.
There are transition from one state to another (with certain
probability) — Markov Model
The states have a certain probability of generating various
output symbols — the observations.
Human can only see the obervation, but not the underlying
Markov Model. (Hence Hidden)
For example, HMM has been used in Speech Recognition,
Handwritten Character Recognition.
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First-order Markov Models

The state at any time t is denoted ω(t).
A sequence of states of length T is denoted by

ωT = {ω(1), ω(2), · · · , ω(T )}

The system can revisit a state at diffferent step, e.g.

ω6 = {ω1, ω4, ω2, ω2, ω1, ω4}

Production of any sequence is described by the transition
probability :

P (ωj(t+ 1)|ωi(t)) = aij

Transition prob. need not be symmetric, i.e. aij 6= aji in
general.
A Markov Model, θ: the full set of aij .
Given the model θ, the prior prob. of the 1st state
P (ω(1) = ωi), we can compute the prob. of a particular
sequence ωT .
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Markov Model
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Example

For example, in speech:
The Markov model for the word ”cat”,

States for /k/, /a/, and /t/
Transition from /k/ to /a/,; transition from /a/ to /t/; and
transition from /t/ to silent.

Other possible applications
Online character recognition.
Facial Expression Recognition
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First Order Hidden Markov Model

We can observe some visible symbols v(t) at time t.
However, the underlying state is unknown, i.e. hidden.
in any state ω(t), we have a probability of emitting a
particular visible state vk(t), i.e. the same state may emit
different symbols, and the same symbol may be emitted by
different states.
We denote this prob.

P (vk(t)|ωj(t)) = bjk

Because we can only observe the visible states, while the
ωi are unobservable, it is called Hidden Markov Model .
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HMM Computation

CSIS8502 7. Hidden Markov Models 7



HMM Computation

The underlying network is a finite state machine, and when
associated with transition probabilities, they are called
Markov networks.
They are strictly causal (the prob. depend only on previous
states).
A Markov model is called ergodic if every one of the states
has a nonzero prob. of occurring, given some starting
states.
A final or absorbing state ω0 is one which if entered, is
never left. (i.e. a00 = 1).
We require some transition must occur at each step (may
be to the same state), and some symbol must be emitted.
Thus, we have the normalized conditions:∑

j

aij = 1 ∀i and
∑

k

bjk = 1 ∀j
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Central Issues

There are 3 central issues:
Evaluation Problem
Given aij and bjk, Determine the prob. that a particular
sequence of visible states V T was generated by that
model.
Decoding Problem
Given the model and a set of observation V T , determine
the most likely sequence of hidden state ωT that led to
those observation.
Learning Problem
Given the coarse structure of the model (i.e. number of
states, number of visible symbols), and a set of training
observation of visible symbols, determine the parameters
aij and bjk.
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Evaluation

The prob. of the model produces a sequence V T of visible
state is

P (V T ) =
rmax∑
r=1

P (V T |ωT
r )P (ωT

r )

where each r indexes a particular sequence

ωt = {ω(1), ω(2), · · · , ω(T )}

of T hidden states.
In the general case of c hidden states, there will be
rmax = cT possible terms.
Since we are working with a 1st order Markov prcoess,

P (ωT
r ) =

T∏
t=1

P (ω(t))|ω(t− 1))

i.e. a products of aij ’s.
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Evaluation

Note that the output symbol only depends on the hidden
states, we can write

P (V T |ωT
r ) =

T∏
t=1

P (v(t)|ω(t))

i.e. a product of bjk’s.
Hence

P (V T ) =
rmax∑
r=1

T∏
t=1

P (v(t)|ω(t))P (ω(t)|ω(t− 1))

Interpretation: The prob. that we observe states V T is
equal to the sum over all rmax possible sequence of hidden
states of the conditional prob. that the system has made a
particular transition, multiplied by the prob. that it then
emitted the visible symbol in the target sequence.
Extremely high computation if computed directly.
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Evaluation

We can compute recursively. Define

αj(t) =


0 t = 0 and i 6= initial state
1 t = 0 and i = initial state[∑

i

αi(t− 1)aij

]
bj(v(t)) otherwise

αj(t) denotes the probability of observing the sequence up
to time t, and ending in state j.

αj(t) = P (v(1)v(2) · · · v(t), It = i)

For the final state ω0, we return α0(T ) for the final state.
Computation Complexity O(c2T ).
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Evaluation
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Algorithm — HMM Forward

Initialize: t = 0, aij , bjk, visible sequence V T , and αj(0)
For t← t+ 1

αj(t)←
c∑

i=1

[αi(t− 1)aij ] bj(v(t))

Until t = T .
Return P (V T )← α0(T ) for the final state.
end.
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Backward Procedure

We define backward variable:

βj(t) = P (v(t+ 1), v(t+ 2), · · · , v(T )|It = j)

βj(t) is the probability of starting from state j at time t,
going through the observations and reach the final state.
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Algorithm — HMM Backward

Initialize t = T , aij , bjk, visible sequence V T , and βj(T )
For t← t− 1

βi(t)←
c∑

i=0

βj(t+ 1)aijbj(v(t+ 1))

Until t = 1.
Return P (V T )← βi(0) for the known initial state
end.

CSIS8502 7. Hidden Markov Models 16



Recognition by HMM

In a recognition task, we have a number of HMMs, usually
one for each class. We have to apply the Bayes rule:

P (θ|V T ) =
P (V T |θ)P (θ)

P (V T )

as the evaluation process only returns P (V T |θ), where θ is
the classification. (the symobl ω has been used)
Nearly all HMMs for speech recognition are left-to-right
models.
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Example
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Decoding

to find the most probable sequence of hidden states.
Brute force: enumerating every possible path, and
calculate the prob.
complexity: O(cTT ).
Figure 3.12 shows a simple decoding method.
can use logarithm of prob, as it involves products of prob.
which can cause underflow error.
time complexity: O(c2T ).
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Example
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Viterbi Decoding Algorthm

Essentially a Dynamic Programming algorithm
Assume the output sequence O = v(1)v(2)...v(T ).
Let the sequence of states I = ω(1)ω(2) · · ·ω(T )
We have

P (O, I) = P (O|I)P (I)
= bi1(v(1))ai1i2bi2(v(2)) · · · aiT−1iT biT (v(T ))

Taking logarithm,

logP (O, i) = log bi1(v(1)) +
T∑

t=2

log(ait−1itbit(v(t)))
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Viterbi Decoding Algorthm

To find
max

I
P (O, I) = max

i1···iT
P (O, i1, · · · , iT )

Denote

U(i1, i2, · · · iT ) = −

[
log(bi1(v(1))) +

T∑
t=2

log(ait−1itbit(v(t)))

]

It becomes
min

i1,··· ,iT
U(i1, i2, · · · , iT )

We can use dynamic programming to achieve this.
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Viterbi Decoding Algorthm

Let W (k, t) be the accumulated smallest U value (as in
previous slide, i.e. largest prob.) up to time t, generating
the observed output and residing in state k.
Initial weight

W (k, 1) = − log(ai0kbk(v(1)))

Dynamic Programming Steps:

W (k.t) = min
i

(W (i, t− 1)− log(aikbk(v(t))))

This is repeated until we reach the final state at t = T .
The path can be traced backward, just like other dynamic
programming algorithm.
This algorithm has a complexity of O(c2T ).
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Learning

to determine the model parameters, aij and bjk from
training data.
Use Baum-Welch or forward-backward algorithm: an
instance of a generalized expectation maximization
algorithm
iteratively update the parameters in order to better explain
the observed training sequence.
We can define αi(t) as the prob. that the model is in state
ωi(t) and has generated the target sequence up to step t,
which has been defined before.
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Baum-Welch Algorithm

We can define βi(t) as the prob. that the state is in ωi(t)
and will generate the remainder of the given sequence.

βi(t) =


0 ωi(t) 6= sequence’s final state and t = T
1 ωi(t) = sequence’s final state and t = T∑

j

βj(t+ 1)aijbj(v(t+ 1)) otherwise

Imagine we know βi(t) up to step T , then the prob. of
transition back to T − 1 will be the prob. of making a
transition to ωi(t) and the prob. that the final visible symbol
is emitted from this state. Hence.

βi(T − 1) =
∑

j

aijbj(v(T ))βj(T )

We can then go backward from T − 1 to T − 2 · · ·
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Baum-Welch Algorithm

Note that these values are calculated based on aij and bjk,
which is just an estimation. We have to update their value
based on the new α’s and β’s.
We can define the prob. of transition between ωi(t− 1) and
ωj(t), given the model generated the entire training
sequence V T by any path:

γij(t) =
αi(t− 1)aijbjkβj(t)

P (V T |θ)

where bjk = bj(k).
P (V T |θ) is the prob. that the model generated sequence
V T by any path.
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Baum-Welch Algorithm

The expected number of transition between state ωi(t− 1)

and ωj(t) at any time in the sequence is
T∑

t=1

γij(t),

whereas the total expected number of any transition from

ωi is
T∑

t=1

∑
k

γik(t).

Hence the improved version of aij is given by:

âij =

T∑
t=1

γij(t)

T∑
t=1

∑
k

γik(t)
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Baum-Welch Algorithm

Similarly, the improved version of bjk is given by:

b̂jk =

T∑
t = 1

v(t) = vk

∑
l

γlj(t)

T∑
t=1

∑
l

γlj(t)

Repeat until convergence.
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Baum-Welch Algorithm

Begin initialize aij , bjk, training sequence V T , and
convergence criteria θ

Do z ← z + 1
compute a(z) from a(z − 1) and b(z − 1)
compute b(z) from a(z − 1) and b(z − 1)
aij(z)← aij(z − 1)
bij(z)← bij(z − 1)

until

max
i,j,k

[aij(z)− aij(z − 1), bjk(z)− bjk(z − 1)] < θ

Return aij ← aij(z); bjk ← bjk(z).
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HMM Toolkit (HTK)

HMM Tool Kit developed by Machine Intelligence
Laboratory in Cambridge University.
A portable toolkit for building and manipulating HMMs.
Current Version 3.4
Available at:
http://htk.eng.cam.ac.uk/download.shtml
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