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abstract

Silhouettes (or outlines) are often a dominant image feature, and can be extracted
relatively easily and reliably. They provide rich information about both the shape
and motion of an object, and are indeed the only information available in the case
of smooth textureless surfaces. Nonetheless, due to the viewpoint dependence of
silhouettes, they do not readily provide point correspondences, and hence structure
and motion from silhouettes has been a challenging problem.

This dissertation first studies the static properties of silhouettes. By relating
the idea of camera calibration from vanishing points to the symmetry property
exhibited in the silhouettes of surfaces of revolution (SOR), a novel technique for
estimating the intrinsic parameters of a camera from 2 or more silhouettes of SOR
has been developed. Besides, a simple algorithm for recovering the 3D shape of a
SOR using its silhouette from a single view is presented, followed by an analysis
of the ambiguity in the reconstruction.

This dissertation then studies the dynamic properties of silhouettes, and intro-
duces a complete and practical system for generating high quality 3D models from
a sequence of 2D silhouettes. The input to the system is an image sequence of an
object under both unknown circular motion and unknown general motion. By ex-
ploiting a simple parameterization of the fundamental matrix, circular motion can
be estimated easily and accurately from the silhouettes. The registration of arbi-
trary general views, using silhouettes from the estimated circular motion, reveals
information which is concealed under circular motion, and greatly improves both
the shape and textures of the 3D models. In contrast to previous techniques, only
the 2 outer epipolar tangents to the silhouettes are required in estimating both the
circular and general motion, making the system practical in virtually all situations.
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Chapter 1

| ntroduction

“The beginning is the most important part of the work.

- Plato,The RepublicBook I, 377B.

1.1 Motivation

The generation of realistic 3D models of real world objects is of great interest in
many fields and has many practical applications. For instance, such 3D models
can be used in model-based tracking system, video games, virtual reality, movie
making and internet showroom. Traditionally, in computer graphics, such 3D
models are constructed using specialized design softwares in a polygon by poly-
gon fashion. Such approach is very time consuming and the quality of the output
model depends very much on the skill of the user. The introduction of laser scan
systems allows 3D objects to be “scanned” into the computer directly. In spite
of that, such systems are very expensive and require careful calibration before
use. Besides, they cannot cope with specular surfaces or surfaces with low re-
flectance, and can only handle objects of limited size. By allowing 3D models to

be reconstructed automatically from image sequencesttheture from motion

1



2 CHAPTER 1. INTRODUCTION

techniques [132, 41, 81, 146, 36] in computer vision provide a cost-efficient so-
lution to the above problem. In addition, vision-based systems can also handle

objects with various size and reflectance.

1.1.1 Structurefrom Motion

In structure from motion (also known agucture and motioy) image features are

first extracted from the sequence by corner or edge detection techniques [16, 51]
using the intensity gradient information. Such image features originate from
scene structures like corners and edges, as well as from surface markings. Image
features that correspond to the projections of the same scene structure are then
matched, and this is referred to as terrespondence problei@9]. Initially,
unguided matching is usually done by normalized cross-correlation of image in-
tensities. By assuming the rigidity of the scene, the image motion is interpreted
as completely arising from a rigid (relative) motion between the viewer and the
scene. This motion can be computed from the matched image features (correspon-
dences) by estimating tlepipolar geometrys, 40] which describes the geometry

of stereo cameras (see Section 2.3.1, and also [5]). A guided matching, using the
epipolar constraint (see Section 2.3.1), can then be performed to obtain more cor-
respondences. The matching can also be further aided by using other geometric
constraints like uniqueness, ordering, figural continuity and disparity gradient (see
[40] for details). With a calibrated camera, Euclidean structure can then be ob-

tained by triangulation [55] of the correspondences.
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1.1.2 Smooth Textureless Surfaces

For smooth textureless surfaces, the dominant image featuresgtbaette(al-
ternatively referred to agpparent contoyroccluding contourprofile or outling).

The silhouette is the projection of the locus of points on the surface at which the
line of sight is orthogonal to the surface normal. In contrast to the features aris-
ing from corners, edges and surface markings, whictvemgpoint independent
silhouettes are inherentliewpoint dependentin general, 2 silhouettes of an
arbitrary smooth object observed from 2 distinct viewpoints are the projections
of 2 distinct curves in space, and hence they do not readily provide correspon-
dences. As a result, the assumption of rigidity does not hold for silhouettes,
and this calls for the development of a completely different set of techniques
[111, 107, 45, 22, 4, 30, 64].

The major theme of this thesis is to develop a practical system for generat-
ing realistic 3D models of smooth objects. The static and dynamic properties of
silhouettes are analyzed, and exploited to develop novel algorithms for solving
the structure and motion problem. Such a model building system is particularly
suitable for creating a digital archive of sculptures, which are often composed of

smooth textureless surfaces (see figure 1.1).

1.2 Approach

This thesis aims at tackling the problem of structure and motion for smooth objects
using silhouettes alone. It shows that silhouettes provide rich information which
can be exploited for camera calibration, motion estimation and shape recovery.

By refraining from the use of other image features like corners and textures, the
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Figure 1.1: A miniature model of Michelangelo’s David statue. Sculpture is often
composed of smooth textureless surfaces for which the dominant image feature is
the silhouette.

algorithms developed here are more general and can be applied to virtually all

kinds of objects. The details of the approach employed here are listed below.

1.2.1 Imaging Model

Before information can be extracted from an image and be interpreted, the imag-
ing model has to be defined. Due to its simplicity and expressiveness, the per-
spective or pin-hole camera model is commonly used as the imaging model in
computer vision, and it is also the camera model adopted in this dissertation. The
process of image formation by a pin-hole camera can be conveniently represented
by a3 x 4 projection matrix [112], which is composed of a camera calibration
matrix and a rigid body transformation (see Section 2.2.1). In order to achieve
Euclidean reconstruction, it is necessary to estimate the intrinsic parameters of
the camera (i.e. the camera calibration matrix). In this dissertation, the symmetry

property exhibited in the silhouettes of surfaces of revolution (SOR) is analyzed
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and exploited for estimating these parameters.

1.2.2 Shape Recovery

2D images contain cues to surface shape and orientation, however their interpre-
tations are ambiguous since depth information is lost during the image forma-
tion process. Nonetheless, if some strong a priori knowledge of the object is
available, like a parametric description, then a single view alone allows shape
recovery. In this dissertation, the surface geometry of surfaces of revolution
is studied. Through the use of differential geometry and projective invariant
[147, 77, 101, 149, 33], it is shown that the 3D shape of a surface of revolu-
tion can be recovered from its silhouette in a single view, up to an 1-parameter
ambiguity.

An alternative approach for depth recovery is to introduce viewer motion. In
this dissertation, the problem of motion estimation from silhouettes of an arbi-
trary object is tackled by first limiting the motion to be circular (e.g. turntable
sequences) [44, 96]. By exploiting a simple parameterization of the fundamen-
tal matrix [81], expressed in terms of the fixed image features in the sequence,
the circular motion can be estimated easily and accurately. The drawbacks of
using circular motion alone for model reconstruction are then overcome by the
registration of arbitrary general motion with the estimated circular motion. This
divide-and-conquer approach avoids the common problems that exist in almost
every algorithm for motion estimation from silhouettes, namely the need for a
good but nontrivial initialization, the unrealistic demand for a large number of

epipolar tangent points [111, 107, 22], and the presence of local minima.
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1.2.3 Shape Representation

Depending on the nature of the surface and the image sequence, either a surface
model or a volumetric model can be constructed from the set of silhouettes with
known viewer motion. If a dense, continuous sequence is available, a surface
model can be obtained by reconstructing the contour generators of a simple sur-
face using differential techniques [24, 134, 12, 125]. On the other hand, if only
sparse, discrete views are available and the object has relatively complex topolo-
gies, volume intersection techniques [108, 124] can be employed to produce a

volumetric model which represents the visual hull [73, 74] of the object.

Due to its ability to describe object with more complex topologies, the vol-
ume intersection approach is chosen in this dissertation for model reconstruction
from silhouettes. A simple technique for constructing an octree [63, 92] from the
silhouettes is implemented. The octree representation allows the model to be con-
structed at different levels of resolution according to needs. Despite its modeling
power, an octree is not very suitable for high speed rendering. For this reason,
a triangulated mesh is extracted from the octree, and the resulting surface model
can then be displayed efficiently with conventional graphics rendering algorithms

(implemented either in hardware or software).

1.2.4 Theory and Practice

The ultimate goal of this thesis is to provigeactical solutions for the problem
of structure and motion from silhouettes. All the theories developed in this thesis
have been implemented and tested against both synthetic and real data to demon-

strate the feasibility of the algorithms. In particular, programs with user-friendly



1.3. CONTRIBUTIONS 7

interfaces, written in Microsoft Visual C++, have been developed to provide an
easy-to-use system for producing high quality 3D models of objects from their

silhouettes.

1.3 Contributions

Through the studies of the static and dynamic properties of silhouettes, computa-
tional theories have been developed in this thesis to provide practical solutions for
the problem of structure and motion from silhouettes. The main contributions of

this thesis include:

e a novel technique for camera calibration from silhouettes of surfaces of rev-
olutions (Chapter 3). The method presented here allows the intrinsic param-
eters of a camera to be estimated from 2 or more silhouettes of surfaces of
revolution (like bowls and vases etc.), which are commonly found in daily
life. The use of such objects has the advantages of easy accessibility and

low cost, in contrast to the traditional calibration patterns;

e a simple algorithm for reconstructing a surface of revolution from a single
view (Chapter 4). The algorithm developed here allows a surface of revo-
lution to be recovered from its silhouette in a single view, and produces an
1-parameter family of solutions. Analysis of the reconstruction ambiguity

is also presented.

e the introduction of the use @uterepipolar tangents for motion estimation
from silhouettes (Chapter 5). The outer epipolar tangents correspond to the

2 epipolar tangent planes that touch the object, and are always available
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except when the baseline passes through the object. The use of the outer
epipolar tangents, which are guaranteed to be in correspondence, avoids
false matches due to self-occlusions and greatly simplifies the matching

problem;

e acomplete and practical system for generating high quality 3D models from
2D silhouettes (Chapter 5 and Chapter 6). The system introduced here pro-
duces a 3D model of an object from an image sequence of the object under
both unknown circular motion and unknown general motion. In contrast to
previous silhouette-based techniques, only the 2 outer epipolar tangents to
the silhouettes are required for the motion estimation, making the system

practical in virtually all situations.

1.4 Outlineof theThess

Chapter 2. This chapter reviews some fundamental concepts in computer vi-
sion, which form the theoretical background for the analysis of silhouettes in the
rest of this dissertation. It first reviews the pin-hole (perspective) camera model
and presents th& x 4 projection matrix [112] that models the image formation
process. It then gives a brief review of the epipolar geometry. Simple deriva-
tions for the essential matrix [78] and the fundamental matrix [81] are presented,
followed by an analysis of the reconstruction ambiguity. Finally, it studies the dif-
ferential geometry of a smooth object under perspective projection, and analyzes

the epipolar geometry associated with its silhouettes.
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Chapter 3. In this chapter a novel technique [141] for camera calibration from
silhouettes of surfaces of revolution is introduced. It begins by giving a survey of
the literature on camera calibration techniques. It then briefly reviews the theory
of camera calibration from vanishing points. The symmetry property exhibited in
the silhouettes of surfaces of revolution is then related to the idea of calibration
from vanishing points, and a simple technique is developed for calibrating a cam-
era from 2 or more silhouettes of surfaces of revolution. Experimental results on
both synthetic and real data are presented, which demonstrate the accuracy and

robustness of the algorithm.

Chapter 4. This chapter addresses the problem of reconstructing a surface of
revolution from a single view. It first briefly reviews existing techniques for shape
from contour using a single view. It then studies the surface geometry of surfaces
of revolution, and shows that the surface normal at any point on a surface of
revolution is coplanar with the axis of revolution. This coplanarity constraint is
used to derive a simple depth equation for the silhouette under a special viewing
condition. A simple algorithm is then introduced for rectifying the silhouette
under general viewing condition so that it resembles the special viewing condition
up to an 1-parameter ambiguity. The resulting ambiguity in the reconstruction is

analyzed and experimental results on real data are presented.

Chapter 5. In this chapter, the problem of motion estimation from silhouettes
is tackled. It starts by giving a literature review on motion estimation from sil-
houettes. It then introduces and justifies the use of outer epipolar tangents for

motion estimation. A novel technique [96] for recovering the motion of an object
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undergoing circular motion is presented, followed by a simple technique [138] for
registering an arbitrary general view of the object with the circular motion. Con-
vincing 3D models produced from experiments on various objects are presented,

which demonstrate the accuracy and practicality of the system.

Chapter 6. This chapter studies the problem of model reconstruction from sil-
houettes. A survey of the literature on model reconstruction from silhouettes is
first presented. It then briefly reviews the octree representation, and introduces
an efficient algorithm for constructing an octree using silhouettes from multiple
views. The implementation details for the silhouette extraction and intersection
test are presented, followed by a description of an algorithm for extracting a tri-
angulated mesh from the octree. Finally, experimental results on real data are

presented, showing the quality of the reconstruction.

Chapter 7. This chapter presents a summary of the theories and algorithms de-

veloped in this dissertation, followed by a brief discussion of possible future work.



Chapter 2

Epipolar Geometry and Silhouettes:
A Review

“Everything should be made as simple as possible, but no sitnpler.

- Albert Einstein.

2.1 Introduction

This chapter reviews some fundamental concepts in computer vision, which form
the theoretical background for the analysis of silhouettes in the rest of this disser-
tation. In particular, thepipolar geometrys, 40] plays an important role in both
motion estimation and scene reconstruction. Due to the viewpoint dependency of
the silhouettes, the epipolar geometry for viewing smooth objects demands special
attentions.

Section 2.2 first reviews the pin-hole camera model, which is used in the
derivation of the epipolar geometry stereo vision70, 6]. Section 2.3 gives
a brief review of the epipolar geometry, which is summarized by the essential
matrix [78] and the fundamental matrix [81]. A complete review on epipolar ge-

ometry can be found in [40, 146]. Section 2.4 studies the differential geometry of

11
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a smooth object under perspective projection, and the epipolar geometry associ-
ated with the silhouettes. Further details on the differential geometry of smooth

surfaces and silhouettes can be found in [24, 27].

2.2 Imaging Model

2.2.1 Pin-Hole Camera

In computer vision, a camera is commonly modeled as a pin-hole (perspective)

camera and the imaging process can be expressed as

u X
alv | =P Y , (2.1)

Z

1 1

where(X,Y, Z) is the coordinates of a 3D poilt, (u, v) is the image coordinates
of the projection oiX, anda is an arbitrary scale factoP is a3 x 4 matrix known
as theprojection matrix[112] which models the pin-hole camera. The projection

matrix P is not any generd x 4 matrix, but has a special structure given by [40]

P =K[Rt|, (2.2)

whereK is a3 x 3 upper triangular matrix known as tleamera calibration
matrix, R is a3 x 3 rotation matrix and is a3 x 1 translation vectorR and

t are called theextrinsic parameter$40] of the camera, and they represent the
rigid body transformation between the camera and the scene (see figure 2.1). The

camera calibration matriK has the form [40]

af < g
K= 0 f v |, (2.3)
0 0 1
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wheref is thefocal length a is theaspect ratio ands is theskewwhich depends

on the angle between the image axés,, vy) is called theprincipal point and

it is the point at which the optical axiz~axis) intersects the image plane (see
figure 2.1). The focal length, aspect ratio, skew and principal point are referred
to as theintrinsic parameter440] of the camera, andamera calibrations the
process of estimating these parameters. If the image axes are orthogonal to each
other, which is often the case,will be equal to 0. In practice, the aspect ratio

and skew of a camera are often assumed to be 1 and zero, respectively, to give
more stable results in camera calibration. A camera is said to be calibrated if its
intrinsic parameters are known. If both the intrinsic and extrinsic parameters of a

camera are known, then the camera is said to be fully calibrated.

principal optical

point axis
/ / X

R Yw

Xw

Figure 2.1: The extrinsic parameters of a camera represent the rigid body trans-
formation between the world coordinate system (centeras) and the camera
coordinate system (centeredcdt and the intrinsic parameters represent the cam-
era internal parameters like focal length, aspect ratio, skew and principal point.
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Given a poink in the image, the viewing vector from the camera center to the

focal plane at unit distance for the potis given by [40]

p=K1X (2.4)
T3

in the camera coordinate system, and

p=RIK'X, (2.5)

I3

in the world coordinate system, respectively, wheyés the3™ coefficient ofx.

2.2.2 Vanishing Pointsand Horizon Lines

Under perspective projection, parallel lines in the world appear to meet at a single
point in the image. This point is known as th@&nishing poinf40] corresponding
to the direction of those parallel lines, and it is the image of a point at infinity at
which those parallel lines “intersect”. Vanishing points have been used to add real-
ism to art since th@5™ century in Florence and during the period of Renaissance
(see figure 2.2).

Similarly, parallel planes in the world appear to meet in a single line in the
image. This line is known as tHeorizon line[40], and it is the image of a line
at infinity along which those planes “intersect”. Any set of parallel lines lying on

those planes will have a vanishing point on the horizon line (see figure 2.3).

2.3 StereoVision

2.3.1 Epipolar Geometry

Figure 2.4 shows a pair of pin-hole cameRsandP,, with distinct centers;,

and c, respectively. The line joining; andc, is called thebaseline[40] and
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Figure 2.2: In his engraving “St. Jerome dans sa Cellule” produced in 1514, Al-
brecht Durer used perspective construction to give a sense of depth by making
parallel lines in the ceiling and on the wall converge to a vanishing point.

Vy horizon Vy

Figure 2.3: A horizon line is the image of a line at infinity along which parallel
planes “intersect”. Any set of parallel lines lying on those planes will have a
vanishing point on the horizon line.
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the intersections of the baseline with the 2 image planes are known egifiudes

[40]. The epipolee, isthe image ot, in P,. Similarly, the epipole; is the image

of ¢, in P,. The plane defined by, c; and any arbitrary non-collinear 3D point

X is known as theepipolar plane[40]. The intersections of the epipolar plane
with the 2 image planes give 2 correspondampolar lines[40]. The epipolar
linel; in P, is the image of the line through, x, andX. Similarly, the epipolar

line 1, in P, is the image of the line througdy, x; andX. It follows that the
correspondence of a point on one image must lie on the corresponding epipolar
line on the other image and vice versa (see figure 2.5), and this is known as the
epipolar constrain{40]. Note that the set of epipolar planes forms a pencil of
planes containing the baseline, and hence the epipolar lines on each image form a

pencil of lines containing the corresponding epipole.

epipolar plane

(o - baseline Cy

e

epipolar lines

Figure 2.4: Epipolar geometry between 2 cameras.



2.3. STEREO VISION 17

corresponding
epipolar line

Figure 2.5: The epipolar constraint. given an image pinbn one image, its
correspondence on the other image must lie on the corresponding epipolar line
which is the image of the line throughi, x; andX.

2.3.2 TheEssential Matrix E

Consider 2 pin-hole camerd®s, andP,, with relative rotatiorR and translation
t # 0. Given a pointX; in the camera coordinate systemRf, its positionX,

in the camera coordinate systemB®f is given by
Pre-multiplying both sides of (2.6) bXI[t], gives [78]

XT[t]«\RX; = 0

XTEX; = 0 (2.7)
whereE is a3 x 3 matrix known as thessential matrix78], given by

E = [t].R. (2.8)
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Equation (2.7) also holds for the viewing vectgrsandp, of the pointsx; and
X5, Which are the projections & ; andX, in P, andP, respectively. This yields

the epipolar constraint [78]
~Tmas
P, Ep: =0. (2.9)

The epipoles; andé,, in the camera coordinate systemskyf andP, respec-
tively, are given by the right and left null spacesIf It follows from equa-

tion (2.8) thatdet(E) = 0 andE is therefore of maximum rank 2 [130, 41]. Note
thatE only depends on the relative rotation and translation between the 2 cameras

and is defined only up to a scale factor, hence it has only 5 degrees of freedom.

2.3.3 TheFundamental Matrix F

Consider 2 pin-hole camerd@®, andP, with distinct centers. Lek; andx, be

the images of an arbitrary 3D poilt in P; andP, respectively, i.e.
x; = P;X, and (2.10)
X9 = P2X (211)

The image poink; defines an optical ray on whick must lie. The equation of
this optical ray is given by [146]

Xray(s) = p1 + sPixu, (2.12)
whereP; is the pseudo-inverse &, andpi is a null vector ofP;. Note thatp;-
indicates the camera center Bf andP x; gives the viewing direction. There
existssy such thaiX = X, (s0), and substitutin& .y (so) into (2.11) gives [146]

xy = Py(pi +sPixy)

= Pypy + 50P2P{x (2.13)
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Pre-multiplying both sides of (2.13) bys [P»p; |« gives [146]
X; [P2p1 ]« PoPix; = 0
x,Fx; = 0, (2.14)
whereF is a3 x 3 matrix known as théundamental matrix81], given by
F = [P,pi]|P.P;. (2.15)

Equation (2.14) gives an expression of the epipolar constraint in homogeneous
image coordinates, which does not require the knowledge of the intrinsic parame-
ters of the 2 cameras. The epipoégsande,, in homogeneous image coordinates,

can be obtained from the right and left null spaceF oéspectively, and are given
by
e, = (P,P)"}(Pyp;), and (2.16)

e = Pyp;. (2.17)

SinceF is defined only up to a scale factor atet(F) = 0, it has only 7 degrees
of freedom. By substituting (2.17) into (2.19),can be rewritten in glane plus

parallax representatiof81], given by
F = [es] M, (2.18)

whereM = P,P; is aplane induced homographi§1]. Note that replacingvi
in (2.18) by any matrix

M =M + ea”, (2.19)

wherea is any arbitrary 3-vector, will yield the same fundamental matrix [54].

This corresponds to choosing a different plane that induces the homography. The
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homographyM' will map epipolar lines to corresponding epipolar lines [52, 81]

by

— =T
2 - ) .
| M" "1;, and (2.20)

L, = ML, (2.21)

wherel; andl, are a pair of corresponding epipolar linesi and P, respec-

tively.

2.3.4 Reconstruction Ambiguity

Both the essential matrix and the fundamental matrix encode information about
the geometry of stereo cameras which is necessary for motion estimation. It is
well-known that from image correspondences (or equivalently the fundamental
matrix) alone, the projection matrices and the reconstruction of the scene points
can only be determined up to an arbitrargjective transformatiof39, 53]. Con-

sider again equations (2.10) and (2.11):

x; = P;X=P;HH'X, and (2.22)

x, = P, X=P,HH 'X, (2.23)

whereH is any arbitrary nonsingularx 4 matrix representing a projective trans-
formation. Equations (2.22) and (2.23) suggest tRaf{, P,H, H 'X) is also
a valid reconstruction from the image points resulted fram, (P,, X). This
can be verified by substituting,; andP, in equation (2.15) by?,;H andP,H
respectively, and it will yield the same fundamental matrix.

The reconstruction ambiguity can be reduced by upgrading the fundamental

matrix to an essential matrix. L&; = K;[R; t;] andP, = K,[R,; t3]. Substi-
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tuting P, andP into (2.15) gives

F = K, [t; — RyR{t,] RoRTK;!

= K;'[t].RK!, (2.24)

whereR = R,R] andt = (t, — R,RTt;) are the relative rotation and trans-
lation betweerP; andP,. Hence if the camera calibration matrid€s and K,
are known, the associated fundamental mdirizan be upgraded to an essential

matrix
E = K;FK,, (2.25)

which can then be decomposed to recover the relative rotation and translation
between the cameras. Since the essential matrix is defined only up to a scale factor,
only the direction of the relative translation can be recovered and this results in a

reconstruction up to aimilarity transformation

2.4 Smooth Object and Its Projection

2.4.1 Contour Generators

Consider a smooth object and a static pin-hole camera. A set of rays which are
tangent to the surface of the object can be cast from the camera center. These
rays touch the object along a smooth curve known astmour generatof87,

24] (see figure 2.6). In the literature, the contour generator is also known as the
extremal boundarji7] or therim [68]. The contour generator separates the visible

part from the occluded part of the object, and can be parameterized{24]

I'(s) = &+ A(s)p(s), where (2.26)

p(s) -n(s) = 0. (2.27)
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In equation (2.26)¢ indicates the camera centex,s) is the viewing vector from

¢ to the focal plane at unit distance for the pdilfs), and)(s) is the depth of the
pointf(s) along the optical axis fromd. The tangency constraint is expressed in
equation (2.27), whera(s) indicates the unit surface normal Bts). It follows

from equations (2.26) and (2.27) that the contour generator depends on both local

surface geometry and the viewpoint.

contour
generator

cameé&a
center

Figure 2.6: Optical rays which are tangent to the surface from the camera center
touch the surface along a smooth curve known as the contour generator. The
contour generator separates the visible part from the occluded part of the object.

In general, the viewing direction and the contour generator will not be or-
thogonal to each other, but are in conjugate directions with respect to the second
fundamental form Il [71, 68]. This means that the change in surface normal for
an infinitesimal movement in the direction of the contour generator is orthogonal

to the viewing direction. Consider the tangent to the contour generaitfsit
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given by [24]

dT(s)  dA(s)
ds  ds

dp(s)

p(s) + A(s) T (2.28)

This tangent must lie on the tangent plane of the surfade(4), and hence it

satisfies [24]

2 n(s) = 0. (2.29)

Taking the scalar product with(s) from the right on both sides of (2.28), and
substituting (2.27) and (2.29), gives [24]

dp(s) _
el n(s) =0. (2.30)

Differentiating (2.27) with respect toand substituting (2.30) yields [24]

p@%dES)ZO, (2.31)

which proves the conjugate direction relationship between the viewing ray and the

contour generator.

2.4.2 Silhouettes

A contour generator is projected onto the image plane aapgarent contour

(also known as arofile). A silhouetteis a subset of the apparent contour where

the viewing rays of the contour generator touch the object (i.e. not passing through
the object). If the camera is (fully) calibrated, the viewing rays) of the con-

tour generator can be recovered from the silhouette (see Section 2.2.1). These rays
define aviewing coneon which the contour generator lies, and within which the
object is confined (see figure 2.7). However, the depth paraméigin equa-

tion (2.26), and hence the contour generator itself, cannot be determined from a
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single view alone. It follows from equation (2.30) that, like the viewing ray, the
tangent to the silhouette also lies on the tangent plane of the surfﬁce)aﬂ'his

allows the unit surface normal ﬁ'(s) to be determined up to a sign by [24]

U
-]
=~

»
N

s (2.32)

U
oo
—~

@
—

The sign ofn(s) can be fixed if the side of the silhouette on which the surface lies

is known (see figure 2.8).

viewing

1 / cone

center

Figure 2.7: The viewing rays of the contour generator can be recovered from the
silhouette and the camera center. These rays define a viewing cone on which the
contour generator lies, and within which the object is confined

Due to the viewpoint dependency of the contour generators, silhouettes from 2
distinct viewpoints will be, in general, the projections of 2 different space curves
(contour generators). As a result, the rigidity constraint no longer holds and there

will be no correspondence between points in the 2 silhouettes. The only exception
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\

tangent plane

camera

center silhouette

Figure 2.8: The unit surface normal can be determined from a single silhouette.
The sign of the normal can be fixed if the side of the silhouette on which the
surface lies is known.

is thefrontier point[45, 22, 27] which is the intersection of the 2 contour genera-
tors in space and is visible in both views (see figure 2.9). Since the viewing rays
of the frontier point from the 2 camera centers are both tangent to the surface, the
frontier point lies on an epipolar plane which is tangent to the surface. It follows
that a frontier point will be projected onto a point in the silhouette which is also

anepipolar tangent poinfl11, 107, 22].

2.4.3 Epipolar Parameterization

Consider a smooth object and a moving pin-hole camera. As the camera moves,
the contour generator slips over the visible surface of the object. As a result,
the surface of the object can be parameterized by the spatial-temporal surface
swept out by the contour generator due to camera motion. By introducing the time
parametet to equations (2.26) and (2.27), the parameterization of the surface is

given by [24]

I'(s,t) = &(t)+ A(s,t)p(s,t), where (2.33)

p(s,t) -n(s,t) = 0. (2.34)
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frontier point contour generator

epipolar tangent

» iﬂ silhouette

* b camera cente

epipole

Figure 2.9: A frontier point is the intersection of 2 contour generators and lies on
an epipolar plane which is tangent to the surface. It follows that a frontier point
will be projected onto a point in the silhouette which is also an epipolar tangent
point.

Such a parameterization is, however, under-constraineds-gfa@ameter curve
I'(s,to) with constantt is the contour generator from the camera ceitgs),
whereas the-parameter curve (s, t) with constant has no physical interpreta-
tion. The most widely used parameterization is the epipolar parameterization [23]
(see figure 2.10) which is derived from the epipolar geometry in stereo vision. The
epipolar parameterization is defined by

ol (s, )
ot

x p(s,t) = Os. (2.35)

Equation (2.35) implies that the tangent to thgarameter curve is chosen to be

in the direction of the viewing ray. The physical interpretation is that points on the
contour generator are chosen to move along the viewing rays, in an infinitesimal
sense, as the camera moves. Since the viewing ray and the contour generator are

in conjugate directions (see Section 2.4.1), so are the tangent plane basis vectors
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Ost) and 2L of the parameterized surface. Note that the epipolar parameteri-

zation is degenerate at frontier pointers wh@;gﬁ = 05 [24, 47, 26].

c(ty)

Figure 2.10: Epipolar parameterization for the spatial-temporal surface swept by
the contour generator.

2.5 Summary

In this chapter, the pin-hole camera model, the epipolar geometry and the projec-
tion of smooth objects have been reviewed. These are essential to the development
of the theories and algorithms presented in the rest of this dissertation.

The process of image formation by a pin-hole camera can be represented by
a3 x 4 projection matrix. The projection matrix can be decomposed into the in-
trinsic and extrinsic parameters, which represent the camera internal parameters
and the rigid body transformation between the camera and the scene respectively.
The estimation of the intrinsic parameters (i.e. camera calibration) from surfaces
of revolution will be studied in Chapter 3, whereas the estimation of the extrinsic

parameters (i.e. motion estimation) from silhouettes will be addressed in Chap-
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ter 5.

The epipolar constraint in stereo vision is encoded by the essential matrix in
the case of calibrated cameras, or by the fundamental matrix in the case of un-
calibrated cameras. The estimation of the fundamental matrix from point corre-
spondences forms the basis of virtually every motion estimation algorithm. The
reconstruction ambiguity, arise from using point correspondences alone, can be
reduced from a projective transformation to a similarity transformation by upgrad-
ing the fundamental matrix to an essential matrix using the calibration matrices.
In Chapter 4 and Chapter 5, the calibration matrices of the cameras are assumed
to be known from off-line calibration, and hence scaled Euclidean reconstruction
can be achieved.

The contour generator of a smooth object depends on both local surface ge-
ometry and viewpoint, and so is its projection (silhouette) on the image plane. In
the case of a (fully) calibrated camera, the surface normal along the contour gen-
erator can be determined from the silhouette using the tangency constraint. This
surface normal information is utilized in Chapter 4 for reconstructing a surface of
revolution from a single view. In general, due to the viewpoint dependency of the
contour generators, the epipolar constraint cannot be applied to the points in the 2
silhouettes observed from 2 distinct viewpoints. The intersections between 2 con-
tour generators result in frontier points, which are visible in both views and satisfy
the epipolar constraint. The point correspondences induced by the frontier points
are exploited in Chapter 5 to develop a practical algorithm for motion estimation

from silhouettes.



Chapter 3

Camera Calibration from Symmetry

“...itis therefore useful, because it is symmetrical and’fair.

- Ralph Waldo Emersomrt, First Series.

3.1 Introduction

An essential step for motion estimation and 3D Euclidean reconstruction, 2 im-
portant tasks in computer vision, is the determination of the intrinsic parameters
of cameras. This process, knownasnera calibration usually involves taking
images of some special patterns with known geometry, extracting the features in
the images, and minimizing their reprojection errors. Details of such calibration
algorithms can be found in [42, 129, 75] and [40, Chapter 3]. These methods do
not require direct mechanical measurements on the cameras, and often produce
very good results. Nevertheless, they involve the design and use of highly accu-
rate tailor-made calibration patterns, which are often both difficult and expensive
to be manufactured.

In this chapter a novel technique for camera calibration is introduced. It relates

the idea of calibration from vanishing points [17, 25, 76] to the symmetry prop-

29
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erty exhibited in the silhouettes of surfaces of revolution [147, 77, 101, 149, 33].

The method presented here allows the camera to be calibrated from 2 or more
silhouettes of surfaces of revolution (like bowls and vases etc.), which are com-
monly found in daily life. The use of such objects has the advantages of easy

accessibility and low cost, in contrast to the traditional calibration patterns.

A survey of the literature on camera calibration is given in Section 3.2, fol-
lowed by a brief review of camera calibration from vanishing points in Section 3.3.
The symmetry property associated with the silhouettes of surfaces of revolution is
reviewed in Section 3.4, and Section 3.5 shows how such a symmetry property can
be related to the vanishing points associated with a set of 3 mutually orthogonal
directions. By extending the techniques for calibration from vanishing points, the
symmetry property can be used in the development of a practical algorithm for
camera calibration [141]. Such an algorithm, detailed in Section 3.6, is capable
of dealing with both known and unknown aspect ratio. The degenerate cases in
which the algorithm fails are discussed in Section 3.7. Section 3.8 first presents
results of experiments conducted on synthetic data, which are used to perform an
evaluation on the robustness of the algorithm in the presence of noise. Exper-
iments on real data then show the usefulness of the proposed method. Finally,

discussions are presented in Section 3.9.

3.2 PreviousWorks

Classical calibration techniques [15, 119, 38] in photogrammetry involve full-
scale nonlinear optimizations with large number of parameters. Despite being

able to adopt accurate complex camera models, these techniques require a good
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initialization and are computationally expensive. In [1], Abdel-Aziz and Karara
presented thdirect linear transformatior{DLT), which is one of the most com-
monly used calibration techniques in computer vision. By ignoring lens distortion
and treating the coefficients of ttf8ex 4 projection matrix as unknowns, DLT
only involves solving a system of linear equations which can be done by a linear
least-squares method. In practice, the linear solution obtained from DLT is usu-
ally refined iteratively by minimizing the reprojection errors of the 3D reference
points [42, 40]. In [129, 75], Tsai and Lenz introduced tadial alignment con-
straint(RAS) and developed a technique which also accounts for lens distortion.

All the calibration techniques mentioned so far require the knowledge of the
3D coordinates of a certain number of reference points and their corresponding
image coordinates. In [17], Caprile and Torre showed that, under the assumption
of zero skew and aspect ratio 1, itis possible to calibrate a camera from the vanish-
ing points associated with 3 mutually orthogonal directions. This idea was further
elaborated in [25, 76] to develop practical systems for reconstructing architectural
scenes. In contrast to traditional calibration techniques, these methods depend
only on the presence of some special structures, but not on the exact geometry of
those structures.

The theory ofself-calibrationwas first introduced by Maybank and Faugeras
[91], who established the relationship between camera calibration and the epipolar
transformation via thabsolute coni¢40]. Implementation of the theory in [91],
together with real data experiments, were given by Luong and Faugeras [82] for
fixed intrinsic parameters. In [128], Triggs introduced #iesolute quadriand
gave a simpler formulation which can incorporate any constraint on the intrinsic

parameters easily. Based on [128], a practical technique for self-calibration of
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multiple cameras with varying intrinsic parameters was developed by Pollefeys
et al. in [104]. Other approaches to self-calibration also include restricting the
camera motion to pure rotation [35] or planar motion [3].

The calibration technique introduced in this chapter, naroalypration from
surfaces of revolutigrfalls into the same category as calibration from vanishing
points (see figure 3.1). Like calibration from vanishing points, which only requires
the presence of 3 mutually orthogonal directions, the technique presented here
only requires the calibration target to be a surface of revolution, but the exact
geometry of the surface is not important. A linear solution can be obtained in
the case of zero skew and known aspect ratio, which can be further refined by a
nonlinear optimization that is also capable of recovering unknown aspect ratio.

3 mutually orthogonal

directions
calibration grid  surfaces of revolution planar motion  absolute quadric

pure rotation absolute conic

< | | >
- | | >

known geometry special structures special motions self-calibratio

Figure 3.1: Different categories of camera calibration techniques.

3.3 Calibration from Vanishing Points

In [17], Caprile and Torre showed that under the assumption of zero skew and
aspect ratio 1, the principal point of a camera will coincide with the orthocenter
of a triangle with vertices given at 3 vanishing points from 3 mutually orthogonal
directions. This property of the vanishing points, together with the symmetry
property associated with the silhouettes of surfaces of revolution, will be used

later in Section 3.5 to derive a simple technique for camera calibration. A simple
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derivation of Caprile and Torre’s result is given below.

Consider a pin-hole camera with focal lengthaspect ratid, zero skew and
principal pointx,. The vector from the camera center to any pd&in the image
plane, in camera coordinate system, is giverj(&y— x,)* f]*. Letv,, v, and
v be 3 vanishing points associated with 3 mutually orthogonal direchopsN,
andIN, respectively. The 3 vectors from the camera center,tor, andv, will

be mutually orthogonal to each other, and hence

(Vg—%0)- (Vi —%o) + f> = 0, 3.1)
(V, — %) - (Vs — %) + 2 = 0, (3.2)
(Vs —%o) - (Vg —%o) + f2 = 0. (3.3)

Subtracting (3.3) from (3.1) gives
(¥g — %0) - (¥, = ¥5) = 0. (3.4)

Equation (3.4) shows that, lies on a line passing through, and orthogonal to
the line joiningv, andv,. Similarly, subtracting (3.1) from (3.2) and (3.2) from

(3.3) gives

(¥, — %o) - (Vs —¥,) = 0, (3.5)

({’s - 720) : ({’q - ‘77“) = 0. (3.6)

Equations (3.4)—(3.6) imply that the principal po&y coincides with the ortho-
center of the triangle with verticeg,, v, andv,. Besides, equations (3.1)—(3.3)
show that the focal lengtli is equal to the square root of the product of the dis-
tances from the orthocenter to any vertex and to the opposite side (see figure 3.2).

As a result, under the assumption of zero skew and aspect ratio 1, it is possible
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to estimate the principal point and the focal length of a camera using vanishing
points from 3 mutually orthogonal directions. A similar derivation was also pre-

sented by Cipolla et al. in [25].

Vs

Figure 3.2: The principal point, of the camera coincides with the orthocenter
of the triangle with vertices given at the vanishing poijsv, andv, associated
with 3 mutually orthogonal directions, and the focal length of the camera is given

by f = \/dod, = \/d,d, = \/d,d,.

3.4 Symmetry in Surfacesof Revolution

The silhouette of a surface of revolution, viewed under a pin-hole camera, will
be invariant to a harmonic homology [149]. This property of the silhouette can
be exploited to calibrate the intrinsic parameters of a camera, as will be shown in
Section 3.5. A simple proof of this symmetry property is given below, which also
shows that the axis of the associated harmonic homology is given by the image of
the revolution axis, and that the center of the homology is given by the vanishing
point corresponding to the normal direction of the plane containing the axis of
revolution and the camera center.

Consider a surface of revolutid®. whose axis of revolution coincides with
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the y-axis, being viewed by a pin-hole caméPa= [I5 t] wheret = [0 0 d.|T

with d, > 0. By symmetry considerations, it is easy to see that the silhogette
of S, formed on the image plane will be bilaterally symmetric about the image of
the revolution axid; = [1 0 0]*. A simple proof of this is given in Appendix B.
The lines of symmetry (i.e. lines joining symmetric points@rwill be parallel

to the normalN, = [1 0 0 0]T of the pland; that contains the axis of revolution
and the camera center, and the vanishing point associated\yitis given by

v, = [1 0 0]*. The bilateral symmetry exhibited ii can be described by the

transformation [94, 96]

Note that the transformatidhi is aharmonic homologysee Appendix A, and also
[117, 29] for details) with axid, and centef,, which maps every point ip to
its symmetric counterpart if. The silhouette is thus said to be invariant to the
harmonic homolog¥T (i.e. p = Tp).

Now consider an arbitrary pin-hole camdraby introducing the intrinsic pa-
rameters represented by the camera calibration mktrig P, and by applying
the rotationR to P about its optical center. Hend = KRJ[I; t] or P = HP,

whereH = KR. Letx be the projection of a 3D poiX in P, hence

x = PX
— HPX

— Hx, (3.8)
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wherex = PX. Equation (3.8) implies that tgex 3 matrix H represents a planar
homography which transforms the image formedkbjnto the image formed by
P. Similarly, H! transforms the image formed i into the image formed by
P. The silhouette of S,, formed on the image plane &, can thus be obtained
by applying the planar homograpli¥ to p (i.e. p = Hp). Let x andx’ be a pair
of symmetric points irp, andx = Hx andx’ = Hx' be their correspondences in

p. The symmetry betweet andx’ is given by
¥ = Tx. (3.9)
Substitutingk andx’ in (3.9) byH 'x andH 'x’, respectively, gives [94, 96]

(H'x) = TH 'x)

x = HTH 'x

= H(I;-2-3)H 'x
(=225
VIt
= (H3_2v};15)x’ (3.10)

wherev, = Hv,, andl, = H-TL,. Note thatv, is the vanishing point corre-
sponding to the normal directiaN, in P, andl; is the image of the revolution
axis of S, in P. Let W = HTH ' be the harmonic homology with axis and
centerv,. Equation (3.10) shows tha¥ will map each point inp to its sym-
metric counterpart ip, and hencep is invariant to the harmonic homology
(i.e. p = Wp).

In general, the harmonic homolod¥ has 4 degrees of freedom. When the
camera is pointing directly towards the axis of revolution, the harmonic homology

will reduce to askew symmetrj66, 99, 19, 115], where the vanishing pointis
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at infinity. The skew symmetry can be described by the transformation

1 [ —cos(¢p+0) —2cos¢sin®  2d cosd -|
S=————1 —2singcosf cos(¢p+0) 2dysing |, (3.11)
cos(¢ — 0) [ 0 0 cos(¢ — 6) J

whered; = ug cos 8 + vy sin . The image of the revolution axis and the vanishing
point are given by, = [cosf sin® —d;]T andv, = [cos ¢ sin ¢ 0]T respectively,

andS has only 3 degrees of freedom. If the camera also has zero skew and aspect
ratio 1, the transformation will then becoméitateral symmetrygiven by

—cos20 —sin20 2djcosf
B=| —sin20 cos26 2d;sinf |. (3.12)
0 0 1

While 1, will have the same form as in the case of skew symmetry, the vanishing
point will now be both at infinity and has a direction orthogonal foAs a re-
sult, B has only 2 degrees of freedom. These 3 different cases of symmetry are

illustrated in figure 3.3.

(@) (b) ()

Figure 3.3: (a) Silhouette of a surface of revolution under general viewing con-
ditions. The symmetry of the silhouette is described by a harmonic homology
defined by the image of the revolution axis and a vanishing point. (b) When the
camera is pointing directly towards the axis of revolution, the transformation re-
duces to a skew symmetry, which is a particular case of the harmonic homology
where the vanishing point is at infinity. (c) If the camera also has zero skew
and aspect ratio 1, the transformation becomes a bilateral symmetry, in which the
vanishing point is at infinity and has a direction orthogonal to the image of the
revolution axis.
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3.5 CameraCalibration

Consider a surface of revolutid) viewed by a pin-hole came® = K[R t].
Let p be the silhouette d8,, 1; be the image of the revolution axis 8f, andv,,
be the vanishing point corresponding to the normal diredNgnof the plandl,
that contains the revolution axis 8f and the camera center Bf The silhouette
p is then invariant to the harmonic homolo§y with axisl; and centew, (see

Section 3.4).

axis of
revoluion

/
camera \\

center /

Vy

Figure 3.4: Three mutually orthogonal directions associated with a surface of
revolution.

Consider now any 2 vectoiN, andIN, parallel to the planél; and orthog-
onal to each other, which together with, form a set of 3 mutually orthogonal
directions (see figure 3.4). Under the assumption of zero skew and aspect ratio
1, the vanishing points associated with these 3 directions can be used to deter-
mine the principal point and the focal lengthBf as shown in Section 3.3. By
construction, the vanishing points, andv, corresponding to the directiods,

and N, respectively, will lie on the image of the revolution atis Given the
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harmonic homologW associated witlp, with an axis given by the image of the
revolution axids and a center given by the vanishing poit the principal point

xo of P will therefore lie on a lind,, passing througk, and orthogonal td,, and

the focal lengthf will be equal to the square root of the product of the distances
from the principal poini, to v, and tol; respectively (see figure 3.5). As a re-
sult, the principal point can be estimated from 2 or more silhouettes of surfaces of

revolution, and the focal length follows.

Figure 3.5: The vanishing poist, and the image of the revolution adisdefine
a linel, on which the principal poink, must lie, and the focal lengthis equal

to /d.d’,.

Alternatively, consider the equation of the plaiig which can be deduced

from P and the image of the revolution axis and is given by
o, = PTL.. (3.13)

By definition, v, is the vanishing point corresponding to the normal direchon

of the plandl;, and hence

v, = PN,. (3.14)

I; O

128], equation (3.14) can
ot O}[ ], equation (3.14)

By introducing theabsolute quadri€? = {
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be rewritten as

v, = PQII,
= PQPTL

= wl, (3.15)

wherew = KK is the projection of the absolute quadridmknown as thelual
image of the absolute conjt28]. Equation (3.15) gives the pole-polar relation-
ship, with respect to the image of the absolute conic, between the vanishing point
v, of the normal direction of the plarié; and the vanishing ling of II; [148].
By assuming the skew @ to be zero (i.e¢ = 0), substituting (2.3) into (3.15)
gives
a®f2+ud  ugvy  ug
v, = Uo Vo 240 v |1, (3.16)
Ug o 1
where f, a and (ug,v9) are the intrinsic parameters &, as defined in Sec-
tion 2.2.1. It follows that the harmonic homology associated with the silhouette of
a surface of revolution will provide 2 constraints on the 4 intrinsic parameters of
a camera. As a result, under the assumption of fixed intrinsic parameters and zero
skew, it is possible to calibrate a camera from 2 or more silhouettes of surfaces
of revolution. Further, if the aspect ratio is assumed to be 1di-e.1), it can be
derived from equation (3.16) that the focal lengtis equal to the square root of
the product of the distances from the principal pdint, v,) to the vanishing point
v, and to the image of the revolution axis These results agree with the analysis

of the vanishing points.
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3.6 Algorithm and I mplementation

3.6.1 Estimation of the Harmonic Homology W

The silhouette of a surface of revolution is extracted from the image by applying
a Canny edge detector [16] (see figure 3.6). The harmonic homdaNgyat
maps each side of the silhoueptéo its symmetric counterpart is then estimated
by minimizing the geometric distances between the original silhoyediied its
transformed versiop’ = Wp. This can be done by sampling evenly spaced

pointsx; along the silhouettg and optimizing the cost function

N
Costw (Va, L) = J % Z dist(W (v, L)xs, p)?, (3.17)
i=1

wheredist(W (v, Is)x;, p) is the orthogonal distance from the transformed sam-

ple pointx; = W (v,, L;)x; to the original silhouette.

-

Figure 3.6: The silhouette of a surface of revolution (candle holder) is extracted
by applying a Canny edge detector.

The successes of most nonlinear optimization problems require a good ini-
tialization so as to avoid convergence to local minima. This is achieved here by
using bitangents of the silhouette [147]. Two points in the silhouettear a

bitangent are selected and a polynomial is fitted to the silhouette in the neighbor-
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hood of each point. The bitangent and the bitangent points can then be obtained
analytically from the 2 polynomials. Consider 2 corresponding bitandgraad

I on the 2 sides op, with bitangent points;, x, andxj, xi, respectively (see
figure 3.7). Letly be the line joiningk; andx;, andl), be the line joiningk} and

x2. The intersection of, with I and the intersection df; with 1; define a line
which will provide an estimate for the image of the revolution dxisLet 1. be

the line joiningx; andx}, andl, be the line joiningk, andx). The intersection

of 1. with 1 will provide an estimate for the vanishing powf. The initialization

of Iy andv, from bitangents often provides an excellent initial guess for the op-
timization problem. This is generally good enough to avoid any local minimum
and allows convergence to the global minimum in a small number of iterations.

The estimation of the harmonic homolo§V is summarized in algorithm 3.1.

% Vy

Figure 3.7: Initialization of the optimization parametérsindv, from the bitan-
gents and lines formed from the bitangent points.
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Algorithm 3.1 Estimation of the harmonic homologd¥y .
extract the silhouette of a surface of revolution
by applying a Canny edge detector;
sampleN evenly spaced points; alongp;
initialize the image of the revolution axig and the vanishing point,
by identifying bitangents imp;
while not convergedlo
transform each point; by W;
compute the distances from the transformed paiits Wx; to p;
updatel; andv, to minimize the cost function in (3.17);
end while

3.6.2 Estimation of theIntrinsic Parameters

When the aspect ratio of the camera jishe linel, passing through the principal
point (ug, vp) and the vanishing point,. will be orthogonal to the image of the
revolution axid; (see Section 3.5). Consider = [v; v, v3]T andls = [I; I, I5]T.

1, can be expressed in termswf andl, and is given by

Livy — lyvy

{ fas } .18

Given 2 such lineg,; andl,., the principal poin{ug, ve) will then be given by
the intersection af,; with 1,,. When more than 2 lines are available, the principal

point(ug, v9) can be estimated by a linear least-squares method from

lT

xl

1T2 Qg

i [ Qv ] =0, (3.19)
: (6]
G

whereM > 2 is the total number of lines (i.e. number of silhouettes) and a

scale factor. The estimated principal paiag, vy) is then projected onto each line
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1,; orthogonally as,;, and the focal lengtlf will be given by

M
1 . :
F=5 ; V/dist(Xoi, Vi) X dist(xoi, ki), (3.20)

wheredist(xg;, v4;) is the distance betweety; andv,;, anddist(xg;, Ly;) is the
orthogonal distance from,; to the image of the revolution axlg. Note that the
terms for summation are the focal lengths estimated from each paiy; aind
I;; with the estimated principal point projected onto the correspontingsee
Section 3.5), and the focal lengfhs then taken to be the mean of these estimated
values.

The principal point(ug,vs) and the focal lengtty, obtained linearly from
equations (3.19) and (3.20), can be further refined by optimizing the cost function

N
COSta:1 (f, U, U()) = Z diSt(KKTlsi, Va:i)2, (321)

i=1

whereK is the camera calibration matrix formed frofrand (u, vo), With zero
skew and aspect ratio 1, as defined in equation (2.3)dantKK ", v,;) is the
distance between the poin}, = KK™1, andv,;.

When the aspect ratioof the camera is known but not equalitathere exists
a planar homographw (a) that transforms the image into one that would have
been obtained from a camera with the same focal lerfgtaspect ratiol and
principal point(ug, vy). The homographw (a) is given by

é 0 —* +uy ]

01 —woto) |, (3.22)
0 0 1

whereaq is the aspect ratio of the original camera, &ngl vy) and(uj, vy) are the

principal points of the original and transformed cameras respectively. By setting
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the principal poin{uj, vj) of the transformed camera ta,/a, vy ), the homogra-

phy A(a) is reduced to

O Oe -
O = O
—_ o O

Al(a) = [ ] . (3.23)

The vanishing points,; and the images of the revolution atisare transformed

by A’(a) and A’ T (a) respectively, and equations (3.18)—(3.21) can then be ap-
plied to obtain the principal pointug, vy) and the focal lengttf. Note that the
principal point(ug, vy) obtained in this way is the principal point of the trans-
formed camera, and the principal poia, vo) of the original camera is simply

given by

[Zg } = [“ZE } . (3.24)
When the aspect ratio of the camera is unknown, the camera can be cali-
brated by first assuming aspect ratio 1 to obtai v,) and f linearly, which are
then used to initialize a full optimization with the cost function

N
Costk(f, a, ug, vo) = Z dist (KK 1y, vis)?, (3.25)

i=1
whereK is the camera calibration matrix formed frgfma and(u, vy), with zero

skew, andlist(KK ™1, v,;) is the distance between the poirt = KK"1, and
Vi
3.7 Degenerate Cases

3.7.1 Conic Silhouette

If the silhouettep of a surface of revolution is a conic, there will be an infinite

number of harmonic homologies to which the silhouetteill be invariant. Such
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a situation results in a degenerate case for camera calibration from surfaces of
revolution.
Consider a conic represented bg a 3 symmetric matrixC, such that every

pointx on the conic satisfies
xTCx = 0. (3.26)

Given a pointx, outside the conidC, 2 tangents can be drawn frory to C

(see figure 3.8), and the lilgpassing through the 2 tangent points is given by
l. = Cx.. (3.27)

Let W, be a harmonic homology with axis and centek,, given by

X 1T
W, = I3— 2x;fle' (3.28)
Substituting (3.27) into (3.28) gives
X.x. CT
o = Ig—22C— 2
W 3 XTCx, (3.29)
Letx be a point orC andx’ = W,x, and consider the equation
xXTCx' = (Wx)TC(Wx)
= x'(WICW,)x. (3.30)

Substituting (3.29) into (3.30) gives

T _ T e T e
X_’ CXI = X [(]13 — 2@) C(]Ig — 2 xeTCXe )]X
Cx.xT Cx.xICT
= xT[(I; — 2———=)(C — 2—==2
x7[(Is X;ere)( xT Cx, )

= 0. (3.31)
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Equation (3.31) implies that any poixt outside the coni€ and the correspond-
ing linel, = Cx, will define a harmonic homologyV . to which the conidC will

be invariant. As a result, if the silhouette of the surface of revolution is a conic,
there will not be a unique solution for the optimization problem of the harmonic
homologyW associated with the silhouette, and hence it provides no information

on the intrinsic parameters of the camera.

Figure 3.8: A conidC will be invariant to any harmonic homology with a center
given by any poink, outside the conic, and an axis givenlQy= Cx..

3.7.2 Vanishing Point at Infinity

When the camera is pointing towards the axis of revolution of the surface, the
silhouette will exhibit bilateral or skew symmetry, and the vanishing pojnill

be at infinity (see Section 3.4). In this situation, the llpgassing through the
vanishing pointv, and being orthogonal to the image of the revolution dxis
cannot be determined, nor is the distaldd:ﬁ(KKTlsi, v;) in equations (3.21)

and (3.25) defined. This causes the algorithm presented in Section 3.6 to fail.
Nonetheless, it is obvious that the principal point is now constrained to lie on the
image of the revolution axis. If the camera is pointing towards the axis in all

images, then only the principal point can be estimated. In spite of that, such a
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situation can easily be avoided during image acquisition and does not restrict the

usefulness of the technique.

3.8 Experimentsand Results

Experiments on both synthetic and real data were carried out, and the results are
presented in the following subsections. In both cases, the cameras were assumed

to have zero skew.

3.8.1 Synthetic Data

Generation of Data

The experimental setup consisted of a surface of revolution viewed by 3 identical
synthetic cameras, as show in figure 3.9. The synthetic images had a dimension
of 640 x 480 pixels, and the intrinsic parameters of the synthetic cameras were

given by the calibration matrix

700 0 320
K=| 0 700 240 |. (3.32)
0o 0 1

The surface of revolution was composed of 2 spheres intersecting each other. Each
sphere was represented byt & 4 symmetric matrixQ; whose projection was

given by [31]
Cy = (P;Q;'P)) ™, (3.33)

whereP; was a3 x 4 projection matrix andC;; was a3 x 3 symmetric matrix
representing the conic, which was the projectiorpfin P;. The silhouette of

the surface of revolution in each image was found by projecting each s@here
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) V//;””ﬁ“““‘\\\,
||||\\\‘,‘i"

Figure 3.9: The experimental setup consisted of a surface of revolution, which
was composed of 2 intersecting spheres, viewed by 3 identical synthetic cameras.

camera 1l camera 2 camera 3

Figure 3.10: Silhouettes of the surface of revolution in the images taken by the 3
synthetic cameras.
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onto the imagg as the coni«C;; and finding points on each conic that lie outside

the other conic. The silhouettes formed by the 3 cameras are shown in figure 3.10.
In order to evaluate the robustness of the algorithm described in Section 3.6,

uniform random noise was added to each silhouette. Each point in the silhouette

was perturbed in a direction normal to the local tangent, and the magnitudes of

the noise were smoothed by a Gaussian filter so as to avoid unrealistic jaggedness

along the silhouette (see figure 3.11).

)
)

o) 100
e %0 £ O 0 20 0 W w1 w2 we W s W5 17 16

Figure 3.11: (a) The original silhouette. (b) The resultant silhouette after uniform
random noise of maximum 0.5 pixels being added. (c) The noise-free and noisy
silhouettes are represented by solid and dash lines respectively, and the dotted
lines indicate the bounds for noise along the normal direction of each point.

Results on Synthetic Data

Experiments on noise-free data (see figure 3.10) and data with 5 different noise
levels were carried out. The 5 noise levels were 0.7, 1.0, 1.2 and1.5 pixels
respectively. The noise level for typical real images is betwegmno 1.0 pixels,
and the distortion of the silhouette will be too great to be realistic when the noise
level is abovel .5 pixels (see figure 3.12).

For each noise level,0 experiments were conducted using the algorithm de-
scribed in Section 3.6. In the estimation of the harmonic homoMgyhe num-

ber of sample points used wag0. Table 3.1 shows the mean values of the es-
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0 pixels 0.5 pixels 0.7 pixels 1.0 pixels 1.2 pixels 1.5 pixels

Figure 3.12: Silhouettes with noise levels®f0.5, 0.7, 1.0, 1.2 and1.5 pixels
respectively. For noise level above pixels, the distortion of the silhouette will
be too great to be realistic.

timated intrinsic parameters over theé experiments for each noise level. The
rms errors of the estimated intrinsic parameters for each noise level are listed in
table 3.2, where the values in brackets are the percentage errors relative to the
ground truth values. Table 3.2 shows that results obtained using the unknown as-
pect ratio method were slightly better than those obtained under the assumption
of aspect ratio 1. As the noise level increased, the relative errors of the estimated
intrinsic parameters increased. From figure 3.13, it can be seen that the normal-
ized rms error of the focal length increased almost linearly with noise. For a noise
level of 1.5 pixels, the error of the focal length was less tHas?6 and the error

of the principal point was less tha0% in bothz andy directions.

3.8.2 Real Data
The Ground Truth

The camera used in the real data experiments was a digital camera with a reso-

lution of 640 x 480 pixels. The ground truth for the intrinsic parameters of the
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Assumptions: zero skew and aspect ratig 1

noise f - U U

0 695.66 - 319.34| 262.18
0.5 | 689.68 - 317.43| 252.17
0.7 | 696.02 - 321.13| 251.21
1.0 | 696.63 - 323.07| 248.71
1.2 |695.18 - 322.71| 248.42
1.5 | 701.85 - 325.34| 244.21

Assumptions: zero skew

noise f a U U

0 695.15| 1.0016| 319.60| 261.92
0.5 | 689.51| 1.0005| 317.53| 252.07
0.7 | 695.65| 1.0012| 321.35| 250.98
1.0 |696.18| 1.0014| 323.33| 248.44
1.2 |694.82| 1.0011| 322.95| 248.16
1.5 |701.51| 1.0011| 325.60| 243.94

Table 3.1: Results of calibration from silhouettes under different noise levels. The
intrinsic parameters listed are the mean values over the 10 experiments for each
noise level.

normalized rms error of the focal length
a - o ~ & w & N &

normalized rms error of the focal length

05 E 15 o 05 1
noise level (pixels) noise level (pixels)

aspect ratio 1 unknown aspect ratio

Figure 3.13: The normalized rms errors of the estimated focal length for different
noise levels.



3.8. EXPERIMENTS AND RESULTS

53

Assumptions: zero skew and aspect ratio 1

noise

f

Uo

Vo

0

4.34 (0.62%)

0.66 (0.21%)

22.18 (9.24%)

0.5

18.25 (2.61%)

6.88 (2.15%)

13.57 (5.66%)

0.7

18.41 (2.63%)

8.32 (2.60%)

13.26 (5.53%)

1.0

20.78 (2.97%)

11.02 (3.44%)

16.12 (6.72%)

1.2

29.31 (4.19%)

12.94 (4.04%)

16.59 (6.91%)

15

30.14 (4.31%)

15.79 (4.94%)

18.78 (7.83%)

Assumptions: zero skew

noise

f

a

Ug

Vo

0

4.85 (0.69%)

0.0016 (0.16%

0.40 (0.12%)

21.92 (9.13%)

0.5

18.04 (2.58%)

0.0015 (0.15%

7.02 (2.20%)

13.53 (5.64%)

0.7

18.01 (2.57%)

0.0021 (0.21%

8.63 (2.70%)

13.20 (5.50%)

1.0

20.44 (2.92%)

0.0020 (0.20%

11.36 (3.55%)

16.22 (6.76%)

1.2

28.62 (4.09%)

0.0028 (0.28%

13.39 (4.18%)

16.73 (6.97%)

15

29.54 (4.22%)

0.0028 (0.28%

16.32 (5.10%)

19.05 (7.94%)

Table 3.2: The rms errors of the estimated intrinsic parameters for each noise
level. The values in brackets are the percentage errors relative to the ground truth
values.



54 CHAPTER 3. CAMERA CALIBRATION FROM SYMMETRY

camera was obtained using a calibration grid. Eleven images of a calibration grid
were taken with the camera at different orientations (see figure 3.14). Corner fea-
tures were extracted from each image using a Canny edge detector [16] and line
fitting techniques. For each image, the camera was calibrated using the DLT tech-
nique [1] followed by an optimization which minimized the reprojection errors of
the corner features [42, 40]. The results of calibration from the calibration grid

are shown in table 3.3.

Figure 3.14: Eleven images of a calibration grid taken by the digital camera for
calibration.

Results on Real Data

Two sequences of real images of surfaces of revolution were used for the cal-
ibration of the digital camera. The first sequence consisted of 3 images of 2
bowls, which provided 4 silhouettes of surfaces of revolution (see figure 3.15).
The second sequence consisted of 8 images of a candle holder, which provided

8 silhouettes of surface of revolution (see figure 3.16). The results of calibration
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Assumptions: zero skew and aspect ratip 1

- f - Ug Vo
mean| 684.98 - 322.60| 232.15
std 3.49 - 3.47 | 3.93

Assumptions: zero skew

- f a Up Vo
mean| 685.52| 0.9992| 322.60| 232.15
std 3.38 | 0.0020| 3.46 | 3.94

Table 3.3: Results of calibration froiri images of the calibration grid.

from the 2 image sequences are shown in table 3.4. Table 3.5 shows the percent-
age errors of the estimated intrinsic parameters relative to the ground truth values.
Figure 3.17 shows the lindg; passing through the corresponding vanishing point

v,; and orthogonal to the corresponding image of the revolutionlgxis

Figure 3.15: Three images of 2 bowls with the extracted silhouettes and estimated
images of the revolution axis plotted in solid and dash lines respectively.

From table 3.4 and table 3.5, it can be seen that the intrinsic parameters es-
timated from the candle holder sequence were better than those from the bowls
sequence. This can be explained as the silhouettes in the candle holder sequence
showed much greater perspective effect than those in the bowls sequence (see
figure 3.15 and figure 3.16). Besides, the candle holder sequence also provided
more silhouettes, and hence more constraints, than the bowls sequence for the es-

timation of the intrinsic parameters. The focal length estimated from the bowls
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y 4 [~

1 2loe

Figure 3.16: Eight images of a candle holder with the extracted silhouettes and
estimated images of the revolution axis plotted in solid and dash lines respectively.

Assumptions: zero skew and aspect ratio 1

image set f - Ug Vo
Bowls 708.34 - 320.65| 245.58
Candle holder 703.21 - 329.90| 232.96
Assumptions: zero skew
image set f a U Vo
Bowls 708.95| 0.9987| 320.59| 245.63
Candle holden 694.75| 1.0360| 328.99| 232.06

Table 3.4: Results of calibration from the bowls and candle holder sequences.

Assumptions: zero skew and aspect ratio 1

image set f - Ug Vo
Bowls 3.41% - -0.60%| 5.79%
Candle holdert 2.66% - 2.26% | 0.35%
Assumptions: zero skew
image set f a U Vo
Bowls 3.42%| -0.05% | -0.62% | 5.81%
Candle holder 1.35%| 3.68% | 1.98% | -0.04%

Table 3.5: Percentage errors in the results of calibration from the bowls and candle
holder sequences.
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bowls sequence candle holder sequence

Figure 3.17: The solid lines represent the lihgpassing through the correspond-
ing vanishing poinw ,; and orthogonal to the corresponding axis of revolutign
Since the principal poink, must lie on these lines, it can be estimated as the
intersection of 2 or more linds;.

sequence had an error less tl3a5%6 relative to the ground truth focal length. For

the candle holder sequence, the error of the estimated focal length decreased from
2.66% to 1.35% when the assumption of aspect ratio 1 was dropped. Note that
in both synthetic and real data experiments, the estimated focal length tended to
be closer to the ground truth value when the aspect ratio was allowed to change
to an incorrect value. This may be due to the fact that the cost functions given
by equations (3.21) and (3.25) are only some algebraic errors. It suggests that a
proper cost function should consist of the geometric errors between the original
and transformed silhouettes instead, like the one given in equation (3.17) for the

estimation of the harmonic homology.

3.9 Discussions

By exploiting the symmetry property exhibited in the silhouettes of surfaces of

revolution and the property of vanishing points, a practical technique for camera
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calibration has been developed. The use of surfaces of revolution makes the cal-
ibration process easier, in not requiring the use of any precisely machined device
with known geometry such as a calibration grid. Besides, a surface of revolution

can always be generated by rotating an object of any arbitrary shape around a
fixed axis. Despite the fact that strong perspective effect is required, the proposed
method is promising, as demonstrated by the experimental results on both syn-
thetic and real data. The focal lengths were estimated with high accuracy, having

an error of only around% with respect to the ground truth.

W w

X

Xg ot Te

X

. P B

Vx L |><
dy dy
ls

Figure 3.18: Error analysis in the estimation of the principal point as the focal
length varies.

Experiments show that in estimating the harmonic homoldgyassociated
with the silhouette of a surface of revolution, the uncertainty is essentially in the
vanishing point,. Sincev, is, in general, tens of thousands of pixels away from
the axisly, its error in a direction orthogonal 19 is negligible in the computation
of the principal point and focal length. On the other hand, the errar,ah a
direction parallel td; will lead to the same error in the estimated principal point
Xo. This is due to the fact that, under the assumptions of zero skew and aspect
ratio 1, x, must lie on the lind, passing througly, and orthogonal tds (see

Section 3.5). Figure 3.18 shows a painin p which is transformed bV to its
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symmetric counterpas#t’ in p. If v, has an errof in a direction parallel td,, then
the transformed point will have an erro(see figure 3.18). It is easy to see that

ande are related to each other by

§ dpt+d,—w

€ w—+ w'

(3.34)

Sinced, = f?/d’, is much greater thadi,, w andw’, and thatv andw’ are roughly

equal with respect td,, equation (3.34) can be rewritten as

¢ P

e 2dw’

(3.35)

Equation (3.35) implies that !, w and the cost given by equation (3.17) after
the optimization are assumed to be constant, then theg&aofov,, and hence the
error of the principal poink,, in a direction parallel ta; will be proportional to

f2. This limits the usefulness of the technique to wide angle cameras.
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Chapter 4

Reconstruction of Surfaces of
Revolution from Single View

“Beauty depends on size as well as symnietry.

- Aristotle, Poetics ch. 7, sec. 4.

4.1 Introduction

2D images contain cues to surface shape and orientation, however their inter-
pretations are inherently ambiguous because depth information is lost during the
image formation process when 3D structures in the world are projected onto
2D images. Multiple images from different viewpoints can be used to resolve
these ambiguities, and this results in techniques sitexeo vision70, 6] and
structure from motiofl32, 79]. Nonetheless, under certain appropriate assump-
tions, it is possible to infer scene structure, like surface orientation and curva-
ture, from a single image. Examples of such techniques indbdpe from shad-
ing[58, 61, 142, 59, 145] under the assumptions of point light source and Lamber-
tian surfaceshape from line drawing4d.12, 50, 60, 28, 136, 83, 131, 122, 84, 102]

under the assumption of trihedral-vertex polyhedral scene structure or smooth-

61
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ness,shape from textur¢48, 137, 34, 65, 11, 86, 85] under the assumption of
homogeneous or isotropic texture, astthpe from contou8, 68, 69, 24] under

the assumption of viewing a smooth object.

In this chapter, a simple technique for recovering the 3D shape of a surface
of revolution from a single view is introduced. The image of the surface of rev-
olution is first rectified by a planar homography so that the resulting silhouette
exhibits bilateral symmetry. Surface normals along the contour generator are then
determined from the rectified silhouette, and depth information can then be re-
covered using a coplanarity constraint between the surface normal and the axis of

revolution.

Section 4.2 briefly reviews existing techniques of shape from contour from
single view in the literature. Section 4.3 presents a parameterization for surfaces
of revolution and studies the surface geometry of surfaces of revolution. In par-
ticular, the surface normal and the axis of revolution are shown to be coplanar.
This coplanarity constraint is exploited in Section 4.4 to derive a simple technique
for reconstructing a surface of revolution from a single view using its silhouette.
The ambiguity in the reconstruction under a general camera configuration is stud-
ied and analyzed in Section 4.5. It is shown that such an ambiguity cannot be
described by a projective transformation. The algorithm and implementation are
described in Section 4.6 and results of real data experiments are presented in Sec-

tion 4.7. Finally discussions are given in Section 4.8.
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4.2 PreviousWorks

The earliest study of silhouettes in the literature dates back to 1978, when Barrow
and Tenenbaum [7, 8] showed that surface orientation along the silhouette can be
computed directly from image data. In his book [88], Marr pointed out that it is
possible to infer the sign of the Gaussian curvature of an object from its silhouette.
His observations were made more precise by Koenderink [68, 69] who showed
that the sign of the Gaussian curvature is equal to the sign of the curvature of the
silhouette, and convexities, concavities and inflections of the silhouette indicate
convex, hyperbolic and parabolic surface points respectively. In [24], Cipolla and
Blake showed that the curvature of the silhouette has the same sign as the normal
curvature along the contour generator under perspective projection. A similar

result was derived for orthographic projection by Brady et al. in [13].

In all the above studies mentioned, the authors only made use of a single
monocular image to infer geometric information from the silhouette. In fact, if
some strong a priori knowledge of the object is available, like a parametric de-
scription, then a single view alone allows shape recovery. Due to its expressive-
ness, generalized cylinders (GCs), introduced by Binford [10] in 1971, are com-
monly used as a parametric description for visual representation. The invariant
properties of straight homogeneous generalized cylinders (SHGCs) and their sil-
houettes had been studied by various researchers [57, 106, 77], and exploited for
object recognition and object pose estimation. In [114, 49, 144], algorithms for
segmentation and 3D recovery of SHGCs under orthographic projection were pre-
sented. In [133], Ulupinar and Nevatia addressed the recovery of curved-axis pla-

nar right constant generalized cylinders (PRCGCs) under orthographic projection.
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Their idea was further developed by Zerroug and Nevatia [143] who implemented
a technique for segmentation and 3D recovery of both PRCGCs and circular pla-
nar right generalized cylinders (circular PRGCs) from a single real image, under
orthographic projection.

This chapter addresses the problem of recovering the 3D shape of a surface
of revolution from a single view. Surfaces of revolution belong to a subclass of
SHGCs, in which the planar cross-section is a circle centered at and orthogonal to
the axis. The work presented here is different from previous works [133, 143] in
that rather than orthographic projection, which is a quite restricted case, perspec-
tive projection is assumed. Like other methods for shape recovery of GCs from
a single view, the algorithm introduced here makes use of the invariant property
of the surface of revolution and its silhouette to locate the image of the revolution
axis. The algorithm also uses the information of the image of the revolution axis
to rectify the image so that the resulting silhouette exhibits bilateral symmetry.
Such a rectification leads to a simpler differential analysis of the silhouette and

yields a simple equation for depth recovery.

4.3 Surface of Revolution

Let C,(s) = [X(s) Y(s) 0]" be a regular and differentiable planar curve on the
z-y plane whereX (s) > 0 for all s. A surface of revolution can be generated by

rotatingC, about they-axis, and is given by

) X(s)cos@
S.(s,0) = X(Y)(s) ) , (4.2)
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whered is the angle parameter for a complete circle. The tangent plane basis

vectors
5 X (s) cos & —X(s)sinf
%Sf = Y (s) and %Sef = 0 (4.2)
s X(s)sin6 X (s)cosb

are independent sincE(s) andY (s) are never both zeros at the same time, and
X (s) > 0forall s. HenceS, is immersed and has a well-defined tangent plane at
each point, with the normal given by

S, y 0S,
ds 0
[ X(s)Y (s)cos@ ]

n(s,0)

—X(s)X(s)
X (s)Y(s)sinf

(4.3)

Through any poinS,(so, 6,) on the surface, there israeridian curvewhich is

the curve obtained by rotating, about they-axis by an angle-6,, and datitude

circle which is a circle on the plang = Y (s) and with its center on thg-axis.

Note that the meridian curve and the latitude circle are orthogonal to each other,
and they form the principal curves of the surface (see figure 4.1). It follows from
equation (4.3) that the surface normaléa(so, 6y) lies on the plane containing

the y-axis and the poinﬂr(so, 6y), and is normal to the meridian curve through

S:(so0, 6p). By circular symmetry, the surface normals along a latitude circle will

all meet at one point on thgaxis.

4.4 Reconstruction from a Single View

Consider a surface of revolutid®, whose axis of revolution coincides with the

y-axis, and a pin-hole cameRa = [I; t] wheret = [0 0 d,]™ andd, > 0. Let the
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"/ meridian cure

[777%
157

latitude circle

Figure 4.1: The meridian curves and latitude circles form the principal curves of
the surface of revolution.

contour generator be parameterizedskas

I'(s) = &+ A(s)p(s), where (4.4)

p(s) -n(s) = 0. (4.5)

In equation (4.4)¢ indicates the camera centef@t — d.]", p(s) is the viewing
vector fromé to the focal plane at unit distance for the poikts), andA(s) is
the depth of the poinF(s) from & along thez direction. Note thap(s) has the
form [z(s) y(s) 1], where(z(s), y(s)) is a point in the silhouette. Equation (4.5)
expresses the tangency constraint, whefe is the unit surface normal at(s).

It has been shown in Section 2.4.2 tidt) can be determined up to a sign by

—j(s)
_ ! [ ils) ] (4.6)
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wherea,(s) = ‘p(s) x 2PL)| |n Section 4.3, it has been shown that the surface

s

normaln(s) will lie on the plane containing thg-axis and the poinf'(s). This

coplanarity constraint can be expressed as

n(s)"[n,],I'(s) = 0, 4.7)

0 01 A(s)z(s)
[ n1(s) mna(s) ns(s) ] [ 0 0 0] [ A(s)y(s) =0
~10 0] | As)—d. |
As)—d, ]
[ n1(s) na(s) ns(s) | [ 0 =0
—A(s)a(s) |

n1(s)(A(s) — dz) —ns(s)A(s)z(s) = 0. (4.8)

By rearranging (4.8), the depth of the pofr(ts) is given by

d.ni(s)

M) =@ (o))

4.9

Hence, the contour generator can be recovered from the silhouette and is given by

[ &+ \(s)p(s)

re) = | PP ]

e
_ zY\(S)Y\s
d.ar(s) , (4.10)

y(s) — ar(s)

wherear(s) = (2(s)y(s) — z(s)y(s))z(s). Since the distancé, cannot be re-
covered from the image, the reconstruction is determined only up to a similarity

transformation. The surface of revolution can then be obtained by rotating the
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contour generator about theaxis, and is given by

X(s)cos@
Sr(s,e)[ Y(s) ] (4.11)
X(s)sinf

whereX (s) = /(A(s)z(s))2 + (A(s) — d.)? andY (s) = A(s)y(s).

Now consider an arbitrary pin-hole camé@Paby introducing the intrinsic pa-
rameters represented by the camera calibration mEtrte P, and by applying
the rotationR. to P about its optical center. Hend = KRJI; t] or P = HP,
whereH = KR. From the discussions presented in Section 3.4, the resulting
silhouette ofS, will be invariant to a harmonic homologW. GivenK andW,
it is possible to rectify the image by a planar homography..:r, SO that the sil-
houette becomes bilaterally symmetric about the line [1 0 0]T, and hence be
invariant toT (see Section 3.4). This corresponds to normalizing the camera by
K ! and rotating the normalized camera until the revolution axiS.dfes on the
y-z plane of the camera coordinate system. NoteHhat;s iS not unique, as any

homographyH' given by

rectify’

i‘ectify = Rx(w)Hrectify (412)
where
[ 1 0 0 ]
R,(¢¥)= ] 0 cosyp —siny (4.13)
[ 0 siny cosy J

is a rotation about the-axis by an angle), will yield a silhouette which will be
invariant toT (see Appendix C). There existg such thaR, (1) Hectity P = P
and the surface of revolution can be reconstructed from the rectified image using

the algorithm presented above. In genetglcannot be recovered from a single
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image and hence there will be an 1-parameter family of solutions for the contour

generator, given by

dzy(s)x(s)
d.y(s)(y(s) cosyp — sinp)
d.ap(s)
9(s)(y(s) sin gy + cos ) — af!(s)

IY(s) = (4.14)

wherea?(s) = {(&(s)y(s) — z(s)y(s)) cos yp — i(s) siny}z(s). A detail deriva-

tion for I'? is given in Appendix C. The 1-parameter family of surfaces of revolu-
tion Q}f can be obtained by rotatiig’ about they-axis. Note that the ambiguity

in the reconstruction corresponds to the ambiguity of the orientation of the rev-
olution axis on they-z plane of the camera coordinate system. If the image of
a latitude circle in the surface of revolution can be localized, the orientation of
the revolution axis relative to thg-axis of the camera coordinate system can be
estimated (see Appendix D), which removes the ambiguity in the reconstruction.
Alternatively, the ambiguity can also be removed by knowing the ratio of the ra-
dius of any latitude circle in the surface of revolution to the height of the surface

of revolution.

4.5 Analysisof the Ambiguity in the Reconstruction

A projective transformation that maps a surface of revolution to another surface
of revolution, both with thegs-axis as their axes of revolution, has the following

generic form

cosp 0 sinp O
0 hl 0 h2
Fsinp 0 +£cosp O
0 hs 0 hyg

hi he

| A0 (419)

HSOR = where
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A detail derivation forHsor can be found in Appendix E. Assuming that the
ambiguity in the reconstruction of the surface of revolution can be described by
Hsor, then bothHsor and the transformation induced By, (/) will map a lat-

itude circle inS, to the same latitude circle iﬁﬁ’, as a latitude circle is by itself

a surface of revolution in the limiting case. Hence, if the ambiguity is projective,
there existg for eachy(s) such thaft¥(s) = HsorI'(s). In Cartesian coordi-
nates, the projective transformatibti(s) = Hgor['(s), with d, = 1, is given by

the set of equations

y(s)z(s) __y(s)z(s)cos o+ ar(s)sing
(s)(y(s)sine) + cosvp) — al(s)  hsy(s)y(s) + ha(y(s) — ar(s))’ (4.16)
He)us)cos —sing) _ mils)uls) + hali(s) —ar(s) 4
§(s)(y(s)siney + cosp) — al(s)  hsy(s)y(s) + ha(y(s) — 041“( )
af(s) Fy(s)z(s)sin o + ar(s) cos o
() (y(s) sine + cos ) — al(s)  hsy(s)y(s) + ha(y(s) — ar(s))

Rearranging (4.17) gives

. (4.18)

0 = hycosva(s)'y(s)® + hesinya(s)’i(s)y(s) —
2hs cos ya(s)*z(s)y(s)y(s) +
(71 cos 9 + hysingp — hy cos9)a(s)?y(s)y(s)” +
(2h2 cos ¢ + hasingp)a(s)*y(s)” +
ha cos a(s)*a(s)*y(s)” — hasinpa(s)’i(s)’y(s) +
(hacostp — hycos ) — hysingp)z(s)a(s)y(s)*y(s) +
(hysing) — 2hy cos ) — hysingp)z(s)2(s)y(s)y(s) +
ha sin ¢z (s)i(s)y(s) + (hising — hy cosy)y(s)*y(s)* +
(hycostp + hysiny + hgsinth — hycos)y(s)i(s)? +

(hy costp + hysin)y(s)?, (4.19)
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which holds for all values of(s), i(s), y(s), y(s) andy. Equation (4.19) yields

the following 8 constraints

hacosyy = 0, (4.20)
hesiny = 0, (4.21)
hicosy + hysiny — hgcosy = 0, (4.22)
2hycos ) + hysiny = 0, (4.23)
hisiny — 2hy cos ) — hysiny = 0, (4.24)
hisiny — hgcosyy = 0, (4.25)
hicost + hosiny + hzsiny — hycosyp = 0, and (4.26)
hocosy + hysiny = 0. (4.27)
Solving equations (4.20)—(4.27) gives
hi = hy = hs = hy =0, (4.28)

which makesHgsogr Singular. As a result, the ambiguity in the reconstruction

cannot be described by a projective transformation.

4.6 Algorithm and Implementation

4.6.1 Estimation of the Harmonic Homology W

The harmonic homology associated with the silhouette of a surface of revolution
can be estimated using an algorithm similar to the one described in Section 3.6.1.
Given the camera calibration matrk, the harmonic homology is completely
defined by the axik, as the center is then given BJK 1, (see Section 3.5). The

silhouettep of a surface of revolution is first extracted from the image by applying
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a Canny edge detector [16], and the harmonic homoMgyhat maps each side

of p to its symmetric counterpart is then estimated by minimizing the geometric
distances between the original silhouettand its transformed versigi = Wp

(see figure 4.2). This can be done by samplvgvenly spaced points; alongp

and optimizing the cost function

N
1
Costw, (Is) = J ~ D dist(W(KK"L, L)x;, p)?, (4.29)
i=1

wheredist(W(KKTls, ls)x;, p) is the orthogonal distance from the transformed
sample poink; = W(KKTIS, l;)x; to the original silhouette, and

KKTL1T

W(KK™L, L) =13 —2——5
( ) =1L ITKK"l,

(4.30)

is the harmonic homology defined by the camera calibration m&rand the
axisl;. The axisls can be initialized manually by observing the symmetry in the
silhouette. Alternativelyl; can be initialized by using bitangents to the silhouette,

as described in Section 3.6.1.

Figure 4.2: The silhouetteof a surface of revolution (candle holder) is extracted
by applying a Canny edge detector and the dxisf the harmonic homology
associated with the silhouette is estimated.
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4.6.2 Image Rectification

After the estimation of the harmonic homolody, the image can be rectified

so that the silhouette becomes bilaterally symmetric about the kaél 0 0],

Such a rectified image resembles an image that would have been observed by a
normalized camera when the axis of the surface of revolution lies ap thdane

of the camera coordinate system. The image is first normaliz&d dyto remove

the effects of the intrinsic parameters of the camera. ThelarisW, and hence

the image of the revolution axis, is transformed to
1! = K", (4.31)

The normalized image is then transformedRy which is a rotation matrix that
bringsx}, the orthogonal projection of the principal poig = [0 0 1]T on the
axisly, to xy. This corresponds to rotating the normalized camera until it points
directly towards the axis of the surface of revolution, and the resulting silhouette
will then be bilaterally symmetric about the image of the revolution axis. The axis

n;, and the angle,, of the rotationR, are given by

Xy X X
— d 4.32
Xg - X
= ) 4.33
b, arccos( T |x0|) (4.33)

After transforming the normalized image by the homograRhythe resulting sil-
houettep® = R, K1 p will be bilaterally symmetric about the transformed image

of the revolution axis, given by

L = R,TI

cos 6P
= sing® | . (4.34)
0
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The resulting image is then rotated about the pgintntil the axis of symmetry
aligns with they-axis, and the transformation is given by
cosf® sinf® 0
R,=| —sinf® cosf® 0 |. (4.35)
0 0 1
This corresponds to rotating the normalized camera, which is now pointing di-
rectly towards the axis of the surface of revolution, about-igis until the axis of
the surface of revolution lies on thez plane. The resulting silhouetté = R, pP
is now bilaterally symmetric about the line
B = R'L
1
= 0, (4.36)
0

and hence is invariant to the harmonic homol@j{see Section 3.4). The overall

transformation for the rectification is given by
Hrectify - RaRbK_la (437)
and the rectification process is illustrated in figure 4.3.

4.6.3 Depth Recovery

Since the rectified silhouette is bilaterally symmetric about thg-axis, only

one side ofp* needs to be considered during the reconstruction of the surface of
revolution. Points are first sampled from one sidepbfand the tangent vector
(i.e. #(s) andy(s)) at each sample point is estimated by fitting a polynomial to
the neighboring points in the rectified silhouette. The surface normal associated
with each sample point is then computed from equation (4.6). Finally, the depth

of each sample point is recovered from equation (4.9), and the contour generator
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(@) (b) ()

Figure 4.3: (a) The harmonic homology associated with the silhouette of the sur-
face of revolution is estimated, which yields the image of the revolution axis. The
image is then normalized ¢ ', and the orthogonal projectiaqf of the point

xo = [0 0 1]T on the image of the revolution axis is located. (b) The image is
transformed by the homograpis, so that the poink, lies on the image of the
revolution axis and the silhouette becomes bilaterally symmetric about the image
of the revolution axis. (c) Finally, the image is rotated about the pajnintil the
image of the revolution axis aligns with thyeaxis.

and the surface of revolution follow. Far # 0, the viewing vectomp(s) and

the associated surface nornedls) at each sample point are first transformed by
R.(¢). The transformed viewing vector is then normalized so that"itsoeffi-

cient becomes 1, and equation (4.9) can then be used to recover the depth of the

sample point.

4.7 Experimentsand Results

Figure 4.4 shows an image of a candle holder and its rectified silhouette. The rec-
tification of the silhouette was done using the algorithm described in Section 4.6.
An ellipse was fitted to the bottom of the rectified silhouette for computing the
orientation of the revolution axis relative to theaxis of the camera coordinate
system (the ambiguity in solution was resolved manually, see Appendix D), and
the angley, was estimated to be 5.2924°. In order to illustrate the ambiguity

in the reconstruction, 10 surfaces of revolution were reconstructed from the rec-
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tified silhouette withyy = —20°, —15°, —10°, —5°, 0°, 5°, 10°, 15°, 20° and)
respectively. The reconstructed 3D models of the candle holder are shown in fig-
ure 4.6, together with their corresponding curves of revolution that generated the
surfaces. For the sake of easy comparison, all the estimated surfaces of revolution
were scaled to have unit heights. From figure 4.6, it can be seen thatras
creased, the curve of revolution expanded towards the top and shrank towards the
bottom. This can be explained by the fact that/asicreases, the bottom of the
surface is assumed to be tilted more towards the camera before the application of
the rotationR . (¢). As a result, the surface needs to expand towards the top and
shrink towards the bottom to give the same silhouette in the rectified image un-
der perspective projection. The radius of the topmost circle and the height of the
candle holder, measured manually using a ruler with a resolution of 1mm, were
5.7cm and 17.1cm respectively. The ratio of the radius of the topmost circle to the
height of the reconstructed candle holder, with= 1y, was 0.3433. This ratio
agreed with the ground truth value (5.7/17.1 = 0.3333) and had a relative error of
3% only.

Another example is given in figure 4.5, which shows an image of a bowl and
its rectified silhouette. An ellipse was fitted to the top of the rectified silhouette
and the angle), was estimated to b2.7192°. The reconstructed 3D models of
the bowl and their corresponding curves of revolution that generated the surfaces
are shown in figure 4.7. The radius of the topmost circle and the height of the
bowl, measured manually using a ruler with a resolution of 1mm, were 6.4cm and
6.2cm respectively. The ratio of the radius of the topmost circle to the height of
the reconstructed bowl, withh = 1y, was 1.0995. This ratio was close to the

ground truth value (6.4/6.2 = 1.0323) and had a relative error of 6.5%.
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Figure 4.4: Image of a candle holder and its rectified silhouette which exhibits
bilateral symmetry.

Figure 4.5: Image of a bowl and its rectified silhouette which exhibits bilateral
symmetry.

4.8 Discussions

By exploiting the coplanarity constraint between the axis of revolution and the

surface normal, a simple technique for recovering the 3D shape of a surface of
revolution from a single view has been developed. The technique presented here
assumes perspective projection and uses information from the silhouette only. The
invariant property of the surface of revolution and its silhouette has been used to

rectify the image so that the silhouette becomes bilaterally symmetric about the
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y-axis. This simplifies the analysis of the general camera configuration case to
one in which the axis of revolution lies on the:z plane of the camera coordinate
system. The 1-parameter ambiguity in the reconstruction under general camera
configuration, which cannot be described by a projection transformation, corre-
sponds to the ambiguity of the orientation of the revolution axis orythglane

of the camera coordinate system. If the image of a latitude circle in the surface
of revolution can be localized, the orientation of the revolution axis relative to the
y-axis of the camera coordinate system can be estimated, which removes the am-
biguity in the reconstruction. Alternatively, the ambiguity can also be removed by
knowing the ratio of the radius of any latitude circle in the surface of revolution to
the height of the surface of revolution. It is worth mentioning that sometimes due
to self-occlusions, it might not be always possible to recover the whole surface of
revolution from its silhouette. This situation is illustrated in figure 4.8, where part

of the neck and the bottom of the vase cannot be reconstructed.

(@) (b)

Figure 4.8: Due to self-occlusions, it might not be always possible to recover the
whole surface of revolution from its silhouette. (a) It is possible to recover the
whole surface from the side view of a vase. (b) Part of the neck and the bottom of
the vase cannot be reconstructed from this top view due to self-occlusions.



Chapter 5

Motion Estimation from Silhouettes

“Push on,—keep moving..

- Thomas MortonA Cure for the HeartachéAct ii, Sc. 1.

5.1 Introduction

Silhouettes are often a dominant image feature, and can be extracted relatively
easily and reliably. They provide rich information about both the shape and mo-
tion of an object, and are indeed the only information available in the case of
smooth textureless surfaces. Nonetheless, structure and motion from silhouettes
has always been a challenging problem [68, 24, 22, 123, 125, 4, 30, 64]. Unlike
corners, silhouettes are projections of contour generators which are viewpoint de-
pendent, and hence they do not readily provide point correspondences (see Sec-
tion 2.4). As a result, classical techniques for motion estimation and scene recon-
struction [126, 9, 67, 44], based on point correspondences in the image sequence,
cannot be applied.

In this chapter, a complete and practical system for generating high quality 3D

models from 2D silhouettes is introduced. The system presented here employs a

81
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novel technique [95, 96] for estimating the motion of an object undergoing cir-
cular motion from its silhouettes alone. An initial 3D model of the object can be
obtained by an octree carving technique [124] using the silhouettes and the esti-
mated motion. The system then allows the 3D model thus obtained to be refined
incrementally by adding new arbitrary general views of the object and estimating
the corresponding camera motion. This is achieved by registering the silhouette in
the new view with the set of silhouettes generated by the now estimated circular
motion [138]. The incorporation of arbitrary general views reveals information
which is concealed under circular motion, and overcomes the drawbacks of using
circular motion alone. Only the 2 outer epipolar tangents to the silhouettes are re-
quired in estimating both the circular and general motion, and no corner detection
nor matching is needed. The system described is practical in almost all situations,

and is capable of reconstructing virtually any kind of objects.

This chapter will concentrate on the problem of motion estimation from sil-
houettes, whereas the problem of model reconstruction from silhouettes will be
studied in Chapter 6. Section 5.2 reviews existing techniques in the literature for
motion estimation from silhouettes, and discusses their shortcomings. Section 5.3
studies the epipolar constraint between silhouettes from distinct viewpoints and
introduces the use of outer epipolar tangents that simplifies the correspondence
problem. Section 5.4 addresses the problem of estimating the motion of a rotating
object and presents 2 useful parameterizations of the fundamental matrix specific
to circular motion. The general motion case is then tackled in Section 5.5. The
algorithms and implementations are described in Section 5.6, followed by a dis-
cussion of the degenerate case for the estimation of circular motion in Section 5.7.

Results of real data experiments, demonstrating the practicality of the system, are
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presented in Section 5.8. Finally discussions are given in Section 5.9.

5.2 PreviousWorks

The study of motion estimation from silhouettes was pioneered by Rieger [111],
who showed that camera motion can be recovered friired pointof a deform-

ing silhouette under orthographic projection. He also set forth the idea that under
perspective projection, the epipole is constrained to the line spanned by the tan-
gent vector to the silhouette at the fixed point (i.e. epipolar tangency constraint).
In [107], it was noted that the intersection of 2 contour generators from 2 distinct
viewpoints generates a point that is visible in both images as a fixed point. This
point was identified as &ontier pointin [45], where Giblin et al. developed an
algorithm for motion estimation from the silhouettes of a rotating surface under
orthographic projection.

The methods mentioned so far deal with the motion recovery problem under
orthographic projection, which is a rather restrictive situation. The use of fron-
tier points and epipolar tangents for motion recovery under perspective projection
was introduced in [22, 4]. These techniques require the presence of at least 7
pairs of corresponding epipolar tangents in the image pair, which are localized by
iterative methods. By using an affine approximation [100, 118, 110], a similar
technique that only requires 4 pairs of corresponding epipolar tangents was devel-
oped in [93]. In [116], a non-iterative method was presented in the case of linear
camera motion, where common tangents are used to determine both the frontier
points and the epipoles. By combining the ideas in [4] and [116], Cross et al. [30]

implemented a parallax-based technique in which images are registered using a
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reference plane to “undo” the effect of rotation. Related work also includes [64]

in which a calibrated trinocular stereo rig with known geometry was used.

This chapter tackles the problem of structure and motion from silhouettes ob-
served under perspective projection using a single camera. The approach here is
to first constrain the motion to be circular. This allows a trivial initialization of
the parameters which all bear physical meanings (e.g. image of the rotation axis,
the horizon and the angles of rotation). When there are 3 or more images in the
circular motion sequence, a solution is possible by using only the 2 outer epipolar
tangents to the silhouettes. In the case of complete circular motion with dense
image sequence, the image of the rotation axis can be estimated conveniently and
independently by exploiting the symmetry [147, 33, 45] associated with the im-
age of the surface of revolution swept by the rotating object. The drawbacks of
using circular motion alone are then overcome by incorporating new views from
arbitrary general motion. The initialization of the general motion can be done
relatively easily by using the model built from the estimated circular motion. By
registering the silhouette in the new view with the set of silhouettes resulted from
the circular motion, the camera motion can again be estimated using only the 2

outer epipolar tangents.

5.3 Epipolar Constraint between Silhouettes

Silhouettes are projections of contour generators which are viewpoint dependent,
and hence they do not readily provide point correspondences. A frontier point is
given by the intersection of 2 contour generators from 2 distinct viewpoints, and

is visible in both images. A frontier point lies on an epipolar plane tangent to the
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surface, and hence it will be projected onto a point in the silhouette which is also
an epipolar tangent point (see Section 2.4). Epipolar tangent points thus provide
point correspondences that satisfy the epipolar constraint, and can be exploited for
motion estimation.

Theoretically, if 7 or more pairs of corresponding epipolar tangent points are
available, the epipolar geometry between the 2 views can be estimated, and the
camera intrinsic parameters can then be used to recover the relative motion [78,
39]. However, when the epipolar geometry is not known, the localization of the
epipolar tangents involves a nonlinear optimization. Examples of this iterative
approach can be found in [22, 4]. The need for a good but nontrivial initializa-
tion, the unrealistic demand for a large number of epipolar tangent points, and the
presence of local minima all make this approach impractical.

In Section 5.4 and Section 5.5, 2 motion estimation algorithms which only
require the 2outer epipolar tangentare presented. The outer epipolar tangents
correspond to the 2 epipolar tangent planes which touch the object (see figure 5.1).
Except when the baseline passes through the object, the 2 outer epipolar tangents
are always available in any pair of views and are guaranteed to be in correspon-
dence. The use of the outer epipolar tangents avoids false matches due to self-
occlusions and greatly simplifies the matching problem. This is illustrated in fig-
ure 5.2 which shows 2 silhouettes from 2 distinct viewpoints. The silhouette in the
left image has 11 epipolar tangents, whereas the silhouette in the right image has
only 6 epipolar tangents. A careful examination will show that not all 6 epipolar
tangents in the right image have a correspondence in the left image. There are
actually only 4 pairs of corresponding epipolar tangents, which are the 2 outer

epipolar tangents and another 2 tangents at the front and back left legs. By con-
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sidering only the outer epipolar tangents, possible false matches are eliminated
and the problem is reduced to matching only 2 epipolar tangents against another

2, leaving only 2 possible cases.

frontier
points
|

camera
centers

Figure 5.1: The outer epipolar tangents correspond to the 2 epipolar tangent planes
which touch the object, and are always available in any pair of views except when
the baseline passes through the object.

5.4 Circular Motion

5.4.1 Fixed Image Featuresunder Circular Motion

Consider a pin-hole camera rotating about a fixed axis.vl,dbe the vanishing
point corresponding to the normal directidh, of the planell; that contains the
axis of rotation and the camera center, &nte thehorizonwhich is the image

of the planell,, that contains the trajectory of the camera center. By definition,
the epipoles are the projections of the camera center and must thereford,lie on
Besides, sincdN, is parallel to the planély, it follows thatv, also lies onl,,.

The plandl; will be projected onto the image plane as a lipevhich is also the
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Figure 5.2: Two discrete views showing 17 epipolar tangents in total, of which
only 4 pairs are in correspondence. The use of the 2 outer epipolar tangents (in
solid lines), which are guaranteed to be in correspondence, avoids false matches
due to self-occlusions, and greatly simplifies the matching problem.

axis of rotation

—~camea
cente

(Jfl- \I ls/\/f/

Figure 5.3: If the intrinsic parameters of the camera are assumed to be fixed, the
image of the rotation axi%, the horizonl, and the vanishing poin¢, corre-
sponding to the normal direction of the plane that contains the rotation axis and
the camera center, will be fixed throughout the image sequence.
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image of the rotation axis. It has been shown in Section 3.9 {haitelated tov,
by the camera calibration matri, given by
v, = KKTL,. (5.1)

If the intrinsic parameters of the camera are assumed to be fixed, due to symmetry
in the configuration], 1, andv, will be fixed throughout the image sequence
(see figure 5.3). The fundamental matrix associated with any pair of views in the
circular motion sequence can be parameterized explicitly in terms of these fixed
features [135, 44], and a simple derivation of this parameterization is given in the

next section.

5.4.2 Parameterizationsof the Fundamental Matrix

Parameterization via Fixed | mage Features of Circular Motion

Consider 2 pin-hole camera®, andP», given by
P, = [I3t], and (5.2)

wheret = [0 0 1]T andR,(6) is a rotation by an anglé # 0 about they-axis,

given by

cosf 0O sinf
Ry(ﬁ)[ 0 1 0 ] (5.4)

—sinf 0 cosf

Under this camera configuration, the image of the rotation axis, the horizon and
the special vanishing point are given by

I, = [100]", (5.5)

l, = [010]% and (5.6)

V. = [100]F (5.7)
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respectively. By substitutin; andP, into (2.15), the fundamental matrix asso-

ciated withP; andP, is given by

R [ 0
F = ng ]
0
] 1 0
= +tan— 0[010]+|1][100]]. (5.8)
0 0

By substituting (5.5), (5.6) and (5.7) into (5.8), the fundamental matrix can be
rewritten in terms of the fixed image features under circular motion, and is given

by [94, 96]
F = [V, + tan 9(1 17+ 1,10). (5.9)

Consider now a pair of cameila; andP, obtained by introducing the intrinsic
parameters represented by the camera calibration n¥éttexP; andP, respec-
tively, and by applying the rotatioR to P, and P, about their optical centers
respectively. Henc®; = HP; andP, = HP,, whereH = KR. The funda-

mental matrix associated wilh; andP, is then given by [94, 96]

F = HTFH!
1 0
= - tan — (LLF + 1,17
det(H)[V]X+ an2( h+ hs)
1 0
= (K)[ 2] +tan = (1 Iy +1,17), (5.10)

wherel, = H T1,, I, = H 11, andv, = Hv,. Note thafl, 1,, andv, are the im-
age of the rotation axis, the horizon and the special vanishing point, respectively,
under this new camera configuration.

Equation (5.10) gives a simple parameterization of the fundamental matrix re-

lating any pair of views in the circular motion sequence. This parameterization
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allows a trivial initialization of the parameters which all bear physical meanings,
and greatly reduces the dimension of the search space for the optimization prob-
lem in motion estimation. When the intrinsic parameters of the camera are fixed
and known, 2 parameters are enough tdfiandv,. Sincev, must also lie on

1., only 1 further parameter is needed toKix As a result, a sequence ofim-

ages taken under circular motion can be described/by 2 motion parameters

(2 forls andv,, 1 forl, and theN — 1 rotation angles). By exploiting the 2 outer
epipolar tangents, th& images will provide N (or 2 whenN = 2) independent
constraints on these parameters, and a solution will be possible MheR. The

algorithm for estimating thes® + 2 motion parameters is given in Section 5.6.3.

Parameterization via Har monic Homology

Consider again the pair of cameg and P, given in equations (5.2) and (5.3).
The epipoles can be obtained by projecting the camera cenis ifto P; and

vice versa, and are given by

sin 0 —sinf
é = 0 and é, = 0 ) (5.11)
—cosf+1 —cosf +1

Equation (5.11) shows that the epipoles are related by the transformation
0

0|é;

1

= Té,, (5.12)

whereT is the harmonic homology with axis and centeK, (see Section 3.4).
Consider now the pair of camer® = HP; andP, = HP,, whereH = KR.

The epipoles can be obtained by transforméingandé, by H respectively, and
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are given by

e = Hél, and (513)

€ = Hé2 (514)
Substituting (5.13) and (5.14) into (5.12) gives

H'e, = TH le;
es = HTH 'e;

= Wel, (515)

whereW is the harmonic homology with axls and centew, (see Section 3.4).

Note thatW is the harmonic homology associated with the image of the surface of
revolution swept by the rotating object. Given a dense image sequence taken under
complete circular motion, say the angles of rotation are lessibgrthe image

of this surface of revolution can be approximated by overlapping all the images
in the sequence and the associated harmonic homadgan be estimated from

the resulting image using the algorithm described in Section 3.6.1. &inca
point-wise fixed feature in the image sequence and is invariaW fat follows

from equation (5.15) that corresponding epipolar lihesndl, are related by

L, = W1, and (5.16)

, = W7, (5.17)

In Section 2.3.3, it has been shown that the fundamental matrix can be written in

a plane plus parallax representation, given by

F = [es] M, (5.18)
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whereM is any plane induced homography such that corresponding epipolar lines
are mapped bM~T and MT respectively. Hence, from equations (5.16) and

(5.17), it follows that the fundamental matrix can be parameterized as [94, 96]
F = [es] «W. (5.19)

Note thatW is the homography induced by the plaiigy that contains the axis
of rotation and bisects the line segment joining the 2 camera centers [95, 96].

Consider any poinK on the plandlwy, given by
,using
v
X = L COS% , (5.20)

1

wherey, andv are some real numbers. Its imageHa is given by

= Txi, (5.21)

wherex;, = P;X is the image o in P;. The images oK in P, andP, can be

obtained by transforming; andx, by H respectively, and are given by

x; = Hx;, and (5.22)

Xy = H)A(2 (523)
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Substituting (5.22) and (5.23) into (5.21) gives

H 'x, = TH !x;
Xy = HTH_1X1

= Wx,. (5.24)

Equation (5.24) implies that the homolod¥ is induced by the plan8 v that
contains the axis of rotation and bisects the line segment joining the 2 camera
centers. The plane plus parallax parameterization given in equation (5.19) sug-
gests that the harmonic homolod¥ can be used to register the images and
the parallax-based technique introduced in [4, 30] can be applied to estimate the
camera motion by locating the epipoles using common tangents. However, the
epipoles obtained in this way are not constrained to lie on the hotizoand
hence a full optimization using the parameterization given in equation (5.10) is
necessary to refine the solution so that the resulting camera motion is constrained

to be circular.

55 General Motion

Circular motion allows a trivial initialization of the motion parameters which all
bear physical meanings, and can be estimated accurately using only the 2 outer
epipolar tangents. However, new views cannot be added easily at a later time, and
part of the structure will always remain invisible under circular motion. These
limit the usefulness of circular motion in model building from silhouettes. The
drawbacks of using circular motion alone are overcome by the incorporation of
arbitrary general views. In this section, it is shown that circular motion can be

exploited for the registration of any arbitrary general view using only the 2 outer
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epipolar tangents, and that the initial 3D model built from the circular motion can
be used to aid the initialization of the motion parameters for the general motion.
Circular motion will generate web of contour generatosround the object

(see figure 5.4), which can be used for registering any new arbitrary general view.
Given an arbitrary general view, the associated contour generator will intersect
with this web and form frontier points. If the camera intrinsic parameters are
known, the 6 motion parameters (3 for rotation and 3 for translation) of the new
view can be determined when there are 6 or more frontier points on the associated
contour generator. This corresponds to having a minimum of 3 views under cir-
cular motion, each providing 2 outer epipolar tangents to the silhouette in the new
general view (see figure 5.5). The motion parameters of the arbitrary general view
can then be estimated by minimizing the reprojection errors of the 2 outer epipolar

tangents resulting from each view in the estimated circular motion sequence.

Figure 5.4: The circular motion will generate a web of contour generators around
the object, which can be used for registering any new arbitrary general view.

The difficulty of nontrivial initialization, which exists in every algorithm for

general motion estimation from silhouettes, is overcome by exploiting the 3D
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7

Figure 5.5: Three views from circular motion provide 6 outer epipolar tangents to
the silhouette in the new general view for estimating its pose.

model built from the circular motion. After the estimation of the circular mo-
tion, a volumetric model of the object can be constructed by an octree carving
technique [124] using the resulting camera configuration and the silhouettes. A
triangulated mesh can then be extracted from the octree using the marching cubes
algorithm [80]. The vertices in the mesh of the model are projected onto the new
view whose pose is to be estimated. A very good initialization can be obtained by
rotating and translating the camera (i.e. changing the 6 extrinsic parameters of the
camera) until the projection of the initial 3D model roughly matches the silhouette

in the new view (see figure 5.6).

5.6 Algorithmsand Implementations

5.6.1 Extraction of Silhouettes

The cubic B-spline snake [23, 24] is chosen for the extraction of silhouettes from

the image sequence. Cubic B-spline snake provides a compact representation for
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(a) (b)

() (d)

Figure 5.6: The arbitrary general motion can be initialized by rotating and translat-
ing the camera until the projection of the initial 3D model, built from the estimated
circular motion, roughly matches the silhouette in the new view.

silhouettes of various complexity, and can achieve sub-pixel localization accuracy.

Its parameterization also facilitates the localization of epipolar tangents.

The process of extracting a silhouette from an image using a B-spline snake
is illustrated in figure 5.7. A B-spline snake is first initialized close to the target
silhouette by selecting the control points manually. Points are then sampled along
each spline segment and a search for intensity discontinuity (i.e. image edge)
along the direction normal to the local tangent at each sample point is carried out.
The control points of the B-Spline snake are then updated by a linear least-squares
method, so that each sample point attaches to the location of intensity discontinu-

ity found. In the implementation presented in this chapter, closed B-spline snake
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is used to extract the complete silhouette of the object in the image.

Figure 5.7: (a) A B-spline snake is initialized close to the target silhouette. (b)
Points are sampled from each spline segment and a search for intensity disconti-
nuity along the direction normal to the local tangent at each sample pointis carried
out. (c) The control points of the B-spline snake are updated so that each sample
point attaches to the location of intensity discontinuity found.

5.6.2 Reprojection Errorsof Epipolar Tangents

The motion estimation proceeds as an optimization which minimizes the repro-
jection errors of epipolar tangents. Given a pair of vievesid j, the associated
fundamental matri¥';; is formed and the epipoles; ande;; are obtained from
the right and left nullspaces &f;; respectively. The outer epipolar tangent points
w0, W;;1 andu,;o, uy;; are located in view and viewj (see figure 5.8). The
reprojection errors are then given by the geometric distances between the epipolar
tangent points and their epipolar lines [81]

dijy = i i and (5.25)
\/(F;rjujik)% + (Fwja)3

wj; Fijuiji

V(Fiuie)? + (Fijug)3

where(Fju;;); and(Fju;;;,), indicate thel® and2™? coefficients of(F;u;q)

djik (5.26)

respectively. Similarly(F;;u;;;); and (F;;uy)» indicate thel** and2"? coeffi-

cients of(F;;u,j;) respectively.
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=
Fij Ujjo Fij Ujio

Figure 5.8: The motion parameters can be estimated by minimizing the repro-
jection errors of epipolar tangents, which are given by the geometric distances
between the epipolar tangent points and their epipolar lines.

5.6.3 Estimation of the Circular Motion

For a sequence @Y images taken under circular motion, tNe- 1 rotation angles

are arbitrarily initialized. Usually by just inspecting the image sequence, a very
good initialization for the image of the rotation akiscan be obtained manually.
The horizonl, is initialized manually by having a rough idea of the camera setup.
Nonetheless, experimental results show that even with a poor initializatibn of
andl,, the algorithm always converges to the same solution (see Appendix G).
As a result]l; andl, can be conveniently initialized as the vertical and horizontal

lines through the image center respectively (see figure 5.9).

During each iteration of the optimization, a fundamental marjxbetween
views i and j is computed from the current estimate of the motion parameters

using equation (5.10) and the reprojection erts(m), d;j»(m), d;;;(m) and
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Figure 5.9: By inspecting the image sequence, or by having a rough idea of the
camera setup, a very good initialization for the image of the rotatior aarsd the
horizonl, can be obtained manually, as shown in the left image. Alternatilgely,
andl, can be conveniently initialized as the vertical and horizontal lines through
the image center respectively, as shown in the right image.

dji»(m) are determined. The cost function for the circular motion is then given by

Costen (m) = J Z

wherem consists of théV + 2 motion parameters. Note that the c@skt ., (m)

min(i+2,N) 2
Z zjk + djik(m)2)7 (527)
=i+1 =

Jj=

to be minimized is the rms reprojection error of the epipolar tangents. The cost
is minimized using theonjugate gradient methdd09], with the gradient vector
computed by finite differences using a delta chang&0of for each parameter.

Typically, the cost is less than 0.2 (pixels) at the end of the optimization.

5.6.4 Registration of the General Motion

The 6 motion parameters for the optimization of the general motion are initialized
by observing the projection of the 3D model built from the circular motion, as de-
scribed in Section 5.5. This is achieved by using a user-friendly interface in which
the rotation and translation of the camera are controlled by the mouse movement.

Usually, an initialization obtained by this method gives a very small rms reprojec-
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tion error of just a few pixels, and is good enough to avoid local minima and allow
convergence to the global minimum in a few iterations.

During each iteration of the optimization, the projection maRixof the ar-
bitrary general view is formed using the current estimate of the motion parame-
ters. For each view, with projection matrixP ;, in the estimated circular motion
sequence, a fundamental math; is computed fromP; and P; using equa-
tion (2.15) and the reprojection errafg; (m’), d;jo(m’), d;;;(m') andd;;;(m’)
are determined. The cost function of general motion for viés\then given by
S fi Yo (dije(m)? + djge (m)?)

4 fi ’

whereN is the number of views in the estimated circular motion sequencapand

Costgm(m') =

(5.28)

consists of the 6 motion parameters for the arbitrary general meiose pose is
to be estimated. The coefficiefyl; is determined by the availability of the 2 outer
epipolar tangents between viewandj (see Section 5.3). Itis O if the baseline
between views and; passes through the object, otherwise it is 1. Similar to
the circular motion case, the cdSbst,,(m') is the rms reprojection error of the
epipolar tangents, and is minimized using the conjugate gradient method with the
gradient vector computed by finite differences.

The complete process of generating 3D model from 2D silhouettes is summa-

rized in algorithm 5.1.

5.7 Degenerate Case

A degenerate case for the estimation of circular motion occurs when the object
being viewed is a surface of revolution and is being rotated about its axis of revo-

[ution. In this situation, there will be no relative motion of the silhouettes. In fact,
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Algorithm 5.1 Generation of 3D model from silhouettes.
extract the silhouettes using cubic B-spline snakes;

initialize 1, 1;, and theN — 1 angles for the circular motion;
while not convergedlo
for each viewi do
form the fundamental matrices with the next 2 views;
determine the reprojection errors of the epipolar tangents;
end for
compute the cost for the circular motion using (5.27);
update theV + 2 motion parameters to minimize the cost
using conjugate gradient method;
end while

form the set of fundamental matrices from the estimated motion parameters;
upgrade the fundamental matrices to essential matrices
using the camera calibration matrix;
decompose the essential matrices to form the projection matrices;
build an initial 3D model of the object
by an octree carving technique (see Chapter 6 for details);
extract a triangulated mesh from the octree
using the marching cubes algorithm (see Chapter 6 for details);

for each arbitrary general viendo
initialize the6 motion parameters with the aid of the initial 3D model;
while not convergedlo
for each view; in the estimated circular motion sequerime
form the fundamental matrik;;;
determine the reprojection errors of the epipolar tangents;
end for
compute the cost for the general motion using (5.28);
update theés motion parameters to minimize the cost
using conjugate gradient method,;
end while
end for
refine the 3D model using the estimated general views;
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the silhouettes observed from all viewpoints will be identical, and hence they pro-
vide no cues for motion. In [105], Pollick studied human perception of structure
and motion from silhouettes, and reported similar results from the human subjects

of his experiments.

This degenerate situation can be better understood by considering the parallax-
based technique, where the silhouettes are first registered by the harmonic homol-
ogy W associated with the circular motion, followed by the computation of the
epipoles using common tangents to the registered silhouettes. When the axis of
rotation coincides with the revolution axis of the surface of revolution, the sil-
houettes of the surface will be invariant to the harmonic homoMgysee Sec-
tion 3.4) and hence the registration has no effect on the silhouettes. All the silhou-
ettes will remain being identical, and thus the epipoles can no longer be located
using common tangents. Note that such a degenerate case also occurs when the

object is justocally a surface of revolution at either ends.

The degenerate situation mentioned above can be easily avoided by simply
ensuring that the revolution axis of the surface does not coincide with the axis of
rotation. Experiments show that better and more stable results can be obtained
by placing the object further from the rotation axis, and typically the degenerate
case disappears when the images of the revolution axis and the rotation axis are

separated by a distance of about 50 pixels [96].

5.8 Experimentsand Results

The first experimental sequence consisted of 18 images of a polystyrene head

model taken under controlled circular motion (see figure 5.10). Each image was
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taken after rotating the model 29° on a hand-operated turntable with a resolu-
tion of 0.01°. The circular motion was estimated using the algorithm described

in Section 5.6.3. Note that neither the knowledge of the rotation angles nor the
fact that it was a closed sequence was used in estimating the motion. Figure 5.11
shows the initial and final configurations of the image of the rotation axis and the
horizon. Table 5.1 shows the estimated rotation angles between adjacent images
and their errors. It can be seen from table 5.1 that the errors in the rotation angles
ranged fron0.0077° to 0.4001°, and the rms error of the rotation angles was only
0.2131°. The resulting camera poses and the 3D model built from the estimated

motion are shown in figure 5.12 and figure 5.13 respectively.

Table 5.1: Estimated rotation angles between adjacent images.
| views | rotation angle] error || views | rotation angle] error |

1-2 19.8856° —0.1144° || 10-11| 20.1026° +0.1026°
2-3 19.9660° —0.0340° || 11-12| 20.0241° +0.0241°
34 20.3055° +0.3055° || 12-13| 20.1651° +0.1651°
4-5 19.9707° —0.0293° || 13-14| 20.2053° +0.2053°
5—6 20.0224° +0.0224° | 14-15| 20.1401° +0.1401°
67 19.8686° —0.1314° || 15-16| 20.3132° +0.3132°
7-8 20.3860° +0.3860° || 16—-17| 20.0292° +0.0292°
8-9 20.3708° +0.3708° || 17-18| 19.5999° —0.4001°
9-10 19.9923° —0.0077°

The second experimental sequence consisted of 15 images of a Haniwa (large
hollow baked clay sculpture placed on ancient Japanese burial mounds), of which
the first 11 images were taken under unknown circular motion of the Haniwa, and
the last 4 were taken under unknown general motion (see figure 5.14). The circu-
lar motion was first estimated using the algorithm described in Section 5.6.3. The

3D model built from the estimated circular motion alone is shown in figure 5.15.
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Figure 5.10: Eighteen images of a polystyrene head model under controlled cir-
cular motion. Each image was taken after rotating the mode0byn a turntable

with a resolution 00.01°. Note that the head model is locally close to a surface
of revolution at the top and bottom. In order to avoid the degenerate situation
mentioned in Section 5.7, it was therefore placed further from the axis of rotation.



5.8. EXPERIMENTS AND RESULTS 105

-1000 -

=500

500

1000 -

I I L b I I
-1000 -500 0 500 1000 1500

Figure 5.11: The initial (in dash lines) and final (in solid lines) configurations of
the image of the rotation axls and the horizot,.
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Figure 5.12: Camera poses estimated from the polystyrene head sequence.
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Figure 5.13: 3D model of the polystyrene head built from the estimated circular
motion.
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The gaps between the legs were not carved away since they never appeared as
part of the silhouettes, and textures were missing in areas (top and bottom) which
were invisible under circular motion. The last 4 views were then registered using
the general motion algorithm described in Section 5.6.4. Figure 5.16 shows the
refined model after incorporating the 4 arbitrary general views. The model was
now fully covered with textures and showed great improvements in shape, espe-
cially in the front, back and top views. The resulting camera poses are shown in

figure 5.17.

Figure 5.14: Fifteen images of a Haniwa, of which the first 11 images (top 3 rows)
were taken under unknown circular motion of the Haniwa, and the last 4 images
(bottom row) were taken under unknown general motion.

The third experimental sequence consisted of 13 images of a human head,

of which the first 10 images were taken under unknown circular motion of the



108 CHAPTER 5. MOTION ESTIMATION FROM SILHOUETTES

Figure 5.15: 3D model of the Haniwa built from the estimated circular motion
alone. The gaps between the legs were not carved away since they never appeared
as part of the silhouettes, and textures were missing in areas (top and bottom)

which were invisible under circular motion.
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Figure 5.16: Refined model of the Haniwa after incorporating the 4 arbitrary gen-
eral views. The model was now fully covered with textures and showed great
improvements in shape, especially in the front, back and top views.
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Figure 5.17: Camera poses estimated from the Haniwa sequence.

camera, and the last 3 were taken under unknown general motion (see figure 5.18).
The circular motion was, again, first estimated using the algorithm described in
Section 5.6.3. The 3D model built from the estimated circular motion alone is
shown in figure 5.19, with textures missing at the top of the head and under the
chin. The last 3 views were then registered using the general motion algorithm
described in Section 5.6.4, and the refined model after incorporating the 3 arbitrary
general views is shown in figure 5.20. The top of the head and the chin were now
covered with textures. The resulting camera poses are shown in figure 5.21.

The fourth experimental sequence consisted of 9 images of a Haniwa taken
in front of a calibration grid (see figure 5.22), and was used for quantitative eval-
uation. Each view in the sequence was calibrated independently using the DLT
technique followed by an optimization which minimized the reprojection errors

of the corner features from the calibration grid. The algorithm for estimating the
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Figure 5.18: Thirteen images of a human head, of which the first 10 images (top
3 rows) were taken under unknown circular motion of the camera, and the last 3
images (bottom row) were taken under unknown general motion.
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Figure 5.19: 3D model of the human head built from the estimated circular motion
alone. Textures were missing at the top of the head and under the chin.
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Figure 5.20: Refined model of the human head after incorporating the 3 arbitrary
general views. The top of the head and the chin were now covered with textures.
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Figure 5.21: Camera poses estimated from the human head sequence.

pose of an arbitrary general view, as described in Section 5.6.4, was then used
to register thed®* view using different subsets of the first 8 images. The results
are presented in table 5.2 which shows the rms reprojection errors of the corner
features from the calibration grid in t9¢" view. Though the errors resulted from

the motion estimated using epipolar tangents were not as small as that from the
calibration using the calibration grid (which directly minimized the reprojection
errors of those corner features), the results were indeed very good since only 6-16
epipolar tangent points had been used, compared with 192 corners used in the case
of calibration using the calibration grid. Besides, the cameras were positioned rel-
atively far from the Haniwa so as to keep the calibration grid visible inside the
images. As a result, each silhouette of the Haniwa occupied only a very small
region of the image and this limited the accuracy that could be achieved by the

algorithm.
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Figure 5.22: Nine images of a Haniwa in front of a calibration grid used for quan-
titative evaluation.

Table 5.2: Reprojection errors (in pixels) of th@2 corner features from the cali-
bration grid.

motion estimated from: | reprojection error:
silhouettes | no. of rms
inviews | tangent pts (in pixels)
1-3 6 1.1824
1-4 8 0.9407
1-5 10 0.8858
1-6 12 0.7311
1-7 14 0.7856
1-8 16 0.7963
ground truth| corners rms (in pixels)
calib. grid 192 0.3853
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The fifth experimental sequence consisted of 10 images of a human head ac-
quired from an imperfect circular motion of the camera (see figure 5.23). Due
to vibration of the rotating arm to which the camera was attached, the camera
wobbled up and down during the circular motion. The camera poses, obtained by
applying the algorithm described in Section 5.6.3 for circular motion, are shown
in figure 5.24, and the resulting 3D model is shown in figure 5.25. As shown in
figure 5.24, the camera was constrained to follow a perfect circular path. How-
ever, since the camera did not actually follow a circular path, the reconstructed
head model was highly distorted. These camera poses were then iteratively re-
fined by applying the general motion algorithm. Each view in the sequence was
taken in turn and registered using the rest of the views, and the process was re-
peated until there were no further improvements in the reprojection errors of the
epipolar tangents. The refined camera poses showed the wobbliness of the actual
camera motion (see figure 5.27). The 3D model built from the refined motion is
shown in figure 5.26, and it showed great improvements over the model shown in

figure 5.25.

The last experimental sequence consisted of 14 images of an outdoor sculpture
acquired by a hand-held camera (see figure 5.28). An approximate circular motion
of the camera was achieved by using a string which was fixed to the ground by a
peg at one end. A circular path on the ground was then obtained by rotating the
free end of the string about its fixed end. Each image in the sequence was acquired
by positioning the camera roughly at a fixed height above the free end of the (ro-
tating) string, and pointing it towards the sculpture. Note that since the camera
center, the string and the rotation axis were roughly coplanar, the image of the

string in each image provided a very good estimate for the image of the rotation
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Figure 5.23: Ten images of a human head acquired from an imperfect circular
motion of the camera. Due to vibration of the rotating arm to which the camera
was attached, the camera wobbled up and down during the circular motion.

" T

Figure 5.24: Camera poses obtained by assuming circular motion.
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Figure 5.25: 3D model of the human head built from the estimated circular mo-
tion. Since the camera did not actually follow a circular path, the reconstructed
head model was highly distorted.

L R X
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Figure 5.26: 3D model of the human head built from the refined motion.
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Figure 5.27: Camera poses obtained by iteratively refining the camera poses from
the estimated circular motion using the general motion algorithm. The refined
camera poses showed the wobbliness of the actual camera motion.

axisl. Although the camera center roughly followed a circular path, the orienta-
tion of the camera was unconstrained and hence the image of the rotatidp axis
and the horizo, were not fixed throughout the image sequence. In order to allow
the camera motion to be estimated using the circular motion algorithm described
in Section 5.6.3, the images were first rectified using the technique described in
Section 4.6.2 so that the image of the string (i.e. the image of the rotation axis)
became a fixed vertical line passing through the principal point throughout the
sequence. A transformation induced by a rotation abouttaeis of the camera

was then applied to each image so that the image of the fixed end of the string
became a fixed point oly throughout the rectified sequence (see figure 5.29).
The resulting image sequence resembled a circular motion sequence, in which
the horizonly,, the image of the rotation axls, and the special vanishing point

v, were fixed (see figure5.30). The algorithm for circular motion estimation was

then applied to this rectified sequence, and the resulting camera poses were then
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iteratively refined by applying the general motion algorithm. The final camera
poses estimated from the rectified sequence are shown in figure 5.31, and the 3D

model built from the estimated motion is shown in figure 5.32.

Figure 5.28: Fourteen images of an outdoor sculpture acquired by a hand-held
camera. Although the camera center roughly followed a circular path, the orien-
tation of the camera was unconstrained and hence the image of the rotation axis
and the horizon were not fixed throughout the image sequence.

5.9 Discussions

In this chapter, a complete and practical system for generating high quality 3D
models from 2D silhouettes is presented. The input to the system is an image
sequence of an object under both unknown circular motion and unknown general

motion. The circular motion is exploited to provide a simple parameterization of
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Figure 5.29: (a) The images of the string in the outdoor sequence did not coincide,
and this implied that the image of the rotation axis was not fixed throughout the
sequence. (b) The images were rectified so that the image of the string became a
fixed vertical line passing through the principal point of the camera and the image
of the fixed end of the string became a fixed point throughout the sequence.

Figure 5.30: The rectified sequence resembled a circular motion sequence in
which the horizorl,, the image of the rotation axis, and the special vanish-
ing pointv, were fixed.
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Figure 5.31: Camera poses estimated from the rectified outdoor sculpture se-
quence.

the fundamental matrix relating any pair of views in the circular motion sequence.
Such a parameterization greatly reduces the dimension of the search space for the
optimization problem, which can now be solved using only the 2 outer epipolar
tangents. The parameterization also leads to a trivial initialization of the param-
eters which all bear physical meanings (i.e. image of rotation axis, horizon and
rotation angles). In the case of complete circular motion with dense image se-
guence, the harmonic homology associated with the image of the surface of rev-
olution swept by the rotating object can be exploited to obtain the image of the
rotation axis conveniently and independently.

The incorporation of arbitrary general views reveals information which is con-
cealed under circular motion, and greatly improves both the shape and textures
of the 3D models. It also allows incremental refinement of the 3D models by
adding new views at any time, without the need of setting up the exact, identi-
cal scene carefully. The registration of general motion using circular motion (or
alternatively 3 or more known views) avoids the problems of local minima and

nontrivial initialization, which exist in every algorithm for general motion esti-
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Figure 5.32: 3D model of the outdoor sculpture built from the estimated motion.
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mation using silhouettes. Like the algorithm for circular motion estimation, the
registration of the general motion requires only the 2 outer epipolar tangents. In
the case of approximate (imperfect) circular motion, the motion can be estimated
by first assuming circular motion. The camera poses obtained from the circular
motion algorithm are then iteratively refined by using the general motion algo-
rithm. Since only silhouettes have been used in both the motion estimation and
model reconstruction, no corner detection nor matching is necessary. This means
that the system is capable of reconstructing any kind of objects, inclsdiogth
andtexturelessurfaces. Experiments on various objects had produced convincing

3D models, demonstrating the practicality of the system.
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Chapter 6

Reconstruction from Silhouettes:
| mplementation

“| can’t work without a model.

- Vincent van Gogh.

6.1 Introduction

In Chapter 5, a complete and practical system for generating high quality 3D mod-
els from 2D silhouettes has been introduced. The system can be decomposed into
2 modules, namely thmotion modulend thestructure moduleThe motion mod-

ule is responsible for estimating the camera motion from the silhouettes, whereas
the structure module is responsible for producing 3D models from the silhouettes
and the estimated camera poses. The algorithms and implementations for mo-
tion estimation from silhouettes, which form the core of the motion module, have
been presented in Chapter 5. This chapter studies the problem of model recon-
struction from silhouettes, and gives the algorithms and implementation details
for the structure module. Results on real data are presented, showing the qual-

ity of the reconstruction, as well as the quality of the motion estimated using the

127
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techniques introduced in Chapter 5.

A survey of the literature on model reconstruction from silhouettes is given
in Section 6.2. Section 6.3 briefly reviews the octree representation, and an effi-
cient algorithm for constructing an octree using silhouettes from multiple views
is presented in Section 6.4. Section 6.5 gives the implementation details for the
silhouette extraction and intersection test. The extraction of a triangulated mesh
from the octree is then described in Section 6.6. Experimental results on real data

are presented in Section 6.7, followed by discussions in Section 6.8.

6.2 PreviousWorks

The surface reconstruction of smooth objects from silhouettes was pioneered by
Giblin and Weiss [46]. Under the assumption of orthographic projection, they
demonstrated that a surface can be reconstructed from the envelope of all its tan-
gent planes computed directly from the family of silhouettes of the surface under
planar viewer motion. Cipolla and Blake [24] extended the studies of Giblin and
Weiss to curvilinear viewer motion under perspective projection, and developed
the osculating circle methoby introducing theepipolar parameterizationVail-

lant and Faugeras [134] developed a similar technique in which the surface is
parameterized by theadial curvesinstead of theepipolar curves Based on the
osculating circle method, Szeliski and Weiss [125] used a linear smoother to com-
pute epipolar curves on the whole surface together with an estimate of uncertainty,
and reported improvements in the reconstruction. In [12], Boyer and Berger de-
rived a depth formulation from a local approximation of the surface up to order

two for discrete motion. In [140], Wong et al. developed a simple technique based
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on a finite-difference implementation of [24]. Despite its simplicity, the method
developed in [140] was reported to produce results comparable to those in [24]
and [12].

The volume intersection technique for constructing volumetric descriptions of
objects from multiple views was first proposed by Martin and Aggarwal [90], who
introduced thevolume segmemepresentation. In [21], Chien and Aggarwal pre-
sented an algorithm for generating an octree of an object from 3 orthogonal views
under orthographic projection. Their work was further developed by Ahuja and
Veenstra [2], who extended the algorithm to handle images from any subset of 13
standard viewing directions. In [56], Hong and Shneier introduced a technique for
generating an octree from multiple arbitrary views under perspective projection.
Their approach first constructs an octree for each image by projecting the octree
cubes onto the image and intersecting their projections with the silhouette, and
the final octree of the object is given by the intersection of the octrees obtained
from all images. In [108], Potmesil described a similar approach in which the im-
ages are represented fQyadtreedo facilitate the intersection of the projections
of the cubes with the silhouettes. Other similar approaches also include [103]
and [120], where the octree for each image is constructed by intersecting, in 3D
space, the octree cubes with the polyhedral cone formed from the back-projection
of the silhouette. In [124], Szeliski introduced an efficient algorithm which con-
structs an octree in a hierarchical coarse-to-fine fashion. His approach is similar
to that of [108], except that only a single octree is constructed using all the images
simultaneously.

In this chapter, the volume intersection approach is chosen due to its ability

to describe objects with more complex topologies (e.g. object with holes). Based
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on [124], an algorithm for generating an octree using silhouettes from multiple
views is presented. The main difference between the work presented in [124] and
the technique developed here is that instead of usibhgakground subtraction
technique as described in [124], the object/background binary images are com-
puted directly from the B-spline snakes which are used to extract and represent
the silhouettes during motion estimation (see Chapter 5). The sub-pixel accuracy
of the B-spline snakes allows a binary image to have a resolution higher than the
original image, and this may help to improve the cube classification when the ob-
ject is relatively small in the image. For the sake of display, a triangulated mesh
is extracted from the octree, and the colors of the vertices in mesh are estimated

from the original images.

6.3 Octree Representation

An octree [63, 92] is a tree data structure in which each non-leaf node has at most
8 child nodes. It is commonly used in computer graphics to provide a volumetric
representation of an object, where each node in the tree represemtslévol-

ume element) in space. The root node of the octree consists of a single large voxel
which defines the bounding volume of the object. The octree is constructed by
recursively subdividing each voxel in the tree into 8 sub-voxels, which are repre-
sented by the 8 child nodes. Each node in the tree is assigned one of the 3 colors
(black, gray and white) according to its occupancy.black noderepresents a
voxel which is totally occupied, gray noderepresents a voxel which is partially
occupied, and ahite noderepresents a voxel which is completely empty. Note

that both black and white nodes do not have any child node, and hence they are
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leaf nodes in the tree. A gray node is an interior node in the tree, which has child
nodes with different colors. It represents a voxel which lies on the boundary (sur-
face) of the object. Figure 6.1 shows a simple volume represented by an octree
and the corresponding tree structure with colored nodes. Further details on octree

representations, constructions and manipulations can be found in [18, 20, 113].

13 1 3
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Figure 6.1: A simple volume represented by an octree and the corresponding tree
structure with colored nodes.

In the implementation presented in this chapter, the voxels are cubes and each
subdivision produces 8 identical sub-cubes. Each node in the octree stores the
color (occupancy), the length, and the 3D coordinates of the center of the cube
it represents. It also contains pointers to its child nodes, if there are any. In
addition, each node also stores an 8-bit index which represents the occupancy
of the 8 corners of the cube (see figure 6.2). This 8-bit index is used to index
into a lookup table during the marching cubes algorithm [80] for extracting a
triangulated mesh from the octree. In order to allow fast access to the cubes in
a particular level, all cubes in the same level are stored in a level-list and all the

level-lists are kept in an array.
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Figure 6.2: An 8-bit index indicating the occupancy of the 8 corners of a cube. A
bit is set to 1 if the corresponding corner is occupied, otherwise it is set to O.

6.4 Octree Construction from Multiple Views

For the purpose of generating an octree from silhouettes, the interpretation of the
colors used in the octree representation is slightly modified. A black node here
represents a cube which lies completely inside the object, a white node represents
a cube which lies completely outside the object, and a gray node represents a cube

which is ambiguous.

The root node of the octree is first initialized as a single gray cube which
completely encloses the object. To refine the octree, a new level is first formed by
subdividing each gray cube in the finest level into 8 sub-cubes. Note that black
and white cubes do not need to be subdivided since all their child nodes will have
the same classifications as their parent nodes. Initially, all the cubes in the new
level are assumed to be completely inside the object and are assigned the black
color, and the 8-bit index of each cube is set to 255. The cubes are then projected
onto each image and tested for intersection with the silhouette so as to determine

their occupancy and have their colors updated accordingly.

Each cube in the new level is projected onto each image in the sequence using
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the associated projection matrix. If its projection lies completely outside the sil-
houette in the current image, it must lie completely outside the object. It is then
assigned the white color and further checking against other images is not neces-
sary. If its projection lies partially inside the silhouette in the current image, it
must lie close to the boundary of the object. Its color is then updated to gray to
indicate that its occupancy is ambiguous, and thus further refinement is needed.
Finally, if its projection lies completely inside the silhouette in the current image,
its occupancy cannot be determined and hence it just keeps its current color. If the
cube remains being black after checking its projections against all the silhouettes,
it must then lie completely inside the object. Note that the color of a cube can
only change from black to gray, from back to white, or from gray to white. This

is because cubes can only be removed or “carved away” from the octree.

The above refinement process is repeated until there is no gray cube in the
finest level, or, in practice, a preset resolution level is reached. The algorithm
for generating an octree using silhouettes from multiple views is summarized in
algorithm 6.1. This algorithm is very efficient in that white cubes are identified
in the earliest possible stage, and thus it avoids all unnecessary cube projections,
intersection tests and cube subdivisions. Since only gray cubes in the finest level
are being considered and refined during each iteration of the refinement process,
care must be taken not to classify a cube as black (i.e. completely inside) or white
(i.e. completely outside) unless this is certain. On the contrary, if a black or white
cube is wrongly assigned the gray color, it only indicates that the occupancy of the
cube is ambiguous and the cube will be reconsidered and refined in the next level.
The implementation details for the silhouette extraction and intersection test are

given in the next section.
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Algorithm 6.1 Octree construction using silhouettes from multiple views.
initialize the root node of the octree as a single gray cube
that completely encloses the object;

while max level not reachedo
if no gray cube in the finest leviien
break thewhile-loop;
end if
for each gray cube in the finest levds
subdivide it into 8 sub-cubes;
for each sub-cubdo
set its color to black;
set its 8-bit index to 255;
for each image in the sequende
project the cube onto the image
using the associated projection matrix;
if the projection lies completely outside the silhouétten
update the cube’s color to white;
break the innefor-loop;
elseif the projection lies partially inside the silhouetteen
update the cube’s color to gray;
else
keep the current color of the cube;
end if
end for
end for
end for
end while
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6.5 Silhouette Extraction and I ntersection Test

In Chapter 5, closed cubic B-spline snakes are used to extract and represent the
silhouettes from the image sequence. In this chapter, for the sake of the inter-
section test, the silhouettes are represented by object/background binary images
where object pixels and background pixels are represented by 1s and 0Os respec-
tively. Instead of using background subtraction techniques [121, 127, 62], the
binary images are computed directly from the B-spline snakes which are obtained
during the motion estimation stage (see Chapter 5). The sub-pixel accuracy of the
B-spline snakes allows a binary image to have a resolution higher than the orig-
inal image, and this may help to improve the cube classification when the object
is relatively small in the image. For each B-spline snake in a image, a binary
image at a chosen resolution, with the region enclosed by the snake filled with
1s, is constructed using some conventional graphics drawing routines. The ob-
ject/background binary image is then obtained by combining these binary images

using “xor” (see figure 6.3).

To classify a cube in the octree, the 8 corners of the cube are first projected
onto the binary image, and the 8-bitindex of the cube is updated by setting the bits
corresponding to those corners which are projected onto background pixels to 0s.
The projection of the cube, which is a hexagon in general, is then approximated
by its bounding box computed from the projections of the 8 corners, and the pixels
of the binary image within the bounding box are examined. If the bounding box
is completely occupied (i.e. all pixels are 1s), the projection of the cube must
also be completely occupied. Similarly, if the bounding box is completely empty

(i.e. all pixels are 0s), the projection of the cube must also be completely empty.
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(b) (€)

(d) (e) (f)

Figure 6.3: (a) The original image of a miniature David statue. (b) The silhouette
is extracted and represented by 3 closed B-spline snakes. (c)—(e) A binary image
is formed from each of the B-spline snakes. (f) The object/background binary
image is obtained by combining the binary images in (c)—(e) using “xor”.

Since the bounding box is always bigger than or equal to the actual projection of
the cube, there maybe chances when the bounding box is only partially occupied
whereas the actual projection of the cube is completely occupied or completely
empty (see figure 6.4). In such situations, the cube will be classified as ambiguous.
Nonetheless, this only postpones the classification of the cube and causes no harm

to the algorithm (see Section 6.4).

6.6 Surface Extraction and Coloring

In order to allow the reconstructed 3D model to be displayed efficiently with con-
ventional graphics rendering algorithms (implemented either in hardware or soft-
ware), a triangulated mesh is extracted from the octree using standard marching

cubes algorithm [80]. Due to its practicality and simplicity, the marching cubes
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(@) (b) (€) (d)

Figure 6.4: (a) If the bounding box is completely occupied, so is the projection
of the cube. (b) If the bounding box is completely empty, so is the projection
of the cube. (c) The bounding box is partially occupied but the projection of the
cube is completely occupied. (d) The bounding box is partially occupied but the
projection of the cube is completely empty.

algorithm has been widely using for visualizing volumetric data like those pro-
duced from computed tomography (CT), magnetic resonance (MR) and single-
photon emission computed tomography (SPECT). The marching cubes algorithm
uses the occupancy information of the 8 corners of a cube to determine how the
surface intersects the edges of the cube, and produces triangle patches that best
approximate the surface. Since there are 8 corners in a cube and each corner
can either be inside or outside the surface, there are tdtélly: 256 ways a
surface can intersect the cube. By complementary symmetry and rotational sym-
metry considerations, Lorensen and Cline [80] showed that these 256 cases can
be reduced to 15 patterns for which they developed explicit triangulations (see
figure 6.5). A lookup table consisting of the triangulation information for the 256
cases was then built from the permutation of these 15 basic patterns. An 8-bit
index, constructed from the occupancy information of the 8 corners of a cube (see
figure 6.2), is used to index into this lookup table to produce triangle patches for

that cube.

To extract surface triangles from the octree, the 8-bit index of each gray cube
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0 1 2
3 4 q 5
6 7 i 8
P
9 10 Pl 11
-
12 13 *? 14

Figure 6.5: Fifteen patterns of triangulated cubes for the marching cubes algo-
rithm.
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in a particular level can be used to index directly into the lookup table to pro-
duce triangle patches for that cube. However, this approach makes it difficult to
maintain the connectivity information between vertices, edges and triangles in the
mesh. In the implementation presented in this chapter, a 3D voxel array is first
constructed from the octree and the marching cubes algorithm, with a modified
lookup table [98] which prevents the creation of holes in the surface [37], is then
applied to produce a triangulated mesh. In the original implementation [80] of the
marching cubes algorithm, the surface intersection along each edge of a cube is
obtained by linear interpolation using the data at the 2 corners. Since the octree
only contains binary data, linear interpolation is not necessary and the surface in-
tersection is simply approximated by the midpoint of the edge [97]. In order to
reduce the jaggedness in appearance resulting from the midpoint approximation,
each vertex in the mesh is smoothed locally by taking the mean position of its
directly connected neighboring vertices. The normal vector of each vertex is then
taken as the mean of the normal vectors of those triangles which contain that ver-
tex, and the color of the vertex is computed as the weighted average of the color

values of its projections on all views. The weighting facaigns given by

w; = { —n-d; (if visible) | (6.1)

0 (otherwise)

wheren is the unit normal vector of the vertex (pointing outwards) dnds the

unit viewing direction of view.

6.7 Experimentsand Results

The experimental sequence consisted of 19 images of a miniature David statue, of

which the first 18 images were taken under unknown circular motion of the statue,
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and the last image was taken under unknown general motion (see figure 6.6). The
camera motion was estimated from the silhouettes using the algorithms presented
in Chapter 5 for circular and general motion, and the resulting camera poses are
shown in figure 6.7. An octree was constructed from the silhouettes and the es-
timated camera motion using the algorithms presented in this chapter. Figure 6.8
shows the resulting octree at different levels, together with the number of cubes in
each level. It can be seen from figure 6.8 that the number of cubes grew roughly
by a factor of 4 after each level of refinement. This was consistent with the find-
ings of Meagher [92] and Szeliski [124] that the number of cubes is proportional
to the surface area of the object measured in units of the finest resolution. Two
surface models obtained by applying the marching cubes algorithm to level 7 and
level 8 of the octree are shown in figure 6.9 and figure 6.10 respectively. The
model extracted from level 7 of the octree had only 27,720 triangles and was
suitable for real time rendering, whereas the model extracted from level 8 of the
octree was composed of 113,384 triangles and hence had a much higher resolu-
tion. The difference in resolution of the 2 surface models can be seen more clearly

in figure 6.11, which shows 2 close up views of the 2 models.

Other experimental results on model reconstruction from silhouettes can be
found in Chapter 5, and the triangulated meshes of those 3D models are shown in

figures 6.12—6.16.

6.8 Discussions

In this chapter, an algorithm for model reconstruction using silhouettes from mul-

tiple views is presented. The implementation is based on an octree carving tech-
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Figure 6.6: Nineteen images of a miniature David statue, of which the first 18
images were taken under unknown circular motion of the statue, and the lastimage
was taken under unknown general motion.

T
i:g RN 3 ﬂﬂ,:m
N g e

Figure 6.7: Camera poses estimated from the miniature David statue sequence.
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JH &

Iv O (1 cube) Iv 1 (8 cubes) Iv 2 (32 cubes)

Iv 3 (80 cubes) Iv 4 (400 cubes) Iv5 (1,664 cubes)

Iv 6 (7,160 cubes) Iv 7 (30,056 cubes) Iv 8 (120,592 cubes)

Figure 6.8: An octree constructed from the silhouettes and the estimated camera
motion of the miniature David statue sequence. The number of cubes in each level
includes all black, gray and white cubes, whereas only gray cubes are drawn.
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~ -

Figure 6.9: Surface model of the miniature David statue extracted from level 7 of
the octree. This model was composed of 27,720 triangles.

Figure 6.10: Surface model of the miniature David statue extracted from level 8
of the octree. This model was composed of 113,384 triangles.
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Y 4

level 7 level 8

Figure 6.11: Two close up views of the surface models shown in figure 6.9 and
figure 6.10. It can been seen that the model extracted from level 8 of the octree
had a higher resolution and showed more details of the surface.

nigue introduced in [124], with a few modifications to make it fit into the frame-
work of the model building system introduced in Chapter 5. In particular, instead
of using background subtraction techniques, the object/background binary images
for the intersection tests are computed directly from the B-spline snakes, which are
used to extract and represent the silhouettes during motion estimation. In addition
to the colors of the cubes, the occupancy information of the 8 corners of each cube
in the octree has been computed during the octree construction. This information
allows a triangulated mesh to be extracted from the octree conveniently using
standard marching cubes algorithm. Such a triangulated mesh can then be dis-
played efficiently with conventional graphics rendering algorithms. Experimental
results show that the algorithm is capable of reconstructing objects with relatively
complex topologies (like object with holes). Like any other silhouette-based re-

construction technique, the model produced here is only the visual hull [73, 74] of



6.8. DISCUSSIONS 145

LTuTAT AT

Figure 6.12: Triangulated mesh of the polystyrene head model. This model was
composed of 26,696 triangles.
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Figure 6.13: Triangulated mesh of the Haniwa model. This model was composed
of 12,028 triangles.
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Figure 6.15: Triangulated mesh of th&? human head model. This model was
composed of 37,404 triangles.
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Figure 6.16: Triangulated mesh of the outdoor sculpture model. This model was
composed of 29,672 triangles.
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the object with respect to the set of viewpoints from which the image sequence is
acquired. In order to reconstruct concavities in the object, techniquesdaee
carving[72, 14] which exploit texture information should be used. An even better
approach is to use both silhouettes and texture information, as proposed by Cross
and Zisserman [32]. In spite of that, the system introduced in Chapter 5 aims at
recovering the structure and motion of an object from its silhouettes alone. By
not depending on texture information, the system is capable of reconstructing any

kind of objects, includingmoothandtexturelessurfaces.



Chapter 7

Conclusions

“This is not the beginning of the end, but it is the end of the begirining.
- Winston Churchill.

7.1 Summary

This thesis has presented theoretical and practical solutions to the problem of
structure and motion from silhouettes. Novel algorithms for camera calibration,
motion estimation and shape recovery have been developed from the analysis of
the projective invariant of surfaces of revolution and the epipolar constraint be-
tween the silhouettes of an arbitrary object. Based on these algorithms, a com-
plete, practical and easy-to-use system has been built for generating high quality
3D models from 2D silhouettes. A brief summary of the algorithms and tech-
nigues introduced is given below.

In this thesis, the projective invariant of surfaces of revolution has been stud-
ied. It has been shown that under perspective projection, the silhouette of a surface
of revolution will be invariant to a harmonic homology. Such a harmonic homol-

ogy can be exploited in 2 ways. First, it has been shown that the axis and the

151
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center of such a harmonic homology are related by the dual image of the absolute
conic, and hence they provide 2 constraints on the intrinsic parameters of a cam-
era. Based on this observation, a simple technique for camera calibration has been
developed in Chapter 3, which allows a camera to be calibrated from 2 or more
silhouettes of surfaces of revolution. Second, the intrinsic parameters of the cam-
era and the harmonic homology can be exploited to rectify the image so that the
silhouette becomes bilaterally symmetric about gkaxis. This corresponds to
normalizing and rotating the camera until the axis of the surface of revolution lies
on they-z plane of the camera coordinate system. A simple algorithm, based on
the coplanarity constraint between the surface normal and the revolution axis, has
been developed in Chapter 4 for recovering the 3D shape of a surface of revolu-
tion from its rectified silhouette up to an 1-parameter ambiguity. This 1-parameter
ambiguity in the reconstruction corresponds to the 1-parameter ambiguity in the

orientation of the revolution axis on thez plane.

The problem of motion estimation has been tackled in Chapter 5. In the case of
circular motion, the 3 main image features, namely the image of the rotation axis,
the horizon and a special vanishing point, are fixed throughout the sequence, and
the fundamental matrix can be parameterized explicitly in terms of these features.
Such a parameterization allows a trivial initialization of the parameters which all
bear physical meanings (i.e. image of rotation axis, horizon and rotation angles).
It also greatly reduces the dimension of the search space for the optimization
problem, which can now be solved using only the 2 outer epipolar tangents. The
drawbacks of using circular motion alone for model building are then overcome
by the incorporation of arbitrary general views, which reveals information that is

concealed under circular motion. It has been shown that the web of contour gen-
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erators generated by the circular motion can be exploited to register any arbitrary
general view. The coarse model built from the circular motion has been used to aid
the initialization of the registration, and again only the 2 outer epipolar tangents
are needed for the estimation of the general motion. This 2-stage motion estima-
tion technique avoids the common problems that exist in virtually every algorithm
for motion estimation from silhouettes, namely the need for a good but nontrivial
initialization, the unrealistic demand for a large number of epipolar tangent points,
and the presence of local minima.

Finally, based on an octree carving technique and the marching cubes algo-
rithm, a simple method for constructing a triangulated mesh of the surface from
the silhouettes has been described in Chapter 6. Together with the techniques de-
veloped for camera calibration and motion estimation, a complete and practical

system for generating 3D models from 2D silhouettes has been implemented.

7.2 FutureWork

Though the model building system presented in this thesis is very practical and

produces high quality 3D models, there are certainly rooms for improvements:

¢ Surface Reflectance
In the implementation presented in this thesis, the texture of the model
has been computed using an ad hoc method. In order to produce a photo-
realistic 3D model under different lighting conditions, it would be desirable

to develop algorithms for recovering the surface reflectance of the model.

e Surface Representation

The marching cubes algorithm has been employed to extract a triangulated
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mesh from the octree. Despite its extensive use in many applications, the
marching cubes algorithm often produces excessive output data fragmenta-
tion which prevents interactive rendering. A more efficient representation,

especially for smooth surfaces, is required.

Viewpoint Control

The coarse 3D model built from the circular motion contains information
about which part of the object has not yet been fully explored. This infor-
mation can be used to develop strategies to determine the viewpoints of the

new arbitrary views for model refinement.

Fusion of Information

The work described in this thesis has only used information from the silhou-
ettes to solve the structure and motion problem. Nonetheless, other image
features like corners, edges, shadows, textures and specularities also pro-
vide strong cues to surface shape and orientation. An ideal approach would
be to design a system that exploits all the information available to provide a

robust solution to the structure and motion problem.

Self-Calibration
The motion estimation algorithms presented in this work depend on off-line
camera calibration. It would be desirable if self-calibration techniques can

be incorporated into the algorithms.



Appendix A

Definition of
the Harmonic Homology

A perspective collineatiof29], with centerx, and axid,, is a collineation which
leaves all the lines througk, and points ofl, invariant. If the centex,. and the
axis1, are not incident, the perspective collineation is calleaoanology[29];
otherwise it is called amelation [29]. Consider a poink which is mapped by
a homology with centex. and axisl, to the pointx’. Let x! be the point of
intersection between the axis and a line passing through the poirtandx’'.
The homology is said to be harmonic if the poigtandx’ are harmonic conju-
gates with respect te, andx/, (i.e. the cross-ratigx,x,;x,x’'} equals—1). The
matrix W representing &armonic homology29] with centrex, and axisl,, in

homogeneous coordinates, is given by

x 1T

W:I[3—2

(A.1)

xT1,

More details on harmonic homology can be found in [117, 29].
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Appendix B

Bilateral Symmetry and
Surfaces of Revolution

Let C.(s) = [r(s) y(s) 0]T be a regular planar curve on they plane where
Irmax SUCh thah < r(s) < rmax Vs. A surface of revolution can be generated by

rotatingC, about they-axis, and is given by
) r(s) cosf
Si(s.0) =] wGs) |, (B.1)
r(s)sinf

whered is the angle parameter for a complete circle. The tangent plane basis

vectors are given by

& 7(s) cos @ & —r(s)sinf
95 = y(s) and 95 = 0 (B.2)
Os 7(s) sin O 09 r(s) cosf

respectively. Since the surface normal must be orthogonal to both tangent plane

basis vectors, it is thus given by
8S, y 8S,
ds 06
r(s)y(s) cosb
= —r(s)r(s) : (B.3)

r(s)y(s) sin b

n(s,0) =
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Consider now a pin-hole camePa= [I; t], wheret = [0 0 d.] andd, > rpax.
The silhouette of S, formed on the image plane B¥is the projection of the locus
of points onS, at which the line of sight is orthogonal to the surface normal. This

constraint can be expressed as

(Si(s,0) +t) -n(s,8) = 0
r(s) cosf r(s)y(s) cosf
( y(s) | —r(s)r(s) = 0

s)sinf + d, r(s)y(s)sinf
r(s)y(s) — 7(s)y(s) + d,y(s)sinf = 0
r(s)y(z)zy—(;(s)y(s) = sinf. (B.4)

Now by projectingS, usingP, the image of,, in homogeneous coordinates, is

given by

r(s)cosf
= y(s) : (B.5)
r(
Finally, by removing the dependency 6ffrom s, using (B.4), the silhouette is

then given by

. . 2
) i7"(8)\/1 — (%&(ﬁm)
ols) = y(s) - (8.6)
r(s)% +d,

It follows from equation (B.6) that the silhouette 8f, formed on the image plane
of P, is bilaterally symmetric about the image of the revolution dxis [100]F

(i.e. they-axis in the image).



Appendix C

Ambiguity in Reconstruction of
Surfaces of Revolution

Consider a surface of revolutidg. whose axis of revolution coincides with the
y-axis, and a pin-hole camefa = [I; t] wheret = [0 0 d,]T andd, > 0. The
silhouettep of S,, formed on the image plane &, will be bilaterally symmetric
about the image of the revolution atjs= [1 0 0]" (see Appendix B) and invariant

to the harmonic homolog¥, given by

-1 0
T = 0 1
0 O

Given a pointx(s) = [z(s) y(s) 1]T in the silhouettep, its associated surface

0
0. (C.1)
1

normaln(s) is given by
—y(s) ni(s)
nis)=|  @(s) = | m(s) | (C2)
and its depth\(s) along the optical axis is given by

d.ni(s)

Als) = ni(s) — n3(s)z(s)

(C.3)

(see Chapter 4 for details).
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Consider now a pin-hole cameR¥ obtained by rotatind® about itsz-axis

by an angle-1. HenceP?¥ = R, ()P, where

1 0 0 rl
R,(¢¥)=| 0 costp —siney | = | r3 |. (C.4)
0 sinty cosv ry

The silhouettep? of S,, formed on the image plane &Y, can be obtained by
transforming every point i by R, (¢) (i.e. p¥ = Rx()p). Letx andx’ be a
pair of symmetric points i, andx? = R,(¥)%x andx’¥ = R,(¢)%’ be their

correspondences Y. The symmetry betwees andx’ is given by
x' = Tx. (C.5)

Substitutingk andx’ in (C.5) byR;'(¢))x¥ andR(¢))x'?, respectively, gives

x = R,(¢)TR;'(¢)x"

[ -1 0 0 1 0 0
= 0 cosy —siny 0 costy sing | x¥
| 0 siny  cosy 0 —siny cosvy

1 0 0
= 0 1 0 [x¥
| 0 01
= TxY. (C.6)

Equation (C.6) implies that the silhoueft# is also invariant téI'. As a result,
given a silhouette of a surface of revolutio®, which is invariant tdT', one can

only infer that the revolution axis &, lies on they-z plane of the camera coordi-
nate system. However, the relative orientation of the revolution axis with respect
to the y-axis of the camera cannot be deduced. This results in an 1-parameter
ambiguity in the reconstruction of the surface of revolution by applying equa-

tion (C.3) to the rectified silhouette 8f that is invariant tdI'. Consider again the
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pointx(s) in p, it is transformed byR .. (¢) to the pointx¥(s) in p¥, given by

x¥(s) = % (C.7)

The denominatory x(s) in equation (C.7) is used to normaliz&(s) so that its
3rd coefficient is 1. The surface normal associated witkis) can be obtained by

transformingn(s) by R, (%), and is given by
n¥(s) = Ry (¢)n(s). (C.8)

Substituting (C.7) and (C.8) into (C.3) yields

d.rTn(s)

T
n(s) — rin(s)

(C.9)

and the resulting contour generaildt, with the 1-parameter ambiguity i, is

then given by

[ 4 U4
I"/’(s) _ t+ A 1(s)x (s) }
- _t+ d.rin(s) — Rzgi)s((s)
= r;rn(s)frg‘n(s)zl :Ez; r3X(s)
3
B 1
[ _ d;na(s) .
= b+ TG o) r (e e (V) X(5)
1
' d.5(s)a(s)
_ d.y(s)(y(s) cosyp — sinep)
N d.o¥(s) : (C.10)
| 9(s)(y(s)sine + cosyp) — aﬁ(s)

wherea?(s) = {(&(s)y(s) — z(s)y(s)) costp — i(s) sin v}z (s).
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Appendix D

Estimation of the Orientation of the
Revolution AxIs

Consider a surface of revolutid®, whose revolution axis lies on thez plane
of a pin-hole camer® — [Is Qs]. In general, a latitude circl€' in S, will be
projected onto the image plane Bfas an ellipse which is bilaterally symmetric

about they-axis. Such an ellipse can be represented Bya3 symmetric matrix

] ) (D.1)

such that every point on the ellipse satisfies"Cx = 0. Consider now a pin-

C, given by

)

Il
i
OO0
Q - O
S>SQ O

hole camera obtained by rotatind® about itsz-axis by an angle-o. Hence

P = R, ()P, where

0 sino coso

1 0 0
R,(0) = [0 cos o sino] : (D.2)
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The imageC of the latitude circleC, formed on the image plane &, can be

obtained by transforming the ellipsé by R.(0), and is given by

C = R,"(0)CR,(0)
R

e 0 0
= 0 fc? —2gsc+ hs? fsc+g(c* —s*) —hsc |, (D.3)
0 fsc+ g(c*—s*) — hsc fs? +2gsc + hc?

wherec = cos o0 ands = sin o. If the revolution axis o8, is parallel to the optical
axis (i.e.z-axis) of P, then the image& of the latitude circleC' will be a circle,

Ie.
e = fcos’o — 2gsin o cos o + hsin?o. (D.4)

Hence by locating and fitting an ellipse to the image of a latitude circkg,jn
the angles can be obtained by solving equation (D.4) and the orientation of the
revolution axis ofS, follows. Note that equation (D.4) is quadraticsim o and
cos o, and hence in general there will be 2 distinct solutions of which only one
is correct. Such an ambiguity originates from the symmetry of the ellipse, and
can be resolved either manually or by fitting 2 ellipses to the images of 2 distinct

latitude circles which in general share only one common solutioa for



Appendix E

Projective Transformations and
Surfaces of Revolution

Consider at x 4 nonsingular matrix

hll h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

Hsor = (E.1)

representing a projective transformation that maps a surface of revolution

r(s)cosf
Se(s,0) = | (g)(;)n . (E.2)
1

to another surface of revolution
r'(s") cos '
Si(,0) = | o) E3)
8, 0) = r'(s')sin@ |’ :
1

both with they-axis as their axes of revolution. Note tiHtor has the property
that it maps a latitude circle of a surface of revolution to a latitude circle of another
surface of revolution, as a latitude circle is by itself a surface of revolution in the

limiting case.
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The projective transformatioB.(s’,0") = HgsorS:(s,0) is represented, in

Cartesian coordinates, by the set of equations

hi1 cos + hiay + 7(s)hizsin € + hyy
(s cosd — T8)hu E.4
" (S )COS T(S)h41 C089+h42y—|—7’(8)h43 sin9+ h44’ ( )
(s) = 7(8)h21 cos @ + haoy + r(s)haz sin 6 + hoy (E5)

4 T(S)h41 C089+h42y—|—7’(8)h43 sin9+ h44’ '

. 7(8)hs1 cos @ + hgoy + r(s)hsz sinf + hag
"(s' g = E.6
r (S )Sln T(S)h41 cos9+h42y+r( )]’L43 s1n9+ ]’L44 ( )

SinceHgor maps a latitude circle to a latitude circlg(s’) should therefore be

dy'(s")

independent of (i.e. =5~ = 0). Hence differentiating (E.5) with respectdo

gives
0 = (h23h41 — h21h43)7"(8) +
(h22h41 — h21h42)y(s) sin 6 + (h23h42 - h22h43)y(8) cosf +
(h24h41 — h21h44) sin @ + (h23h44 — h24h43) COS 9, (E?)

which holds for all values of-(s), y(s) andd. Equation (E.7) thus yields the

following 5 constraints,

hoshg — horhys = 0, (E.8)
hoshgy — horhge = 0, (E.9)
hogshss — hoohys = 0, (E.10)
hoshay — hothas = 0, and (E.11)
hashas — hashss = 0. (E.12)

Consider now the sum of the squares of (E.4) and (E.6),

(r(s)hi1 cos 0 + hiay + r(s)hi3sin 6 + hyg)?
(r(s)hqy cos O + hasy + 7(8)hasz sin 6 + hyg)?
(7(8)hs1 cos 8 + haay + 7(8)hssz sin 6 + hy)?
(r(8)ha1 cos 0 + hgoy + 7(s)haz Sin O + hyq)?

rl(sl)2 —

(E.13)
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Since the transformatioHgog iS a point-to-point mapping;’(s’) must be zero

whenever(s) is zero. Substituting(s) = 0 andr'(s’) = 0 into (E.13) gives

(h12y(s) + h1a)?® + (hs2y(s) + h34)2‘

0= E.14
(Pa2y(s) + haa)? ( )
Equation (E.14) yields 2 constraints,
hlzy(S) + h14 = 0, and (E15)
h32y(s) + h34 = 0, (E16)

which hold for all values ofj(s). Equations (E.15) and (E.16) imply that
h12 = h14 = h32 = h34 = 07 (E17)

and the projective transformatidiisor thus has the form

hiiv 0 hiz O
hoi hos haz hos

Hsor = hat O hss O (E.18)
hay haz haz has
Substituting (E.17) into (E.13) gives
() = (r(8)h11 cos 8 + r(s)his sin )?
(r(s)hqy cos O + hasy + 7(8)haz Sin 6 + hyy)?
(7(s)hs1 cos @ + 7(s)haz sin 6)?
. : (E.19)
(r(s)hqy cos O + hasy + 7(8)haz Sin 6 + hyy)?
Without loss of generality, let
hit = Acosp and hy3 = Asinp,
h3y = —Bsinyp and hs3 = Bcosy, (E.20)
hyg = Ccos?¥ and hys = Csind,
where A # 0 andB # 0. Substituting (E.20) into (E.19) gives
2 02(f _ 220
()7 = r(s)? A? cos?(8 — o) + B?sin*(6 — ¢) (E.21)

(Cr(s) cos(6 — ) + haoy(s) + has)?
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. 17 . . dr'(s') . ‘e
Sincer'(s') should be independent éf(i.e. # = 0), hence differentiating

(E.21) with respect té gives

0 = 2A42Cr(s)sin(o — ¥)cos(f — o) +
2B%Cr(s) sin(f — ) cos(p — ) +

[B?sin(26 — 2¢) — A?sin(20 — 20)](haay(s) + has),  (E.22)
which holds for all values of(s), y(s) andd. Equation (E.22) yields 2 constraints,

C [A?sin(o — ¥) cos(8 — o) + B>sin(f — ) cos(p — J)] = 0, (E.23)

[B?sin(26 — 2¢p) — A”sin(260 — 20)] (hasy(s) + haa) = 0. (E.24)
Solving equation (E.23) yields 2 possible cases:

e casei

o = U+ km, and

o = 9+ I +km, (E.25)

wherek; andk, are any integers. Solving equation (E.24) then gives
hys = hgg = 0. (E.26)

The projective transformatioHgsor thus has the form

hii 0 hiz O
. h21 h22 h23 h24
Hsor = hay 0 hs 0 | (E.27)
hys 0 hg O

For Hgor to be nonsingular, obviously bofi,, andhs, cannot be zeros.
However, it then follows from equations (E.9)—(E.12) that = hy3 = 0,

causingHsor to be singular.
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case ii

C=0. (E.28)
Substituting (E.28) into (E.20) gives
]’L41 - h43 - 0 (E29)
The projective transformaticHsor thus has the form
hii 0 hiz O
hot has hos h
HSOR _ 21 22 23 24 (EBO)

0 hge 0 hy

For Hsor to be nonsingular, 4, andhyy cannot be both zeros at the same

time. It then follows from equations (E.9)—(E.12) that

]’L21 - h23 - 0 (E31)
Finally, solving equation (E.24) gives
0 v, and (E.32)
A +B. (E.33)
Hence the projective transformatidfsor has the form
cosp 0 sinp O
i 0 ]’Ll 0 h2 hl h2
HSOR = - sin 0 0 =+ cos 0 0 y where h3 ]’L4 7é 0. (E34)
0 hs 0 hy
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Appendix F
Cubic B-splines

A cubic B-spline [43] is specified by control points{q;}Y¥, and comprises
N — 3 cubic polynomial curve segmengsv;}Y 3 (see figure F.1). The equation

for each curve segment; is given by

-1 3 =31 q;

BN B 36 30| dmn

wi(s) = =[s° s° s 1] s 0 30 T (F.1)
14 10| s

Figure F.1: A cubic B-spline with 10 control points.
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B-splines are defined witti? continuity at each joining point (knot) between
adjacent curve segments, though multiple knots may be used to reduce the conti-
nuity at knots. Each additional control point allows one more inflection, and the
B-splines may be open or closed as required. For a closed B-splin¥, ¢batrol
points are used in a cyclic manner in equation (F.1) to produicerve segments.
Unlike a single high order polynomial curve, B-splines exhibit local control. This
means that modifying the position of one control point causes only a small part of

the curve to change, making it particularly suitable for edge fitting (see figure F.2).

Figure F.2: When the control poig is being moved up and down, only 4 out of
the 7 segments of the B-spline change.



Appendix G

Behaviour of the Cost Functions for
M otion Estimation

In Chapter 5, algorithms and implementations for motion estimation from silhou-
ettes have been presented. The motion estimation proceeds as an optimization
which minimizes the rms reprojection error of the epipolar tangents to the silhou-
ettes. ThelV + 2 motion parameters for a sequence/dfimages under circular

motion are given by
m = [9s ds dp 91,2 92,3 T 9N—1,N]a (G.1)

wheref; andds define the image of the rotation adis andd,, defines the inter-
sectionxy, of the horizonl, with I (see figure G.1). Given the camera calibration
matrix K, the special vanishing poirt, = KK 1, and the horizot, = v, x xy

can then be determined. The remaini¥ig- 1 parameters correspond to the- 1
angles between th& images, and); ; indicates the rotation angle between im-
age: and imagej. Figure G.2 shows 4 different plots of the cost function (5.27)
for the Haniwa sequence under circular motion (see figure 5.14), when different
pairs of the motion parameters were varied. It can be seen from figure G.2 that

though local minima did occur when the 2 consecutive rotation angles were both

173



174 APPENDIX G. BEHAVIOUR OF THE COST FUNC. FOR MOTION EST.

close t090°, the cost function was smooth in most of the search space and had a
well-defined global minimum. This explains why the algorithm for circular mo-
tion estimation always converges roughly to the same solution even with a poor

initialization of1; andl,, (see Section 5.6.3).

v, =KKTlg

N Yo
/\

Figure G.1: The 3 parameters definiQgv, andl,,.

_|cosB
[=|sin6
—dg

For the registration of a general view with the circular motion, the 6 motion

parameters are given by
m'=[0. AEELXY Z], (G.2)

whereT = [X Y Z|T represents a translation vector, and the anglesiE
and E' L define a rotation matriR (see figure G.3). Note th& andt represent

the extrinsic parameters of the projection matrix of the general view. Figure G.4
shows 4 different plots of the cost function (5.28) for registering & view

in the Haniwa sequence with the first 11 views (see figure 5.14). It can be seen
from figure G.4 that the cost function was not as smooth as that for the circular

motion, and that there were lots of local minima around the true solution. As
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35 8 3 g B
i i

Y e, (ad toas ?
6, (radians) 2 2 ) q(radians) 6, (radians) 2 6, (radians)

(©) (d)

Figure G.2: Plots of the cost function for the Haniwa sequence under circular
motion, when different pairs of the motion parameters were varied.

a result, a very good initialization is required for the algorithm to converge to
the true solution. This is achieved by rotating and translating the camera, using
a user-friendly mouse-controlled interface, until the projection of the initial 3D
model built from the circular motion roughly matches the silhouette in the new

view (see Section 5.5).
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Figure G.3: The 3 parameters of the rotation maRbare the rotation anglé,,
the azimuthAE and the elevatioi L.

.w

\
\\ .
&\\\\\" ",

/?/'AM II'/I’ l‘ |
A /,/,‘\\1

g 8 8 8 8 8 8

Nl ‘1‘ ‘4;\

(d)

Figure G.4: Plots of the cost function for registering 12¢" view of the Haniwa
sequence with the first 11 views, when different pairs of the motion parameters
were varied. Note that the cost function was not as smooth as that for the circular
motion, and that there were lots of local minima around the true solution. As a
result, a very good initialization is required for the algorithm to converge to the
true solution.
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