
Structure and Motion from Silhouettes
by

Kwan-Yee Kenneth Wong
Wolfson College

Department of Engineering
University of Cambridge

A dissertation submitted to
the University of Cambridge

for the degree of
Doctor of Philosophy

Michaelmas Term 2001





Declaration

I hereby declare that no part of this thesis has already been or is being submitted

for any other degree or qualification. This dissertation is the result of my own

original work carried out in the Department of Engineering at the University of

Cambridge, except where explicit reference has been made to the work of others.

This dissertation contains 36,194 words and 91 figures.



ii



“Cogito, ergo sum.” (I think, therefore I am.)
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Structure and Motion from Silhouettes

abstract

Silhouettes (or outlines) are often a dominant image feature, and can be extracted

relatively easily and reliably. They provide rich information about both the shape

and motion of an object, and are indeed the only information available in the case

of smooth textureless surfaces. Nonetheless, due to the viewpoint dependence of

silhouettes, they do not readily provide point correspondences, and hence structure

and motion from silhouettes has been a challenging problem.

This dissertation first studies the static properties of silhouettes. By relating

the idea of camera calibration from vanishing points to the symmetry property

exhibited in the silhouettes of surfaces of revolution (SOR), a novel technique for

estimating the intrinsic parameters of a camera from 2 or more silhouettes of SOR

has been developed. Besides, a simple algorithm for recovering the 3D shape of a

SOR using its silhouette from a single view is presented, followed by an analysis

of the ambiguity in the reconstruction.

This dissertation then studies the dynamic properties of silhouettes, and intro-

duces a complete and practical system for generating high quality 3D models from

a sequence of 2D silhouettes. The input to the system is an image sequence of an

object under both unknown circular motion and unknown general motion. By ex-

ploiting a simple parameterization of the fundamental matrix, circular motion can

be estimated easily and accurately from the silhouettes. The registration of arbi-

trary general views, using silhouettes from the estimated circular motion, reveals

information which is concealed under circular motion, and greatly improves both

the shape and textures of the 3D models. In contrast to previous techniques, only

the 2 outer epipolar tangents to the silhouettes are required in estimating both the

circular and general motion, making the system practical in virtually all situations.
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Chapter 1

Introduction

“The beginning is the most important part of the work.”

- Plato,The Republic, Book II, 377B.

1.1 Motivation

The generation of realistic 3D models of real world objects is of great interest in

many fields and has many practical applications. For instance, such 3D models

can be used in model-based tracking system, video games, virtual reality, movie

making and internet showroom. Traditionally, in computer graphics, such 3D

models are constructed using specialized design softwares in a polygon by poly-

gon fashion. Such approach is very time consuming and the quality of the output

model depends very much on the skill of the user. The introduction of laser scan

systems allows 3D objects to be “scanned” into the computer directly. In spite

of that, such systems are very expensive and require careful calibration before

use. Besides, they cannot cope with specular surfaces or surfaces with low re-

flectance, and can only handle objects of limited size. By allowing 3D models to

be reconstructed automatically from image sequences, thestructure from motion

1



2 CHAPTER 1. INTRODUCTION

techniques [132, 41, 81, 146, 36] in computer vision provide a cost-efficient so-

lution to the above problem. In addition, vision-based systems can also handle

objects with various size and reflectance.

1.1.1 Structure from Motion

In structure from motion (also known asstructure and motion), image features are

first extracted from the sequence by corner or edge detection techniques [16, 51]

using the intensity gradient information. Such image features originate from

scene structures like corners and edges, as well as from surface markings. Image

features that correspond to the projections of the same scene structure are then

matched, and this is referred to as thecorrespondence problem[89]. Initially,

unguided matching is usually done by normalized cross-correlation of image in-

tensities. By assuming the rigidity of the scene, the image motion is interpreted

as completely arising from a rigid (relative) motion between the viewer and the

scene. This motion can be computed from the matched image features (correspon-

dences) by estimating theepipolar geometry[5, 40] which describes the geometry

of stereo cameras (see Section 2.3.1, and also [5]). A guided matching, using the

epipolar constraint (see Section 2.3.1), can then be performed to obtain more cor-

respondences. The matching can also be further aided by using other geometric

constraints like uniqueness, ordering, figural continuity and disparity gradient (see

[40] for details). With a calibrated camera, Euclidean structure can then be ob-

tained by triangulation [55] of the correspondences.
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1.1.2 Smooth Textureless Surfaces

For smooth textureless surfaces, the dominant image feature is thesilhouette(al-

ternatively referred to asapparent contour, occluding contour, profileor outline).

The silhouette is the projection of the locus of points on the surface at which the

line of sight is orthogonal to the surface normal. In contrast to the features aris-

ing from corners, edges and surface markings, which areviewpoint independent,

silhouettes are inherentlyviewpoint dependent. In general, 2 silhouettes of an

arbitrary smooth object observed from 2 distinct viewpoints are the projections

of 2 distinct curves in space, and hence they do not readily provide correspon-

dences. As a result, the assumption of rigidity does not hold for silhouettes,

and this calls for the development of a completely different set of techniques

[111, 107, 45, 22, 4, 30, 64].

The major theme of this thesis is to develop a practical system for generat-

ing realistic 3D models of smooth objects. The static and dynamic properties of

silhouettes are analyzed, and exploited to develop novel algorithms for solving

the structure and motion problem. Such a model building system is particularly

suitable for creating a digital archive of sculptures, which are often composed of

smooth textureless surfaces (see figure 1.1).

1.2 Approach

This thesis aims at tackling the problem of structure and motion for smooth objects

using silhouettes alone. It shows that silhouettes provide rich information which

can be exploited for camera calibration, motion estimation and shape recovery.

By refraining from the use of other image features like corners and textures, the
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Figure 1.1: A miniature model of Michelangelo’s David statue. Sculpture is often
composed of smooth textureless surfaces for which the dominant image feature is
the silhouette.

algorithms developed here are more general and can be applied to virtually all

kinds of objects. The details of the approach employed here are listed below.

1.2.1 Imaging Model

Before information can be extracted from an image and be interpreted, the imag-

ing model has to be defined. Due to its simplicity and expressiveness, the per-

spective or pin-hole camera model is commonly used as the imaging model in

computer vision, and it is also the camera model adopted in this dissertation. The

process of image formation by a pin-hole camera can be conveniently represented

by a � � � projection matrix [112], which is composed of a camera calibration

matrix and a rigid body transformation (see Section 2.2.1). In order to achieve

Euclidean reconstruction, it is necessary to estimate the intrinsic parameters of

the camera (i.e. the camera calibration matrix). In this dissertation, the symmetry

property exhibited in the silhouettes of surfaces of revolution (SOR) is analyzed
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and exploited for estimating these parameters.

1.2.2 Shape Recovery

2D images contain cues to surface shape and orientation, however their interpre-

tations are ambiguous since depth information is lost during the image forma-

tion process. Nonetheless, if some strong a priori knowledge of the object is

available, like a parametric description, then a single view alone allows shape

recovery. In this dissertation, the surface geometry of surfaces of revolution

is studied. Through the use of differential geometry and projective invariant

[147, 77, 101, 149, 33], it is shown that the 3D shape of a surface of revolu-

tion can be recovered from its silhouette in a single view, up to an 1-parameter

ambiguity.

An alternative approach for depth recovery is to introduce viewer motion. In

this dissertation, the problem of motion estimation from silhouettes of an arbi-

trary object is tackled by first limiting the motion to be circular (e.g. turntable

sequences) [44, 96]. By exploiting a simple parameterization of the fundamen-

tal matrix [81], expressed in terms of the fixed image features in the sequence,

the circular motion can be estimated easily and accurately. The drawbacks of

using circular motion alone for model reconstruction are then overcome by the

registration of arbitrary general motion with the estimated circular motion. This

divide-and-conquer approach avoids the common problems that exist in almost

every algorithm for motion estimation from silhouettes, namely the need for a

good but nontrivial initialization, the unrealistic demand for a large number of

epipolar tangent points [111, 107, 22], and the presence of local minima.
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1.2.3 Shape Representation

Depending on the nature of the surface and the image sequence, either a surface

model or a volumetric model can be constructed from the set of silhouettes with

known viewer motion. If a dense, continuous sequence is available, a surface

model can be obtained by reconstructing the contour generators of a simple sur-

face using differential techniques [24, 134, 12, 125]. On the other hand, if only

sparse, discrete views are available and the object has relatively complex topolo-

gies, volume intersection techniques [108, 124] can be employed to produce a

volumetric model which represents the visual hull [73, 74] of the object.

Due to its ability to describe object with more complex topologies, the vol-

ume intersection approach is chosen in this dissertation for model reconstruction

from silhouettes. A simple technique for constructing an octree [63, 92] from the

silhouettes is implemented. The octree representation allows the model to be con-

structed at different levels of resolution according to needs. Despite its modeling

power, an octree is not very suitable for high speed rendering. For this reason,

a triangulated mesh is extracted from the octree, and the resulting surface model

can then be displayed efficiently with conventional graphics rendering algorithms

(implemented either in hardware or software).

1.2.4 Theory and Practice

The ultimate goal of this thesis is to providepractical solutions for the problem

of structure and motion from silhouettes. All the theories developed in this thesis

have been implemented and tested against both synthetic and real data to demon-

strate the feasibility of the algorithms. In particular, programs with user-friendly
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interfaces, written in Microsoft Visual C++, have been developed to provide an

easy-to-use system for producing high quality 3D models of objects from their

silhouettes.

1.3 Contributions

Through the studies of the static and dynamic properties of silhouettes, computa-

tional theories have been developed in this thesis to provide practical solutions for

the problem of structure and motion from silhouettes. The main contributions of

this thesis include:

� a novel technique for camera calibration from silhouettes of surfaces of rev-

olutions (Chapter 3). The method presented here allows the intrinsic param-

eters of a camera to be estimated from 2 or more silhouettes of surfaces of

revolution (like bowls and vases etc.), which are commonly found in daily

life. The use of such objects has the advantages of easy accessibility and

low cost, in contrast to the traditional calibration patterns;

� a simple algorithm for reconstructing a surface of revolution from a single

view (Chapter 4). The algorithm developed here allows a surface of revo-

lution to be recovered from its silhouette in a single view, and produces an

1-parameter family of solutions. Analysis of the reconstruction ambiguity

is also presented.

� the introduction of the use ofouterepipolar tangents for motion estimation

from silhouettes (Chapter 5). The outer epipolar tangents correspond to the

2 epipolar tangent planes that touch the object, and are always available
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except when the baseline passes through the object. The use of the outer

epipolar tangents, which are guaranteed to be in correspondence, avoids

false matches due to self-occlusions and greatly simplifies the matching

problem;

� a complete and practical system for generating high quality 3D models from

2D silhouettes (Chapter 5 and Chapter 6). The system introduced here pro-

duces a 3D model of an object from an image sequence of the object under

both unknown circular motion and unknown general motion. In contrast to

previous silhouette-based techniques, only the 2 outer epipolar tangents to

the silhouettes are required for the motion estimation, making the system

practical in virtually all situations.

1.4 Outline of the Thesis

Chapter 2. This chapter reviews some fundamental concepts in computer vi-

sion, which form the theoretical background for the analysis of silhouettes in the

rest of this dissertation. It first reviews the pin-hole (perspective) camera model

and presents the� � � projection matrix [112] that models the image formation

process. It then gives a brief review of the epipolar geometry. Simple deriva-

tions for the essential matrix [78] and the fundamental matrix [81] are presented,

followed by an analysis of the reconstruction ambiguity. Finally, it studies the dif-

ferential geometry of a smooth object under perspective projection, and analyzes

the epipolar geometry associated with its silhouettes.
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Chapter 3. In this chapter a novel technique [141] for camera calibration from

silhouettes of surfaces of revolution is introduced. It begins by giving a survey of

the literature on camera calibration techniques. It then briefly reviews the theory

of camera calibration from vanishing points. The symmetry property exhibited in

the silhouettes of surfaces of revolution is then related to the idea of calibration

from vanishing points, and a simple technique is developed for calibrating a cam-

era from 2 or more silhouettes of surfaces of revolution. Experimental results on

both synthetic and real data are presented, which demonstrate the accuracy and

robustness of the algorithm.

Chapter 4. This chapter addresses the problem of reconstructing a surface of

revolution from a single view. It first briefly reviews existing techniques for shape

from contour using a single view. It then studies the surface geometry of surfaces

of revolution, and shows that the surface normal at any point on a surface of

revolution is coplanar with the axis of revolution. This coplanarity constraint is

used to derive a simple depth equation for the silhouette under a special viewing

condition. A simple algorithm is then introduced for rectifying the silhouette

under general viewing condition so that it resembles the special viewing condition

up to an 1-parameter ambiguity. The resulting ambiguity in the reconstruction is

analyzed and experimental results on real data are presented.

Chapter 5. In this chapter, the problem of motion estimation from silhouettes

is tackled. It starts by giving a literature review on motion estimation from sil-

houettes. It then introduces and justifies the use of outer epipolar tangents for

motion estimation. A novel technique [96] for recovering the motion of an object
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undergoing circular motion is presented, followed by a simple technique [138] for

registering an arbitrary general view of the object with the circular motion. Con-

vincing 3D models produced from experiments on various objects are presented,

which demonstrate the accuracy and practicality of the system.

Chapter 6. This chapter studies the problem of model reconstruction from sil-

houettes. A survey of the literature on model reconstruction from silhouettes is

first presented. It then briefly reviews the octree representation, and introduces

an efficient algorithm for constructing an octree using silhouettes from multiple

views. The implementation details for the silhouette extraction and intersection

test are presented, followed by a description of an algorithm for extracting a tri-

angulated mesh from the octree. Finally, experimental results on real data are

presented, showing the quality of the reconstruction.

Chapter 7. This chapter presents a summary of the theories and algorithms de-

veloped in this dissertation, followed by a brief discussion of possible future work.



Chapter 2

Epipolar Geometry and Silhouettes:
A Review

“Everything should be made as simple as possible, but no simpler.”

- Albert Einstein.

2.1 Introduction

This chapter reviews some fundamental concepts in computer vision, which form

the theoretical background for the analysis of silhouettes in the rest of this disser-

tation. In particular, theepipolar geometry[5, 40] plays an important role in both

motion estimation and scene reconstruction. Due to the viewpoint dependency of

the silhouettes, the epipolar geometry for viewing smooth objects demands special

attentions.

Section 2.2 first reviews the pin-hole camera model, which is used in the

derivation of the epipolar geometry instereo vision[70, 6]. Section 2.3 gives

a brief review of the epipolar geometry, which is summarized by the essential

matrix [78] and the fundamental matrix [81]. A complete review on epipolar ge-

ometry can be found in [40, 146]. Section 2.4 studies the differential geometry of

11
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a smooth object under perspective projection, and the epipolar geometry associ-

ated with the silhouettes. Further details on the differential geometry of smooth

surfaces and silhouettes can be found in [24, 27].

2.2 Imaging Model

2.2.1 Pin-Hole Camera

In computer vision, a camera is commonly modeled as a pin-hole (perspective)

camera and the imaging process can be expressed as

�

�
� 


�
�

�
� � �

�
���

�
�
�
�

�
��� � (2.1)

where	�� �� �
 is the coordinates of a 3D point�, 	
� �
 is the image coordinates

of the projection of�, and� is an arbitrary scale factor.� is a��� matrix known

as theprojection matrix[112] which models the pin-hole camera. The projection

matrix� is not any general�� � matrix, but has a special structure given by [40]

� � ��� ��� (2.2)

where� is a � � � upper triangular matrix known as thecamera calibration

matrix, � is a � � � rotation matrix and� is a � � � translation vector.� and

� are called theextrinsic parameters[40] of the camera, and they represent the

rigid body transformation between the camera and the scene (see figure 2.1). The

camera calibration matrix� has the form [40]

� �

�
� �� 	 
�

� � ��
� � �

�
� � (2.3)
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where� is thefocal length, � is theaspect ratio, and	 is theskewwhich depends

on the angle between the image axes.	
�� ��
 is called theprincipal point, and

it is the point at which the optical axis (��-axis) intersects the image plane (see

figure 2.1). The focal length, aspect ratio, skew and principal point are referred

to as theintrinsic parameters[40] of the camera, andcamera calibrationis the

process of estimating these parameters. If the image axes are orthogonal to each

other, which is often the case,	 will be equal to 0. In practice, the aspect ratio

and skew of a camera are often assumed to be 1 and zero, respectively, to give

more stable results in camera calibration. A camera is said to be calibrated if its

intrinsic parameters are known. If both the intrinsic and extrinsic parameters of a

camera are known, then the camera is said to be fully calibrated.

cy

xc

cz

optical
axis

principal
point

wy

wz

xw

o

xf

c

t

R

X

Figure 2.1: The extrinsic parameters of a camera represent the rigid body trans-
formation between the world coordinate system (centered at�) and the camera
coordinate system (centered at), and the intrinsic parameters represent the cam-
era internal parameters like focal length, aspect ratio, skew and principal point.
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Given a point� in the image, the viewing vector from the camera center to the

focal plane at unit distance for the point� is given by [40]

�� � ��� �

�	
� (2.4)

in the camera coordinate system, and

� � ������ �

�	
� (2.5)

in the world coordinate system, respectively, where�	 is the��� coefficient of�.

2.2.2 Vanishing Points and Horizon Lines

Under perspective projection, parallel lines in the world appear to meet at a single

point in the image. This point is known as thevanishing point[40] corresponding

to the direction of those parallel lines, and it is the image of a point at infinity at

which those parallel lines “intersect”. Vanishing points have been used to add real-

ism to art since the���� century in Florence and during the period of Renaissance

(see figure 2.2).

Similarly, parallel planes in the world appear to meet in a single line in the

image. This line is known as thehorizon line[40], and it is the image of a line

at infinity along which those planes “intersect”. Any set of parallel lines lying on

those planes will have a vanishing point on the horizon line (see figure 2.3).

2.3 Stereo Vision

2.3.1 Epipolar Geometry

Figure 2.4 shows a pair of pin-hole cameras�� and�
, with distinct centers�

and
 respectively. The line joining� and
 is called thebaseline[40] and
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Figure 2.2: In his engraving “St. Jerome dans sa Cellule” produced in 1514, Al-
brecht Durer used perspective construction to give a sense of depth by making
parallel lines in the ceiling and on the wall converge to a vanishing point.

vxvy horizon

Figure 2.3: A horizon line is the image of a line at infinity along which parallel
planes “intersect”. Any set of parallel lines lying on those planes will have a
vanishing point on the horizon line.
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the intersections of the baseline with the 2 image planes are known as theepipoles

[40]. The epipole�� is the image of
 in��. Similarly, the epipole�
 is the image

of � in �
. The plane defined by�, 
 and any arbitrary non-collinear 3D point

� is known as theepipolar plane[40]. The intersections of the epipolar plane

with the 2 image planes give 2 correspondingepipolar lines[40]. The epipolar

line �� in �� is the image of the line through
, �
 and�. Similarly, the epipolar

line �
 in �
 is the image of the line through�, �� and�. It follows that the

correspondence of a point on one image must lie on the corresponding epipolar

line on the other image and vice versa (see figure 2.5), and this is known as the

epipolar constraint[40]. Note that the set of epipolar planes forms a pencil of

planes containing the baseline, and hence the epipolar lines on each image form a

pencil of lines containing the corresponding epipole.
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Figure 2.4: Epipolar geometry between 2 cameras.
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corresponding
epipolar line

c c

x

X

1

21

Figure 2.5: The epipolar constraint: given an image point�� on one image, its
correspondence on the other image must lie on the corresponding epipolar line
which is the image of the line through�, �� and�.

2.3.2 The Essential Matrix �

Consider 2 pin-hole cameras�� and�
, with relative rotation� and translation

� �� � 	 . Given a point��� in the camera coordinate system of��, its position��


in the camera coordinate system of�
 is given by

��
 � � ��� � �� (2.6)

Pre-multiplying both sides of (2.6) by���
 ���� gives [78]

���
 ����� ��� � �

���
� ��� � � (2.7)

where� is a�� � matrix known as theessential matrix[78], given by

� � ������ (2.8)
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Equation (2.7) also holds for the viewing vectors��� and��
 of the points�� and

�
, which are the projections of�� and�
 in�� and�
 respectively. This yields

the epipolar constraint [78]

���
���� � �� (2.9)

The epipoles��� and��
, in the camera coordinate systems of�� and�
 respec-

tively, are given by the right and left null spaces of�. It follows from equa-

tion (2.8) that��	E
 � � and� is therefore of maximum rank 2 [130, 41]. Note

that� only depends on the relative rotation and translation between the 2 cameras

and is defined only up to a scale factor, hence it has only 5 degrees of freedom.

2.3.3 The Fundamental Matrix �

Consider 2 pin-hole cameras�� and�
 with distinct centers. Let�� and�
 be

the images of an arbitrary 3D point� in �� and�
 respectively, i.e.

�� � ���� ��� (2.10)

�
 � �
�� (2.11)

The image point�� defines an optical ray on which� must lie. The equation of

this optical ray is given by [146]

���	�
 � ��� � ���� ��� (2.12)

where��� is the pseudo-inverse of�� and��� is a null vector of��. Note that���

indicates the camera center of�� and��� �� gives the viewing direction. There

exists�� such that� � ���	��
, and substituting���	��
 into (2.11) gives [146]

�
 � �
	�
�

� � ���
�
� ��


� �
�
�

� � ���
�
�
� �� (2.13)
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Pre-multiplying both sides of (2.13) by��
 ��
�
�

� �� gives [146]

��
 ��
�
�

� ���
�
�
� �� � �

��
��� � �� (2.14)

where� is a�� � matrix known as thefundamental matrix[81], given by

� � ��
�
�

� ���
�
�
� � (2.15)

Equation (2.14) gives an expression of the epipolar constraint in homogeneous

image coordinates, which does not require the knowledge of the intrinsic parame-

ters of the 2 cameras. The epipoles�� and�
, in homogeneous image coordinates,

can be obtained from the right and left null spaces of� respectively, and are given

by

�� � 	�
�
�
� 


��	�
�
�

� 
� ��� (2.16)

�
 � �
�
�

� � (2.17)

Since� is defined only up to a scale factor and��	�
 � �, it has only 7 degrees

of freedom. By substituting (2.17) into (2.15),� can be rewritten in aplane plus

parallax representation[81], given by

� � ��
���� (2.18)

where� � �
�
�
� is aplane induced homography[81]. Note that replacing�

in (2.18) by any matrix

�� � �� �
	
�� (2.19)

where	 is any arbitrary 3-vector, will yield the same fundamental matrix [54].

This corresponds to choosing a different plane that induces the homography. The
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homography�� will map epipolar lines to corresponding epipolar lines [52, 81]

by

�
 � ������� ��� (2.20)

�� � ����
� (2.21)

where�� and �
 are a pair of corresponding epipolar lines in�� and�
 respec-

tively.

2.3.4 Reconstruction Ambiguity

Both the essential matrix and the fundamental matrix encode information about

the geometry of stereo cameras which is necessary for motion estimation. It is

well-known that from image correspondences (or equivalently the fundamental

matrix) alone, the projection matrices and the reconstruction of the scene points

can only be determined up to an arbitraryprojective transformation[39, 53]. Con-

sider again equations (2.10) and (2.11):

�� � ��� � ����
���� ��� (2.22)

�
 � �
� � �
��
���� (2.23)

where� is any arbitrary nonsingular�� � matrix representing a projective trans-

formation. Equations (2.22) and (2.23) suggest that (���, �
�, ����) is also

a valid reconstruction from the image points resulted from (��, �
, �). This

can be verified by substituting�� and�
 in equation (2.15) by��� and�
�

respectively, and it will yield the same fundamental matrix.

The reconstruction ambiguity can be reduced by upgrading the fundamental

matrix to an essential matrix. Let�� � ����� ��� and�
 � �
��
 �
�. Substi-
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tuting�� and�
 into (2.15) gives

� � ���

 ��
 ��
�

�
� �����
�

�
��

��
�

� ���

 ������

��
� � (2.24)

where� � �
�
�
� and� � 	�
 � �
�

�
� ��
 are the relative rotation and trans-

lation between�� and�
. Hence if the camera calibration matrices�� and�


are known, the associated fundamental matrix� can be upgraded to an essential

matrix

� � ��
���� (2.25)

which can then be decomposed to recover the relative rotation and translation

between the cameras. Since the essential matrix is defined only up to a scale factor,

only the direction of the relative translation can be recovered and this results in a

reconstruction up to asimilarity transformation.

2.4 Smooth Object and Its Projection

2.4.1 Contour Generators

Consider a smooth object and a static pin-hole camera. A set of rays which are

tangent to the surface of the object can be cast from the camera center. These

rays touch the object along a smooth curve known as thecontour generator[87,

24] (see figure 2.6). In the literature, the contour generator is also known as the

extremal boundary[7] or therim [68]. The contour generator separates the visible

part from the occluded part of the object, and can be parameterized by� as [24]

��	�
 � �� �	�
�	�
� ��� (2.26)

�	�
 � �	�
 � �� (2.27)
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In equation (2.26),� indicates the camera center,�	�
 is the viewing vector from

� to the focal plane at unit distance for the point��	�
, and�	�
 is the depth of the

point ��	�
 along the optical axis from�. The tangency constraint is expressed in

equation (2.27), where�	�
 indicates the unit surface normal at��	�
. It follows

from equations (2.26) and (2.27) that the contour generator depends on both local

surface geometry and the viewpoint.

generator

camera
center

contour

Figure 2.6: Optical rays which are tangent to the surface from the camera center
touch the surface along a smooth curve known as the contour generator. The
contour generator separates the visible part from the occluded part of the object.

In general, the viewing direction and the contour generator will not be or-

thogonal to each other, but are in conjugate directions with respect to the second

fundamental form II [71, 68]. This means that the change in surface normal for

an infinitesimal movement in the direction of the contour generator is orthogonal

to the viewing direction. Consider the tangent to the contour generator at��	�
,
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given by [24]

� ��	�


� �
�

� �	�


� �
�	�
 � �	�


� �	�


� �
� (2.28)

This tangent must lie on the tangent plane of the surface at��	�
, and hence it

satisfies [24]

� ��	�


� �
� �	�
 � �� (2.29)

Taking the scalar product with�	�
 from the right on both sides of (2.28), and

substituting (2.27) and (2.29), gives [24]

� �	�


� �
� �	�
 � �� (2.30)

Differentiating (2.27) with respect to� and substituting (2.30) yields [24]

�	�
 �
� �	�


� �
� �� (2.31)

which proves the conjugate direction relationship between the viewing ray and the

contour generator.

2.4.2 Silhouettes

A contour generator is projected onto the image plane as anapparent contour

(also known as aprofile). A silhouetteis a subset of the apparent contour where

the viewing rays of the contour generator touch the object (i.e. not passing through

the object). If the camera is (fully) calibrated, the viewing rays�	�
 of the con-

tour generator can be recovered from the silhouette (see Section 2.2.1). These rays

define aviewing coneon which the contour generator lies, and within which the

object is confined (see figure 2.7). However, the depth parameter�	�
 in equa-

tion (2.26), and hence the contour generator itself, cannot be determined from a
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single view alone. It follows from equation (2.30) that, like the viewing ray, the

tangent to the silhouette also lies on the tangent plane of the surface at��	�
. This

allows the unit surface normal at��	�
 to be determined up to a sign by [24]

�	�
 �
�	�
� � ����

� �����	�
� � ����
� �

��� � (2.32)

The sign of�	�
 can be fixed if the side of the silhouette on which the surface lies

is known (see figure 2.8).

center

viewing
cone

camera

silhouette

Figure 2.7: The viewing rays of the contour generator can be recovered from the
silhouette and the camera center. These rays define a viewing cone on which the
contour generator lies, and within which the object is confined

Due to the viewpoint dependency of the contour generators, silhouettes from 2

distinct viewpoints will be, in general, the projections of 2 different space curves

(contour generators). As a result, the rigidity constraint no longer holds and there

will be no correspondence between points in the 2 silhouettes. The only exception



2.4. SMOOTH OBJECT AND ITS PROJECTION 25

center

n (s)

camera

tangent plane

silhouette

Figure 2.8: The unit surface normal can be determined from a single silhouette.
The sign of the normal can be fixed if the side of the silhouette on which the
surface lies is known.

is thefrontier point[45, 22, 27] which is the intersection of the 2 contour genera-

tors in space and is visible in both views (see figure 2.9). Since the viewing rays

of the frontier point from the 2 camera centers are both tangent to the surface, the

frontier point lies on an epipolar plane which is tangent to the surface. It follows

that a frontier point will be projected onto a point in the silhouette which is also

anepipolar tangent point[111, 107, 22].

2.4.3 Epipolar Parameterization

Consider a smooth object and a moving pin-hole camera. As the camera moves,

the contour generator slips over the visible surface of the object. As a result,

the surface of the object can be parameterized by the spatial-temporal surface

swept out by the contour generator due to camera motion. By introducing the time

parameter� to equations (2.26) and (2.27), the parameterization of the surface is

given by [24]

��	�� �
 � �	�
 � �	�� �
�	�� �
� ��� (2.33)

�	�� �
 � �	�� �
 � �� (2.34)
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frontier point contour generator

epipolar tangent

epipolar plane

epipole

silhouette

camera center

Figure 2.9: A frontier point is the intersection of 2 contour generators and lies on
an epipolar plane which is tangent to the surface. It follows that a frontier point
will be projected onto a point in the silhouette which is also an epipolar tangent
point.

Such a parameterization is, however, under-constrained: the�-parameter curve

��	�� ��
 with constant� is the contour generator from the camera center�	��
,

whereas the�-parameter curve��	��� �
 with constant� has no physical interpreta-

tion. The most widely used parameterization is the epipolar parameterization [23]

(see figure 2.10) which is derived from the epipolar geometry in stereo vision. The

epipolar parameterization is defined by

���	�� �


��
� �	�� �
 � � 	 � (2.35)

Equation (2.35) implies that the tangent to the�-parameter curve is chosen to be

in the direction of the viewing ray. The physical interpretation is that points on the

contour generator are chosen to move along the viewing rays, in an infinitesimal

sense, as the camera moves. Since the viewing ray and the contour generator are

in conjugate directions (see Section 2.4.1), so are the tangent plane basis vectors
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�����	��
��

and �����	��
��

of the parameterized surface. Note that the epipolar parameteri-

zation is degenerate at frontier pointers where�����	��
��

� � 	 [24, 47, 26].
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Figure 2.10: Epipolar parameterization for the spatial-temporal surface swept by
the contour generator.

2.5 Summary

In this chapter, the pin-hole camera model, the epipolar geometry and the projec-

tion of smooth objects have been reviewed. These are essential to the development

of the theories and algorithms presented in the rest of this dissertation.

The process of image formation by a pin-hole camera can be represented by

a � � � projection matrix. The projection matrix can be decomposed into the in-

trinsic and extrinsic parameters, which represent the camera internal parameters

and the rigid body transformation between the camera and the scene respectively.

The estimation of the intrinsic parameters (i.e. camera calibration) from surfaces

of revolution will be studied in Chapter 3, whereas the estimation of the extrinsic

parameters (i.e. motion estimation) from silhouettes will be addressed in Chap-



28 CHAPTER 2. EPIPOLAR GEOMETRY AND SILHOUETTES

ter 5.

The epipolar constraint in stereo vision is encoded by the essential matrix in

the case of calibrated cameras, or by the fundamental matrix in the case of un-

calibrated cameras. The estimation of the fundamental matrix from point corre-

spondences forms the basis of virtually every motion estimation algorithm. The

reconstruction ambiguity, arise from using point correspondences alone, can be

reduced from a projective transformation to a similarity transformation by upgrad-

ing the fundamental matrix to an essential matrix using the calibration matrices.

In Chapter 4 and Chapter 5, the calibration matrices of the cameras are assumed

to be known from off-line calibration, and hence scaled Euclidean reconstruction

can be achieved.

The contour generator of a smooth object depends on both local surface ge-

ometry and viewpoint, and so is its projection (silhouette) on the image plane. In

the case of a (fully) calibrated camera, the surface normal along the contour gen-

erator can be determined from the silhouette using the tangency constraint. This

surface normal information is utilized in Chapter 4 for reconstructing a surface of

revolution from a single view. In general, due to the viewpoint dependency of the

contour generators, the epipolar constraint cannot be applied to the points in the 2

silhouettes observed from 2 distinct viewpoints. The intersections between 2 con-

tour generators result in frontier points, which are visible in both views and satisfy

the epipolar constraint. The point correspondences induced by the frontier points

are exploited in Chapter 5 to develop a practical algorithm for motion estimation

from silhouettes.



Chapter 3

Camera Calibration from Symmetry

“ ...it is therefore useful, because it is symmetrical and fair.”

- Ralph Waldo Emerson,Art, First Series.

3.1 Introduction

An essential step for motion estimation and 3D Euclidean reconstruction, 2 im-

portant tasks in computer vision, is the determination of the intrinsic parameters

of cameras. This process, known ascamera calibration, usually involves taking

images of some special patterns with known geometry, extracting the features in

the images, and minimizing their reprojection errors. Details of such calibration

algorithms can be found in [42, 129, 75] and [40, Chapter 3]. These methods do

not require direct mechanical measurements on the cameras, and often produce

very good results. Nevertheless, they involve the design and use of highly accu-

rate tailor-made calibration patterns, which are often both difficult and expensive

to be manufactured.

In this chapter a novel technique for camera calibration is introduced. It relates

the idea of calibration from vanishing points [17, 25, 76] to the symmetry prop-

29
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erty exhibited in the silhouettes of surfaces of revolution [147, 77, 101, 149, 33].

The method presented here allows the camera to be calibrated from 2 or more

silhouettes of surfaces of revolution (like bowls and vases etc.), which are com-

monly found in daily life. The use of such objects has the advantages of easy

accessibility and low cost, in contrast to the traditional calibration patterns.

A survey of the literature on camera calibration is given in Section 3.2, fol-

lowed by a brief review of camera calibration from vanishing points in Section 3.3.

The symmetry property associated with the silhouettes of surfaces of revolution is

reviewed in Section 3.4, and Section 3.5 shows how such a symmetry property can

be related to the vanishing points associated with a set of 3 mutually orthogonal

directions. By extending the techniques for calibration from vanishing points, the

symmetry property can be used in the development of a practical algorithm for

camera calibration [141]. Such an algorithm, detailed in Section 3.6, is capable

of dealing with both known and unknown aspect ratio. The degenerate cases in

which the algorithm fails are discussed in Section 3.7. Section 3.8 first presents

results of experiments conducted on synthetic data, which are used to perform an

evaluation on the robustness of the algorithm in the presence of noise. Exper-

iments on real data then show the usefulness of the proposed method. Finally,

discussions are presented in Section 3.9.

3.2 Previous Works

Classical calibration techniques [15, 119, 38] in photogrammetry involve full-

scale nonlinear optimizations with large number of parameters. Despite being

able to adopt accurate complex camera models, these techniques require a good
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initialization and are computationally expensive. In [1], Abdel-Aziz and Karara

presented thedirect linear transformation(DLT), which is one of the most com-

monly used calibration techniques in computer vision. By ignoring lens distortion

and treating the coefficients of the� � � projection matrix as unknowns, DLT

only involves solving a system of linear equations which can be done by a linear

least-squares method. In practice, the linear solution obtained from DLT is usu-

ally refined iteratively by minimizing the reprojection errors of the 3D reference

points [42, 40]. In [129, 75], Tsai and Lenz introduced theradial alignment con-

straint (RAS) and developed a technique which also accounts for lens distortion.

All the calibration techniques mentioned so far require the knowledge of the

3D coordinates of a certain number of reference points and their corresponding

image coordinates. In [17], Caprile and Torre showed that, under the assumption

of zero skew and aspect ratio 1, it is possible to calibrate a camera from the vanish-

ing points associated with 3 mutually orthogonal directions. This idea was further

elaborated in [25, 76] to develop practical systems for reconstructing architectural

scenes. In contrast to traditional calibration techniques, these methods depend

only on the presence of some special structures, but not on the exact geometry of

those structures.

The theory ofself-calibrationwas first introduced by Maybank and Faugeras

[91], who established the relationship between camera calibration and the epipolar

transformation via theabsolute conic[40]. Implementation of the theory in [91],

together with real data experiments, were given by Luong and Faugeras [82] for

fixed intrinsic parameters. In [128], Triggs introduced theabsolute quadricand

gave a simpler formulation which can incorporate any constraint on the intrinsic

parameters easily. Based on [128], a practical technique for self-calibration of
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multiple cameras with varying intrinsic parameters was developed by Pollefeys

et al. in [104]. Other approaches to self-calibration also include restricting the

camera motion to pure rotation [35] or planar motion [3].

The calibration technique introduced in this chapter, namelycalibration from

surfaces of revolution, falls into the same category as calibration from vanishing

points (see figure 3.1). Like calibration from vanishing points, which only requires

the presence of 3 mutually orthogonal directions, the technique presented here

only requires the calibration target to be a surface of revolution, but the exact

geometry of the surface is not important. A linear solution can be obtained in

the case of zero skew and known aspect ratio, which can be further refined by a

nonlinear optimization that is also capable of recovering unknown aspect ratio.

directions
3 mutually orthogonal

calibration grid surfaces of revolution

pure rotation

planar motion

special structures special motions self−calibrationknown geometry

absolute conic

absolute quadric

Figure 3.1: Different categories of camera calibration techniques.

3.3 Calibration from Vanishing Points

In [17], Caprile and Torre showed that under the assumption of zero skew and

aspect ratio 1, the principal point of a camera will coincide with the orthocenter

of a triangle with vertices given at 3 vanishing points from 3 mutually orthogonal

directions. This property of the vanishing points, together with the symmetry

property associated with the silhouettes of surfaces of revolution, will be used

later in Section 3.5 to derive a simple technique for camera calibration. A simple
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derivation of Caprile and Torre’s result is given below.

Consider a pin-hole camera with focal length� , aspect ratio�, zero skew and

principal point���. The vector from the camera center to any point�� on the image

plane, in camera coordinate system, is given by�	�� � ���

� � ��. Let ��
, ��� and

��� be 3 vanishing points associated with 3 mutually orthogonal directions�
,��

and�� respectively. The 3 vectors from the camera center to��
, ��� and��� will

be mutually orthogonal to each other, and hence

	��
 � ���
 � 	��� � ���
 � � 
 � �� (3.1)

	��� � ���
 � 	��� � ���
 � � 
 � �� (3.2)

	��� � ���
 � 	��
 � ���
 � � 
 � �� (3.3)

Subtracting (3.3) from (3.1) gives

	��
 � ���
 � 	��� � ���
 � �� (3.4)

Equation (3.4) shows that��� lies on a line passing through��
 and orthogonal to

the line joining��� and���. Similarly, subtracting (3.1) from (3.2) and (3.2) from

(3.3) gives

	��� � ���
 � 	��� � ��

 � �� (3.5)

	��� � ���
 � 	��
 � ���
 � �� (3.6)

Equations (3.4)–(3.6) imply that the principal point��� coincides with the ortho-

center of the triangle with vertices��
, ��� and���. Besides, equations (3.1)–(3.3)

show that the focal length� is equal to the square root of the product of the dis-

tances from the orthocenter to any vertex and to the opposite side (see figure 3.2).

As a result, under the assumption of zero skew and aspect ratio 1, it is possible
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to estimate the principal point and the focal length of a camera using vanishing

points from 3 mutually orthogonal directions. A similar derivation was also pre-

sented by Cipolla et al. in [25].
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Figure 3.2: The principal point��� of the camera coincides with the orthocenter
of the triangle with vertices given at the vanishing points��
, ��� and��� associated
with 3 mutually orthogonal directions, and the focal length of the camera is given
by � �

�
�
��
 �

�
����� �

�
�����.

3.4 Symmetry in Surfaces of Revolution

The silhouette of a surface of revolution, viewed under a pin-hole camera, will

be invariant to a harmonic homology [149]. This property of the silhouette can

be exploited to calibrate the intrinsic parameters of a camera, as will be shown in

Section 3.5. A simple proof of this symmetry property is given below, which also

shows that the axis of the associated harmonic homology is given by the image of

the revolution axis, and that the center of the homology is given by the vanishing

point corresponding to the normal direction of the plane containing the axis of

revolution and the camera center.

Consider a surface of revolution�� whose axis of revolution coincides with
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the�-axis, being viewed by a pin-hole camera�� � ��	 �� where� � �� � ���
�

with �� � �. By symmetry considerations, it is easy to see that the silhouette��

of �� formed on the image plane will be bilaterally symmetric about the image of

the revolution axis��� � �� � ���. A simple proof of this is given in Appendix B.

The lines of symmetry (i.e. lines joining symmetric points on��) will be parallel

to the normal�� � �� � � ��� of the plane�� that contains the axis of revolution

and the camera center, and the vanishing point associated with�� is given by

��� � �� � ���. The bilateral symmetry exhibited in�� can be described by the

transformation [94, 96]

� �

�
� �� � �

� � �
� � �

�
�

� �	� �
�����

�
�

����
���
� (3.7)

Note that the transformation� is aharmonic homology(see Appendix A, and also

[117, 29] for details) with axis��� and center���, which maps every point in�� to

its symmetric counterpart in��. The silhouette�� is thus said to be invariant to the

harmonic homology� (i.e. �� � ���).

Now consider an arbitrary pin-hole camera� by introducing the intrinsic pa-

rameters represented by the camera calibration matrix� to ��, and by applying

the rotation� to �� about its optical center. Hence� � ����	 �� or � � ���,

where� � ��. Let� be the projection of a 3D point� in �, hence

� � ��

� ����

� ���� (3.8)
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where�� � ���. Equation (3.8) implies that the��� matrix� represents a planar

homography which transforms the image formed by�� into the image formed by

�. Similarly,��� transforms the image formed by� into the image formed by

��. The silhouette� of ��, formed on the image plane of�, can thus be obtained

by applying the planar homography� to �� (i.e. � � ���). Let �� and��� be a pair

of symmetric points in��, and� � ��� and�� � ���� be their correspondences in

�. The symmetry between�� and��� is given by

��� � ���� (3.9)

Substituting�� and��� in (3.9) by���� and�����, respectively, gives [94, 96]

	�����
 � �	����


�� � ������

� �	�	� �
�����

�
�

����
���

����

� 	�	� �
���

�
�

��� ��

�� (3.10)

where�� � ����, and�� � ������. Note that�� is the vanishing point corre-

sponding to the normal direction�� in �, and�� is the image of the revolution

axis of�� in �. Let� � ����� be the harmonic homology with axis�� and

center��. Equation (3.10) shows that� will map each point in� to its sym-

metric counterpart in�, and hence� is invariant to the harmonic homology�

(i.e. � ���).

In general, the harmonic homology� has 4 degrees of freedom. When the

camera is pointing directly towards the axis of revolution, the harmonic homology

will reduce to askew symmetry[66, 99, 19, 115], where the vanishing point�� is
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at infinity. The skew symmetry can be described by the transformation

� �
�

���	�� �


�
� � ���	�� �
 �� ���� ��� � ��� ����
�� ���� ��� � ���	�� �
 ��� ����

� � ���	�� �


�
� � (3.11)

where�� � 
� ��� �� �� ��� �. The image of the revolution axis and the vanishing

point are given by�� � ���� � ��� � ����
� and�� � ����� ���� ��� respectively,

and� has only 3 degrees of freedom. If the camera also has zero skew and aspect

ratio 1, the transformation will then become abilateral symmetry, given by

� �

�
� � ��� �� � ��� �� ��� ��� �
� ��� �� ��� �� ��� ��� �

� � �

�
� � (3.12)

While �� will have the same form as in the case of skew symmetry, the vanishing

point will now be both at infinity and has a direction orthogonal to��. As a re-

sult,� has only 2 degrees of freedom. These 3 different cases of symmetry are

illustrated in figure 3.3.

(a) (b) (c)

Figure 3.3: (a) Silhouette of a surface of revolution under general viewing con-
ditions. The symmetry of the silhouette is described by a harmonic homology
defined by the image of the revolution axis and a vanishing point. (b) When the
camera is pointing directly towards the axis of revolution, the transformation re-
duces to a skew symmetry, which is a particular case of the harmonic homology
where the vanishing point is at infinity. (c) If the camera also has zero skew
and aspect ratio 1, the transformation becomes a bilateral symmetry, in which the
vanishing point is at infinity and has a direction orthogonal to the image of the
revolution axis.
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3.5 Camera Calibration

Consider a surface of revolution�� viewed by a pin-hole camera� � ��� ��.

Let � be the silhouette of��, �� be the image of the revolution axis of��, and��

be the vanishing point corresponding to the normal direction�� of the plane��

that contains the revolution axis of�� and the camera center of�. The silhouette

� is then invariant to the harmonic homology� with axis �� and center�� (see

Section 3.4).

vxls

axis of
revoluion

vy

vz

Π s

center
camera

Figure 3.4: Three mutually orthogonal directions associated with a surface of
revolution.

Consider now any 2 vectors�� and�� parallel to the plane�� and orthog-

onal to each other, which together with�� form a set of 3 mutually orthogonal

directions (see figure 3.4). Under the assumption of zero skew and aspect ratio

1, the vanishing points associated with these 3 directions can be used to deter-

mine the principal point and the focal length of�, as shown in Section 3.3. By

construction, the vanishing points�� and��, corresponding to the directions��

and�� respectively, will lie on the image of the revolution axis��. Given the
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harmonic homology� associated with�, with an axis given by the image of the

revolution axis�� and a center given by the vanishing point��, the principal point

�� of � will therefore lie on a line�� passing through�� and orthogonal to��, and

the focal length� will be equal to the square root of the product of the distances

from the principal point�� to �� and to�� respectively (see figure 3.5). As a re-

sult, the principal point can be estimated from 2 or more silhouettes of surfaces of

revolution, and the focal length follows.

lsvx

lx d’
0

x

x

d

x

Figure 3.5: The vanishing point�� and the image of the revolution axis�� define
a line �� on which the principal point�� must lie, and the focal length� is equal
to
�

�����.

Alternatively, consider the equation of the plane��, which can be deduced

from� and the image of the revolution axis��, and is given by

�� � ����� (3.13)

By definition,�� is the vanishing point corresponding to the normal direction��

of the plane��, and hence

�� � ���� (3.14)

By introducing theabsolute quadric� �

	
�	 � 	

��	 �



[128], equation (3.14) can
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be rewritten as

�� � ����

� ������

� � ��� (3.15)

where� � ��� is the projection of the absolute quadric in�, known as thedual

image of the absolute conic[128]. Equation (3.15) gives the pole-polar relation-

ship, with respect to the image of the absolute conic, between the vanishing point

�� of the normal direction of the plane�� and the vanishing line�� of �� [148].

By assuming the skew of� to be zero (i.e.	 � �), substituting (2.3) into (3.15)

gives

�� �

�
� �
� 
 � 

� 
��� 
�


��� � 
 � �
� ��

� �� �

�
� ��� (3.16)

where � , � and (
�,��) are the intrinsic parameters of�, as defined in Sec-

tion 2.2.1. It follows that the harmonic homology associated with the silhouette of

a surface of revolution will provide 2 constraints on the 4 intrinsic parameters of

a camera. As a result, under the assumption of fixed intrinsic parameters and zero

skew, it is possible to calibrate a camera from 2 or more silhouettes of surfaces

of revolution. Further, if the aspect ratio is assumed to be 1 (i.e.� � �), it can be

derived from equation (3.16) that the focal length� is equal to the square root of

the product of the distances from the principal point	
�� ��
 to the vanishing point

�� and to the image of the revolution axis��. These results agree with the analysis

of the vanishing points.
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3.6 Algorithm and Implementation

3.6.1 Estimation of the Harmonic Homology�

The silhouette� of a surface of revolution is extracted from the image by applying

a Canny edge detector [16] (see figure 3.6). The harmonic homology� that

maps each side of the silhouette� to its symmetric counterpart is then estimated

by minimizing the geometric distances between the original silhouette� and its

transformed version�� � ��. This can be done by sampling� evenly spaced

points� along the silhouette� and optimizing the cost function

�����	��� ��
 �

��� �

�

��
��

����	�	��� ��
�� �

� (3.17)

where����	�	��� ��
�� �
 is the orthogonal distance from the transformed sam-

ple point�� � �	��� ��
� to the original silhouette�.

Figure 3.6: The silhouette of a surface of revolution (candle holder) is extracted
by applying a Canny edge detector.

The successes of most nonlinear optimization problems require a good ini-

tialization so as to avoid convergence to local minima. This is achieved here by

using bitangents of the silhouette [147]. Two points in the silhouette� near a

bitangent are selected and a polynomial is fitted to the silhouette in the neighbor-
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hood of each point. The bitangent and the bitangent points can then be obtained

analytically from the 2 polynomials. Consider 2 corresponding bitangents�� and

��� on the 2 sides of�, with bitangent points��, �
 and���, �
�


 respectively (see

figure 3.7). Let�� be the line joining�� and��
, and��� be the line joining��� and

�
. The intersection of�� with ��� and the intersection of�� with ��� define a line

which will provide an estimate for the image of the revolution axis��. Let �� be

the line joining�� and���, and��� be the line joining�
 and��
. The intersection

of �� with ��� will provide an estimate for the vanishing point��. The initialization

of �� and�� from bitangents often provides an excellent initial guess for the op-

timization problem. This is generally good enough to avoid any local minimum

and allows convergence to the global minimum in a small number of iterations.

The estimation of the harmonic homology� is summarized in algorithm 3.1.
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Figure 3.7: Initialization of the optimization parameters�� and�� from the bitan-
gents and lines formed from the bitangent points.
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Algorithm 3.1 Estimation of the harmonic homology�.
extract the silhouette� of a surface of revolution
by applying a Canny edge detector;

sample� evenly spaced points� along�;
initialize the image of the revolution axis�� and the vanishing point��
by identifying bitangents in�;

while not convergeddo
transform each point� by�;
compute the distances from the transformed points�� ��� to �;
update�� and�� to minimize the cost function in (3.17);

end while

3.6.2 Estimation of the Intrinsic Parameters

When the aspect ratio of the camera is�, the line�� passing through the principal

point 	
�� ��
 and the vanishing point�� will be orthogonal to the image of the

revolution axis�� (see Section 3.5). Consider�� � ��� �
 �	�
� and�� � ��� �
 �	�

�.

�� can be expressed in terms of�� and��, and is given by

�� �

�
� �
�	

����	
���
 � �
��

�
� � (3.18)

Given 2 such lines��� and��
, the principal point	
�� ��
 will then be given by

the intersection of��� with ��
. When more than 2 lines are available, the principal

point 	
�� ��
 can be estimated by a linear least-squares method from

�
����

����
���

...

����

�
����
�
� �
�

���
�

�
� � �� (3.19)

where� � � is the total number of lines (i.e. number of silhouettes) and� is a

scale factor. The estimated principal point	
�� ��
 is then projected onto each line
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�� orthogonally as��, and the focal length� will be given by

� �
�

�

��
��

�
����	�����
� ����	��� ��
� (3.20)

where����	�����
 is the distance between�� and��, and����	��� ��
 is the

orthogonal distance from�� to the image of the revolution axis��. Note that the

terms for summation are the focal lengths estimated from each pair of�� and

�� with the estimated principal point projected onto the corresponding�� (see

Section 3.5), and the focal length� is then taken to be the mean of these estimated

values.

The principal point	
�� ��
 and the focal length� , obtained linearly from

equations (3.19) and (3.20), can be further refined by optimizing the cost function

�������	�� 
�� ��
 �
��
��

����	��������


� (3.21)

where� is the camera calibration matrix formed from� and	
�� ��
, with zero

skew and aspect ratio 1, as defined in equation (2.3), and����	��������
 is the

distance between the point��� � ����� and��.

When the aspect ratio� of the camera is known but not equal to�, there exists

a planar homography�	�
 that transforms the image into one that would have

been obtained from a camera with the same focal length� , aspect ratio� and

principal point	
��� �
�

�
. The homography�	�
 is given by

�	�
 �

�
� �

�
� ���

�
� 
��

� � ��� � ���
� � �

�
� � (3.22)

where� is the aspect ratio of the original camera, and	
�� ��
 and	
��� �
�

�
 are the

principal points of the original and transformed cameras respectively. By setting
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the principal point	
��� �
�

�
 of the transformed camera to	
���� ��
, the homogra-

phy�	�
 is reduced to

��	�
 �

�
� �

�
� �

� � �
� � �

�
� � (3.23)

The vanishing points�� and the images of the revolution axis�� are transformed

by ��	�
 and����	�
 respectively, and equations (3.18)–(3.21) can then be ap-

plied to obtain the principal point	
��� �
�

�
 and the focal length� . Note that the

principal point	
��� �
�

�
 obtained in this way is the principal point of the trans-

formed camera, and the principal point	
�� ��
 of the original camera is simply

given by 	

�
��



�

	
�
��
���



� (3.24)

When the aspect ratio� of the camera is unknown, the camera can be cali-

brated by first assuming aspect ratio 1 to obtain	
�� ��
 and� linearly, which are

then used to initialize a full optimization with the cost function

�����	�� �� 
�� ��
 �
��
��

����	��������


� (3.25)

where� is the camera calibration matrix formed from� , � and	
�� ��
, with zero

skew, and����	��������
 is the distance between the point��� � ����� and

��.

3.7 Degenerate Cases

3.7.1 Conic Silhouette

If the silhouette� of a surface of revolution is a conic, there will be an infinite

number of harmonic homologies to which the silhouette� will be invariant. Such
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a situation results in a degenerate case for camera calibration from surfaces of

revolution.

Consider a conic represented by a�� � symmetric matrix�, such that every

point� on the conic satisfies

���� � �� (3.26)

Given a point�� outside the conic�, 2 tangents can be drawn from�� to �

(see figure 3.8), and the line�� passing through the 2 tangent points is given by

�� � ���� (3.27)

Let�� be a harmonic homology with axis�� and center��, given by

�� � �	� �
���

�
�

��� ��
� (3.28)

Substituting (3.27) into (3.28) gives

�� � �	� �
���

�
��

�

������
� (3.29)

Let � be a point on� and�� � ���, and consider the equation

��
�
��� � 	���


��	���


� ��	��
� ���
�� (3.30)

Substituting (3.29) into (3.30) gives

��
�
��� � ���	�	� �

���
�
��
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������
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���
�
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�

��� ���
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��� ���
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� ����

� �� (3.31)
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Equation (3.31) implies that any point�� outside the conic� and the correspond-

ing line �� � ��� will define a harmonic homology�� to which the conic� will

be invariant. As a result, if the silhouette of the surface of revolution is a conic,

there will not be a unique solution for the optimization problem of the harmonic

homology� associated with the silhouette, and hence it provides no information

on the intrinsic parameters of the camera.

 C 

 x
e
 

 l 
e

Figure 3.8: A conic� will be invariant to any harmonic homology with a center
given by any point�� outside the conic, and an axis given by�� � ���.

3.7.2 Vanishing Point at Infinity

When the camera is pointing towards the axis of revolution of the surface, the

silhouette will exhibit bilateral or skew symmetry, and the vanishing point�� will

be at infinity (see Section 3.4). In this situation, the line�� passing through the

vanishing point�� and being orthogonal to the image of the revolution axis��

cannot be determined, nor is the distance����	��������
 in equations (3.21)

and (3.25) defined. This causes the algorithm presented in Section 3.6 to fail.

Nonetheless, it is obvious that the principal point is now constrained to lie on the

image of the revolution axis. If the camera is pointing towards the axis in all

images, then only the principal point can be estimated. In spite of that, such a
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situation can easily be avoided during image acquisition and does not restrict the

usefulness of the technique.

3.8 Experiments and Results

Experiments on both synthetic and real data were carried out, and the results are

presented in the following subsections. In both cases, the cameras were assumed

to have zero skew.

3.8.1 Synthetic Data

Generation of Data

The experimental setup consisted of a surface of revolution viewed by 3 identical

synthetic cameras, as show in figure 3.9. The synthetic images had a dimension

of ��� � � � pixels, and the intrinsic parameters of the synthetic cameras were

given by the calibration matrix

� �

�
� !�� � ���

� !�� ���
� � �

�
� � (3.32)

The surface of revolution was composed of 2 spheres intersecting each other. Each

sphere was represented by a� � � symmetric matrix� whose projection was

given by [31]

�� � 	���
��
 ��� 


��� (3.33)

where�� was a� � � projection matrix and�� was a� � � symmetric matrix

representing the conic, which was the projection of� in ��. The silhouette of

the surface of revolution in each image was found by projecting each sphere�
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21

3

Figure 3.9: The experimental setup consisted of a surface of revolution, which
was composed of 2 intersecting spheres, viewed by 3 identical synthetic cameras.

camera 1 camera 2 camera 3

Figure 3.10: Silhouettes of the surface of revolution in the images taken by the 3
synthetic cameras.
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onto the image� as the conic�� and finding points on each conic that lie outside

the other conic. The silhouettes formed by the 3 cameras are shown in figure 3.10.

In order to evaluate the robustness of the algorithm described in Section 3.6,

uniform random noise was added to each silhouette. Each point in the silhouette

was perturbed in a direction normal to the local tangent, and the magnitudes of

the noise were smoothed by a Gaussian filter so as to avoid unrealistic jaggedness

along the silhouette (see figure 3.11).
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Figure 3.11: (a) The original silhouette. (b) The resultant silhouette after uniform
random noise of maximum 0.5 pixels being added. (c) The noise-free and noisy
silhouettes are represented by solid and dash lines respectively, and the dotted
lines indicate the bounds for noise along the normal direction of each point.

Results on Synthetic Data

Experiments on noise-free data (see figure 3.10) and data with 5 different noise

levels were carried out. The 5 noise levels were���, ��!, ���, ��� and��� pixels

respectively. The noise level for typical real images is between��� to ��� pixels,

and the distortion of the silhouette will be too great to be realistic when the noise

level is above��� pixels (see figure 3.12).

For each noise level,�� experiments were conducted using the algorithm de-

scribed in Section 3.6. In the estimation of the harmonic homology�, the num-

ber of sample points used was���. Table 3.1 shows the mean values of the es-
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� pixels ��� pixels ��! pixels ��� pixels ��� pixels ��� pixels

Figure 3.12: Silhouettes with noise levels of�, ���, ��!, ���, ��� and��� pixels
respectively. For noise level above��� pixels, the distortion of the silhouette will
be too great to be realistic.

timated intrinsic parameters over the�� experiments for each noise level. The

rms errors of the estimated intrinsic parameters for each noise level are listed in

table 3.2, where the values in brackets are the percentage errors relative to the

ground truth values. Table 3.2 shows that results obtained using the unknown as-

pect ratio method were slightly better than those obtained under the assumption

of aspect ratio 1. As the noise level increased, the relative errors of the estimated

intrinsic parameters increased. From figure 3.13, it can be seen that the normal-

ized rms error of the focal length increased almost linearly with noise. For a noise

level of ��� pixels, the error of the focal length was less than���% and the error

of the principal point was less than��% in both� and� directions.

3.8.2 Real Data

The Ground Truth

The camera used in the real data experiments was a digital camera with a reso-

lution of ��� � � � pixels. The ground truth for the intrinsic parameters of the
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Assumptions: zero skew and aspect ratio 1
noise � - 
� ��

0 695.66 - 319.34 262.18
0.5 689.68 - 317.43 252.17
0.7 696.02 - 321.13 251.21
1.0 696.63 - 323.07 248.71
1.2 695.18 - 322.71 248.42
1.5 701.85 - 325.34 244.21

Assumptions: zero skew
noise � � 
� ��

0 695.15 1.0016 319.60 261.92
0.5 689.51 1.0005 317.53 252.07
0.7 695.65 1.0012 321.35 250.98
1.0 696.18 1.0014 323.33 248.44
1.2 694.82 1.0011 322.95 248.16
1.5 701.51 1.0011 325.60 243.94

Table 3.1: Results of calibration from silhouettes under different noise levels. The
intrinsic parameters listed are the mean values over the 10 experiments for each
noise level.
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Figure 3.13: The normalized rms errors of the estimated focal length for different
noise levels.
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Assumptions: zero skew and aspect ratio 1
noise � - 
� ��

0 4.34 (0.62%) - 0.66 (0.21%) 22.18 (9.24%)
0.5 18.25 (2.61%) - 6.88 (2.15%) 13.57 (5.66%)
0.7 18.41 (2.63%) - 8.32 (2.60%) 13.26 (5.53%)
1.0 20.78 (2.97%) - 11.02 (3.44%) 16.12 (6.72%)
1.2 29.31 (4.19%) - 12.94 (4.04%) 16.59 (6.91%)
1.5 30.14 (4.31%) - 15.79 (4.94%) 18.78 (7.83%)

Assumptions: zero skew
noise � � 
� ��

0 4.85 (0.69%) 0.0016 (0.16%) 0.40 (0.12%) 21.92 (9.13%)
0.5 18.04 (2.58%) 0.0015 (0.15%) 7.02 (2.20%) 13.53 (5.64%)
0.7 18.01 (2.57%) 0.0021 (0.21%) 8.63 (2.70%) 13.20 (5.50%)
1.0 20.44 (2.92%) 0.0020 (0.20%) 11.36 (3.55%) 16.22 (6.76%)
1.2 28.62 (4.09%) 0.0028 (0.28%) 13.39 (4.18%) 16.73 (6.97%)
1.5 29.54 (4.22%) 0.0028 (0.28%) 16.32 (5.10%) 19.05 (7.94%)

Table 3.2: The rms errors of the estimated intrinsic parameters for each noise
level. The values in brackets are the percentage errors relative to the ground truth
values.
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camera was obtained using a calibration grid. Eleven images of a calibration grid

were taken with the camera at different orientations (see figure 3.14). Corner fea-

tures were extracted from each image using a Canny edge detector [16] and line

fitting techniques. For each image, the camera was calibrated using the DLT tech-

nique [1] followed by an optimization which minimized the reprojection errors of

the corner features [42, 40]. The results of calibration from the calibration grid

are shown in table 3.3.

Figure 3.14: Eleven images of a calibration grid taken by the digital camera for
calibration.

Results on Real Data

Two sequences of real images of surfaces of revolution were used for the cal-

ibration of the digital camera. The first sequence consisted of 3 images of 2

bowls, which provided 4 silhouettes of surfaces of revolution (see figure 3.15).

The second sequence consisted of 8 images of a candle holder, which provided

8 silhouettes of surface of revolution (see figure 3.16). The results of calibration
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Assumptions: zero skew and aspect ratio 1
- � - 
� ��

mean 684.98 - 322.60 232.15
std 3.49 - 3.47 3.93

Assumptions: zero skew
- � � 
� ��

mean 685.52 0.9992 322.60 232.15
std 3.38 0.0020 3.46 3.94

Table 3.3: Results of calibration from�� images of the calibration grid.

from the 2 image sequences are shown in table 3.4. Table 3.5 shows the percent-

age errors of the estimated intrinsic parameters relative to the ground truth values.

Figure 3.17 shows the lines�� passing through the corresponding vanishing point

�� and orthogonal to the corresponding image of the revolution axis��.

Figure 3.15: Three images of 2 bowls with the extracted silhouettes and estimated
images of the revolution axis plotted in solid and dash lines respectively.

From table 3.4 and table 3.5, it can be seen that the intrinsic parameters es-

timated from the candle holder sequence were better than those from the bowls

sequence. This can be explained as the silhouettes in the candle holder sequence

showed much greater perspective effect than those in the bowls sequence (see

figure 3.15 and figure 3.16). Besides, the candle holder sequence also provided

more silhouettes, and hence more constraints, than the bowls sequence for the es-

timation of the intrinsic parameters. The focal length estimated from the bowls
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Figure 3.16: Eight images of a candle holder with the extracted silhouettes and
estimated images of the revolution axis plotted in solid and dash lines respectively.

Assumptions: zero skew and aspect ratio 1
image set � - 
� ��

Bowls 708.34 - 320.65 245.58
Candle holder 703.21 - 329.90 232.96

Assumptions: zero skew
image set � � 
� ��

Bowls 708.95 0.9987 320.59 245.63
Candle holder 694.75 1.0360 328.99 232.06

Table 3.4: Results of calibration from the bowls and candle holder sequences.

Assumptions: zero skew and aspect ratio 1
image set � - 
� ��

Bowls 3.41% - -0.60% 5.79%
Candle holder 2.66% - 2.26% 0.35%

Assumptions: zero skew
image set � � 
� ��

Bowls 3.42% -0.05% -0.62% 5.81%
Candle holder 1.35% 3.68% 1.98% -0.04%

Table 3.5: Percentage errors in the results of calibration from the bowls and candle
holder sequences.
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bowls sequence candle holder sequence

Figure 3.17: The solid lines represent the lines�� passing through the correspond-
ing vanishing point�� and orthogonal to the corresponding axis of revolution��.
Since the principal point�� must lie on these lines, it can be estimated as the
intersection of 2 or more lines��.

sequence had an error less than���% relative to the ground truth focal length. For

the candle holder sequence, the error of the estimated focal length decreased from

����% to ����% when the assumption of aspect ratio 1 was dropped. Note that

in both synthetic and real data experiments, the estimated focal length tended to

be closer to the ground truth value when the aspect ratio was allowed to change

to an incorrect value. This may be due to the fact that the cost functions given

by equations (3.21) and (3.25) are only some algebraic errors. It suggests that a

proper cost function should consist of the geometric errors between the original

and transformed silhouettes instead, like the one given in equation (3.17) for the

estimation of the harmonic homology.

3.9 Discussions

By exploiting the symmetry property exhibited in the silhouettes of surfaces of

revolution and the property of vanishing points, a practical technique for camera
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calibration has been developed. The use of surfaces of revolution makes the cal-

ibration process easier, in not requiring the use of any precisely machined device

with known geometry such as a calibration grid. Besides, a surface of revolution

can always be generated by rotating an object of any arbitrary shape around a

fixed axis. Despite the fact that strong perspective effect is required, the proposed

method is promising, as demonstrated by the experimental results on both syn-

thetic and real data. The focal lengths were estimated with high accuracy, having

an error of only around�% with respect to the ground truth.

x’
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x 0
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vx lx
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Figure 3.18: Error analysis in the estimation of the principal point as the focal
length varies.

Experiments show that in estimating the harmonic homology� associated

with the silhouette� of a surface of revolution, the uncertainty is essentially in the

vanishing point��. Since�� is, in general, tens of thousands of pixels away from

the axis��, its error in a direction orthogonal to�� is negligible in the computation

of the principal point and focal length. On the other hand, the error of�� in a

direction parallel to�� will lead to the same error in the estimated principal point

��. This is due to the fact that, under the assumptions of zero skew and aspect

ratio 1,�� must lie on the line�� passing through�� and orthogonal to�� (see

Section 3.5). Figure 3.18 shows a point� in � which is transformed by� to its
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symmetric counterpart�� in �. If �� has an error� in a direction parallel to��, then

the transformed point will have an error (see figure 3.18). It is easy to see that�

and are related to each other by

�

 
�

�� � ��� � !

! � !�
� (3.34)

Since�� � � 
���� is much greater than���,! and!�, and that! and!� are roughly

equal with respect to��, equation (3.34) can be rewritten as

�

 
�

� 


����!
� (3.35)

Equation (3.35) implies that if���, ! and the cost given by equation (3.17) after

the optimization are assumed to be constant, then the error� of ��, and hence the

error of the principal point��, in a direction parallel to�� will be proportional to

� 
. This limits the usefulness of the technique to wide angle cameras.
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Chapter 4

Reconstruction of Surfaces of
Revolution from Single View

“Beauty depends on size as well as symmetry.”

- Aristotle,Poetics, ch. 7, sec. 4.

4.1 Introduction

2D images contain cues to surface shape and orientation, however their inter-

pretations are inherently ambiguous because depth information is lost during the

image formation process when 3D structures in the world are projected onto

2D images. Multiple images from different viewpoints can be used to resolve

these ambiguities, and this results in techniques likestereo vision[70, 6] and

structure from motion[132, 79]. Nonetheless, under certain appropriate assump-

tions, it is possible to infer scene structure, like surface orientation and curva-

ture, from a single image. Examples of such techniques includeshape from shad-

ing [58, 61, 142, 59, 145] under the assumptions of point light source and Lamber-

tian surface,shape from line drawings[112, 50, 60, 28, 136, 83, 131, 122, 84, 102]

under the assumption of trihedral-vertex polyhedral scene structure or smooth-

61
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ness,shape from texture[48, 137, 34, 65, 11, 86, 85] under the assumption of

homogeneous or isotropic texture, andshape from contour[8, 68, 69, 24] under

the assumption of viewing a smooth object.

In this chapter, a simple technique for recovering the 3D shape of a surface

of revolution from a single view is introduced. The image of the surface of rev-

olution is first rectified by a planar homography so that the resulting silhouette

exhibits bilateral symmetry. Surface normals along the contour generator are then

determined from the rectified silhouette, and depth information can then be re-

covered using a coplanarity constraint between the surface normal and the axis of

revolution.

Section 4.2 briefly reviews existing techniques of shape from contour from

single view in the literature. Section 4.3 presents a parameterization for surfaces

of revolution and studies the surface geometry of surfaces of revolution. In par-

ticular, the surface normal and the axis of revolution are shown to be coplanar.

This coplanarity constraint is exploited in Section 4.4 to derive a simple technique

for reconstructing a surface of revolution from a single view using its silhouette.

The ambiguity in the reconstruction under a general camera configuration is stud-

ied and analyzed in Section 4.5. It is shown that such an ambiguity cannot be

described by a projective transformation. The algorithm and implementation are

described in Section 4.6 and results of real data experiments are presented in Sec-

tion 4.7. Finally discussions are given in Section 4.8.
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4.2 Previous Works

The earliest study of silhouettes in the literature dates back to 1978, when Barrow

and Tenenbaum [7, 8] showed that surface orientation along the silhouette can be

computed directly from image data. In his book [88], Marr pointed out that it is

possible to infer the sign of the Gaussian curvature of an object from its silhouette.

His observations were made more precise by Koenderink [68, 69] who showed

that the sign of the Gaussian curvature is equal to the sign of the curvature of the

silhouette, and convexities, concavities and inflections of the silhouette indicate

convex, hyperbolic and parabolic surface points respectively. In [24], Cipolla and

Blake showed that the curvature of the silhouette has the same sign as the normal

curvature along the contour generator under perspective projection. A similar

result was derived for orthographic projection by Brady et al. in [13].

In all the above studies mentioned, the authors only made use of a single

monocular image to infer geometric information from the silhouette. In fact, if

some strong a priori knowledge of the object is available, like a parametric de-

scription, then a single view alone allows shape recovery. Due to its expressive-

ness, generalized cylinders (GCs), introduced by Binford [10] in 1971, are com-

monly used as a parametric description for visual representation. The invariant

properties of straight homogeneous generalized cylinders (SHGCs) and their sil-

houettes had been studied by various researchers [57, 106, 77], and exploited for

object recognition and object pose estimation. In [114, 49, 144], algorithms for

segmentation and 3D recovery of SHGCs under orthographic projection were pre-

sented. In [133], Ulupinar and Nevatia addressed the recovery of curved-axis pla-

nar right constant generalized cylinders (PRCGCs) under orthographic projection.
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Their idea was further developed by Zerroug and Nevatia [143] who implemented

a technique for segmentation and 3D recovery of both PRCGCs and circular pla-

nar right generalized cylinders (circular PRGCs) from a single real image, under

orthographic projection.

This chapter addresses the problem of recovering the 3D shape of a surface

of revolution from a single view. Surfaces of revolution belong to a subclass of

SHGCs, in which the planar cross-section is a circle centered at and orthogonal to

the axis. The work presented here is different from previous works [133, 143] in

that rather than orthographic projection, which is a quite restricted case, perspec-

tive projection is assumed. Like other methods for shape recovery of GCs from

a single view, the algorithm introduced here makes use of the invariant property

of the surface of revolution and its silhouette to locate the image of the revolution

axis. The algorithm also uses the information of the image of the revolution axis

to rectify the image so that the resulting silhouette exhibits bilateral symmetry.

Such a rectification leads to a simpler differential analysis of the silhouette and

yields a simple equation for depth recovery.

4.3 Surface of Revolution

Let ���	�
 � ��	�
 � 	�
 ��� be a regular and differentiable planar curve on the

�-� plane where�	�
 � � for all �. A surface of revolution can be generated by

rotating ��� about the�-axis, and is given by

���	�� �
 �

�
� �	�
 ��� �

� 	�

�	�
 ��� �

�
� � (4.1)
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where� is the angle parameter for a complete circle. The tangent plane basis

vectors
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�
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are independent since��	�
 and �� 	�
 are never both zeros at the same time, and

�	�
 � � for all �. Hence��� is immersed and has a well-defined tangent plane at

each point, with the normal given by

�	�� �
 �
����
��

�
����
��

�
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�	�
 �� 	�
 ��� �

�
� � (4.3)

Through any point���	��� ��
 on the surface, there is ameridian curvewhich is

the curve obtained by rotating��� about the�-axis by an angle���, and alatitude

circle which is a circle on the plane� � � 	��
 and with its center on the�-axis.

Note that the meridian curve and the latitude circle are orthogonal to each other,

and they form the principal curves of the surface (see figure 4.1). It follows from

equation (4.3) that the surface normal at���	��� ��
 lies on the plane containing

the�-axis and the point���	��� ��
, and is normal to the meridian curve through

���	��� ��
. By circular symmetry, the surface normals along a latitude circle will

all meet at one point on the�-axis.

4.4 Reconstruction from a Single View

Consider a surface of revolution��� whose axis of revolution coincides with the

�-axis, and a pin-hole camera�� � ��	 �� where� � �� � ���
� and�� � �. Let the
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meridian curve

latitude circle

Figure 4.1: The meridian curves and latitude circles form the principal curves of
the surface of revolution.

contour generator be parameterized by� as

��	�
 � �� �	�
�	�
� ��� (4.4)

�	�
 � �	�
 � �� (4.5)

In equation (4.4),� indicates the camera center at�� � ����
�, �	�
 is the viewing

vector from� to the focal plane at unit distance for the point��	�
, and�	�
 is

the depth of the point��	�
 from � along the� direction. Note that�	�
 has the

form ��	�
 �	�
 ���, where	�	�
� �	�

 is a point in the silhouette. Equation (4.5)

expresses the tangency constraint, where�	�
 is the unit surface normal at��	�
.

It has been shown in Section 2.4.2 that�	�
 can be determined up to a sign by

�	�
 �
�	�
� � ����

� �����	�
� � ����
� �

��� �

�
�

��	�


�
� � ��	�


��	�

�	�
 ��	�
� ��	�
�	�


�
� � (4.6)
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where��	�
 �
����	�
� � ����

� �

���. In Section 4.3, it has been shown that the surface

normal�	�
 will lie on the plane containing the�-axis and the point��	�
. This

coplanarity constraint can be expressed as

�	�
��������	�
 � �� (4.7)

where�� � �� � ���. Let�	�
 � ���	�
 �
	�
 �		�
�
� and expanding (4.7) gives
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By rearranging (4.8), the depth of the point��	�
 is given by

�	�
 �
����	�


��	�
� �		�
�	�

� (4.9)

Hence, the contour generator can be recovered from the silhouette and is given by

�	�
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�
��� � (4.10)

where��	�
 � 	 ��	�
�	�
 � �	�
 ��	�

�	�
. Since the distance�� cannot be re-

covered from the image, the reconstruction is determined only up to a similarity

transformation. The surface of revolution can then be obtained by rotating the
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contour generator about the�-axis, and is given by

���	�� �
 �

�
� �	�
 ��� �

� 	�

�	�
 ��� �

�
� � (4.11)

where�	�
 �
�

	�	�
�	�


 � 	�	�
� ��

 and� 	�
 � �	�
�	�
.

Now consider an arbitrary pin-hole camera� by introducing the intrinsic pa-

rameters represented by the camera calibration matrix� to ��, and by applying

the rotation� to �� about its optical center. Hence� � ����	 �� or � � ���,

where� � ��. From the discussions presented in Section 3.4, the resulting

silhouette of��� will be invariant to a harmonic homology�. Given� and�,

it is possible to rectify the image by a planar homography������� so that the sil-

houette becomes bilaterally symmetric about the line��� � �� � ���, and hence be

invariant to� (see Section 3.4). This corresponds to normalizing the camera by

��� and rotating the normalized camera until the revolution axis of��� lies on the

�-� plane of the camera coordinate system. Note that������� is not unique, as any

homography��

������, given by

��

������ � ��	"
������� (4.12)

where

��	"
 �

�
� � � �

� ���" � ���"
� ���" ���"

�
� (4.13)

is a rotation about the�-axis by an angle", will yield a silhouette which will be

invariant to� (see Appendix C). There exists"� such that��	"�
�������� � ��

and the surface of revolution can be reconstructed from the rectified image using

the algorithm presented above. In general,"� cannot be recovered from a single
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image and hence there will be an 1-parameter family of solutions for the contour

generator, given by

��	�
 �

�
���

�� ��	�
�	�

�� ��	�
	�	�
 ���" � ���"


���
�
�	�


��	�
	�	�
 ���" � ���"
� ��
�	�


�
��� (4.14)

where��
�	�
 � �	 ��	�
�	�
� �	�
 ��	�

 ���" � ��	�
 ���"	�	�
. A detail deriva-

tion for�� is given in Appendix C. The 1-parameter family of surfaces of revolu-

tion ���� can be obtained by rotating�� about the�-axis. Note that the ambiguity

in the reconstruction corresponds to the ambiguity of the orientation of the rev-

olution axis on the�-� plane of the camera coordinate system. If the image of

a latitude circle in the surface of revolution can be localized, the orientation of

the revolution axis relative to the�-axis of the camera coordinate system can be

estimated (see Appendix D), which removes the ambiguity in the reconstruction.

Alternatively, the ambiguity can also be removed by knowing the ratio of the ra-

dius of any latitude circle in the surface of revolution to the height of the surface

of revolution.

4.5 Analysis of the Ambiguity in the Reconstruction

A projective transformation that maps a surface of revolution to another surface

of revolution, both with the�-axis as their axes of revolution, has the following

generic form

���� �

�
���

��� # � ��� # �
� $� � $



 ��� # � � ��� # �
� $	 � $�

�
��� ���

���� $� $

$	 $�

���� �� �� (4.15)
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A detail derivation for���� can be found in Appendix E. Assuming that the

ambiguity in the reconstruction of the surface of revolution can be described by

����, then both���� and the transformation induced by��	"
 will map a lat-

itude circle in��� to the same latitude circle in���� , as a latitude circle is by itself

a surface of revolution in the limiting case. Hence, if the ambiguity is projective,

there exists# for each�	�
 such that��	�
 � �����	�
. In Cartesian coordi-

nates, the projective transformation��	�
 � �����	�
, with �� � �, is given by

the set of equations

��	�
�	�


��	�
	�	�
 ���" � ���"
� ��
�	�


�
��	�
�	�
 ��� # � ��	�
 ��� #

$	 ��	�
�	�
 � $�	 ��	�
� ��	�


� (4.16)
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Rearranging (4.17) gives
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which holds for all values of�	�
, ��	�
, �	�
, ��	�
 and". Equation (4.19) yields

the following 8 constraints

$
 ���" � �� (4.20)

$
 ���" � �� (4.21)

$� ���" � $
 ���" � $� ���" � �� (4.22)

�$
 ���" � $� ���" � �� (4.23)

$� ���" � �$
 ���" � $� ���" � �� (4.24)

$� ���" � $	 ���" � �� (4.25)

$� ���" � $
 ���" � $	 ���" � $� ���" � �� ��� (4.26)

$
 ���" � $� ���" � �� (4.27)

Solving equations (4.20)–(4.27) gives

$� � $
 � $	 � $� � �� (4.28)

which makes���� singular. As a result, the ambiguity in the reconstruction

cannot be described by a projective transformation.

4.6 Algorithm and Implementation

4.6.1 Estimation of the Harmonic Homology�

The harmonic homology associated with the silhouette of a surface of revolution

can be estimated using an algorithm similar to the one described in Section 3.6.1.

Given the camera calibration matrix�, the harmonic homology is completely

defined by the axis��, as the center is then given by����� (see Section 3.5). The

silhouette� of a surface of revolution is first extracted from the image by applying
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a Canny edge detector [16], and the harmonic homology� that maps each side

of � to its symmetric counterpart is then estimated by minimizing the geometric

distances between the original silhouette� and its transformed version� � � ��

(see figure 4.2). This can be done by sampling� evenly spaced points� along�

and optimizing the cost function

������
	��
 �

��� �

�

��
��

����	�	������ ��
�� �

� (4.29)

where����	�	������ ��
�� �
 is the orthogonal distance from the transformed

sample point�� � �	������ ��
� to the original silhouette�, and

�	������ ��
 � �	� �
������

�
�

��� ��
���

(4.30)

is the harmonic homology defined by the camera calibration matrix� and the

axis ��. The axis�� can be initialized manually by observing the symmetry in the

silhouette. Alternatively,�� can be initialized by using bitangents to the silhouette,

as described in Section 3.6.1.

sl

ρ

Figure 4.2: The silhouette� of a surface of revolution (candle holder) is extracted
by applying a Canny edge detector and the axis�� of the harmonic homology
associated with the silhouette is estimated.
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4.6.2 Image Rectification

After the estimation of the harmonic homology�, the image can be rectified

so that the silhouette becomes bilaterally symmetric about the line� � �� � ���.

Such a rectified image resembles an image that would have been observed by a

normalized camera when the axis of the surface of revolution lies on the�-� plane

of the camera coordinate system. The image is first normalized by��� to remove

the effects of the intrinsic parameters of the camera. The axis�� of �, and hence

the image of the revolution axis, is transformed to

��� � ����� (4.31)

The normalized image is then transformed by�� which is a rotation matrix that

brings��� , the orthogonal projection of the principal point�� � �� � ��� on the

axis ��� , to ��. This corresponds to rotating the normalized camera until it points

directly towards the axis of the surface of revolution, and the resulting silhouette

will then be bilaterally symmetric about the image of the revolution axis. The axis

�� and the angle�� of the rotation�� are given by

�� �
�
�
� � ��

���� � ���
� ��� (4.32)

�� � ������	
�
�
� � ��

����� ����

� (4.33)

After transforming the normalized image by the homography��, the resulting sil-

houette�� � ���
��� will be bilaterally symmetric about the transformed image

of the revolution axis, given by

��� � ���
� ���

�

�
� ��� ��

��� ��

�

�
� � (4.34)
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The resulting image is then rotated about the point�� until the axis of symmetry

aligns with the�-axis, and the transformation is given by

�� �

�
� ��� �� ��� �� �
� ��� �� ��� �� �

� � �

�
� � (4.35)

This corresponds to rotating the normalized camera, which is now pointing di-

rectly towards the axis of the surface of revolution, about its�-axis until the axis of

the surface of revolution lies on the�-� plane. The resulting silhouette�� � ���
�

is now bilaterally symmetric about the line

��� � ���
� ���

�

�
� �

�
�

�
� � (4.36)

and hence is invariant to the harmonic homology� (see Section 3.4). The overall

transformation for the rectification is given by

������� � �����
��� (4.37)

and the rectification process is illustrated in figure 4.3.

4.6.3 Depth Recovery

Since the rectified silhouette�� is bilaterally symmetric about the�-axis, only

one side of�� needs to be considered during the reconstruction of the surface of

revolution. Points are first sampled from one side of�� and the tangent vector

(i.e. ��	�
 and ��	�
) at each sample point is estimated by fitting a polynomial to

the neighboring points in the rectified silhouette. The surface normal associated

with each sample point is then computed from equation (4.6). Finally, the depth

of each sample point is recovered from equation (4.9), and the contour generator
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(a) (b) (c)

Figure 4.3: (a) The harmonic homology associated with the silhouette of the sur-
face of revolution is estimated, which yields the image of the revolution axis. The
image is then normalized by���, and the orthogonal projection��� of the point
�� � �� � ��� on the image of the revolution axis is located. (b) The image is
transformed by the homography�� so that the point�� lies on the image of the
revolution axis and the silhouette becomes bilaterally symmetric about the image
of the revolution axis. (c) Finally, the image is rotated about the point�� until the
image of the revolution axis aligns with the�-axis.

and the surface of revolution follow. For" �� �, the viewing vector�	�
 and

the associated surface normal�	�
 at each sample point are first transformed by

��	"
. The transformed viewing vector is then normalized so that its��� coeffi-

cient becomes 1, and equation (4.9) can then be used to recover the depth of the

sample point.

4.7 Experiments and Results

Figure 4.4 shows an image of a candle holder and its rectified silhouette. The rec-

tification of the silhouette was done using the algorithm described in Section 4.6.

An ellipse was fitted to the bottom of the rectified silhouette for computing the

orientation of the revolution axis relative to the�-axis of the camera coordinate

system (the ambiguity in solution was resolved manually, see Appendix D), and

the angle"� was estimated to be����"��Æ. In order to illustrate the ambiguity

in the reconstruction, 10 surfaces of revolution were reconstructed from the rec-
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tified silhouette with" � ���Æ, ���Æ, ���Æ, ��Æ, �Æ, �Æ, ��Æ, ��Æ, ��Æ and"�

respectively. The reconstructed 3D models of the candle holder are shown in fig-

ure 4.6, together with their corresponding curves of revolution that generated the

surfaces. For the sake of easy comparison, all the estimated surfaces of revolution

were scaled to have unit heights. From figure 4.6, it can be seen that as" in-

creased, the curve of revolution expanded towards the top and shrank towards the

bottom. This can be explained by the fact that as" increases, the bottom of the

surface is assumed to be tilted more towards the camera before the application of

the rotation��	"
. As a result, the surface needs to expand towards the top and

shrink towards the bottom to give the same silhouette in the rectified image un-

der perspective projection. The radius of the topmost circle and the height of the

candle holder, measured manually using a ruler with a resolution of 1mm, were

5.7cm and 17.1cm respectively. The ratio of the radius of the topmost circle to the

height of the reconstructed candle holder, with" � "�, was 0.3433. This ratio

agreed with the ground truth value (5.7/17.1 = 0.3333) and had a relative error of

3% only.

Another example is given in figure 4.5, which shows an image of a bowl and

its rectified silhouette. An ellipse was fitted to the top of the rectified silhouette

and the angle"� was estimated to be��!�"�Æ. The reconstructed 3D models of

the bowl and their corresponding curves of revolution that generated the surfaces

are shown in figure 4.7. The radius of the topmost circle and the height of the

bowl, measured manually using a ruler with a resolution of 1mm, were 6.4cm and

6.2cm respectively. The ratio of the radius of the topmost circle to the height of

the reconstructed bowl, with" � "�, was 1.0995. This ratio was close to the

ground truth value (6.4/6.2 = 1.0323) and had a relative error of 6.5%.
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Figure 4.4: Image of a candle holder and its rectified silhouette which exhibits
bilateral symmetry.

Figure 4.5: Image of a bowl and its rectified silhouette which exhibits bilateral
symmetry.

4.8 Discussions

By exploiting the coplanarity constraint between the axis of revolution and the

surface normal, a simple technique for recovering the 3D shape of a surface of

revolution from a single view has been developed. The technique presented here

assumes perspective projection and uses information from the silhouette only. The

invariant property of the surface of revolution and its silhouette has been used to

rectify the image so that the silhouette becomes bilaterally symmetric about the
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Figure 4.6: 3D models of the candle holder estimated from a single view and the
corresponding curves of revolution.
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Figure 4.7: 3D models of the bowl estimated from a single view and the corre-
sponding curves of revolution.
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�-axis. This simplifies the analysis of the general camera configuration case to

one in which the axis of revolution lies on the�-� plane of the camera coordinate

system. The 1-parameter ambiguity in the reconstruction under general camera

configuration, which cannot be described by a projection transformation, corre-

sponds to the ambiguity of the orientation of the revolution axis on the�-� plane

of the camera coordinate system. If the image of a latitude circle in the surface

of revolution can be localized, the orientation of the revolution axis relative to the

�-axis of the camera coordinate system can be estimated, which removes the am-

biguity in the reconstruction. Alternatively, the ambiguity can also be removed by

knowing the ratio of the radius of any latitude circle in the surface of revolution to

the height of the surface of revolution. It is worth mentioning that sometimes due

to self-occlusions, it might not be always possible to recover the whole surface of

revolution from its silhouette. This situation is illustrated in figure 4.8, where part

of the neck and the bottom of the vase cannot be reconstructed.

(a) (b)

Figure 4.8: Due to self-occlusions, it might not be always possible to recover the
whole surface of revolution from its silhouette. (a) It is possible to recover the
whole surface from the side view of a vase. (b) Part of the neck and the bottom of
the vase cannot be reconstructed from this top view due to self-occlusions.



Chapter 5

Motion Estimation from Silhouettes

“Push on,—keep moving..”

- Thomas Morton,A Cure for the Heartache, Act ii, Sc. 1.

5.1 Introduction

Silhouettes are often a dominant image feature, and can be extracted relatively

easily and reliably. They provide rich information about both the shape and mo-

tion of an object, and are indeed the only information available in the case of

smooth textureless surfaces. Nonetheless, structure and motion from silhouettes

has always been a challenging problem [68, 24, 22, 123, 125, 4, 30, 64]. Unlike

corners, silhouettes are projections of contour generators which are viewpoint de-

pendent, and hence they do not readily provide point correspondences (see Sec-

tion 2.4). As a result, classical techniques for motion estimation and scene recon-

struction [126, 9, 67, 44], based on point correspondences in the image sequence,

cannot be applied.

In this chapter, a complete and practical system for generating high quality 3D

models from 2D silhouettes is introduced. The system presented here employs a

81
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novel technique [95, 96] for estimating the motion of an object undergoing cir-

cular motion from its silhouettes alone. An initial 3D model of the object can be

obtained by an octree carving technique [124] using the silhouettes and the esti-

mated motion. The system then allows the 3D model thus obtained to be refined

incrementally by adding new arbitrary general views of the object and estimating

the corresponding camera motion. This is achieved by registering the silhouette in

the new view with the set of silhouettes generated by the now estimated circular

motion [138]. The incorporation of arbitrary general views reveals information

which is concealed under circular motion, and overcomes the drawbacks of using

circular motion alone. Only the 2 outer epipolar tangents to the silhouettes are re-

quired in estimating both the circular and general motion, and no corner detection

nor matching is needed. The system described is practical in almost all situations,

and is capable of reconstructing virtually any kind of objects.

This chapter will concentrate on the problem of motion estimation from sil-

houettes, whereas the problem of model reconstruction from silhouettes will be

studied in Chapter 6. Section 5.2 reviews existing techniques in the literature for

motion estimation from silhouettes, and discusses their shortcomings. Section 5.3

studies the epipolar constraint between silhouettes from distinct viewpoints and

introduces the use of outer epipolar tangents that simplifies the correspondence

problem. Section 5.4 addresses the problem of estimating the motion of a rotating

object and presents 2 useful parameterizations of the fundamental matrix specific

to circular motion. The general motion case is then tackled in Section 5.5. The

algorithms and implementations are described in Section 5.6, followed by a dis-

cussion of the degenerate case for the estimation of circular motion in Section 5.7.

Results of real data experiments, demonstrating the practicality of the system, are
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presented in Section 5.8. Finally discussions are given in Section 5.9.

5.2 Previous Works

The study of motion estimation from silhouettes was pioneered by Rieger [111],

who showed that camera motion can be recovered from 3fixed pointsof a deform-

ing silhouette under orthographic projection. He also set forth the idea that under

perspective projection, the epipole is constrained to the line spanned by the tan-

gent vector to the silhouette at the fixed point (i.e. epipolar tangency constraint).

In [107], it was noted that the intersection of 2 contour generators from 2 distinct

viewpoints generates a point that is visible in both images as a fixed point. This

point was identified as afrontier point in [45], where Giblin et al. developed an

algorithm for motion estimation from the silhouettes of a rotating surface under

orthographic projection.

The methods mentioned so far deal with the motion recovery problem under

orthographic projection, which is a rather restrictive situation. The use of fron-

tier points and epipolar tangents for motion recovery under perspective projection

was introduced in [22, 4]. These techniques require the presence of at least 7

pairs of corresponding epipolar tangents in the image pair, which are localized by

iterative methods. By using an affine approximation [100, 118, 110], a similar

technique that only requires 4 pairs of corresponding epipolar tangents was devel-

oped in [93]. In [116], a non-iterative method was presented in the case of linear

camera motion, where common tangents are used to determine both the frontier

points and the epipoles. By combining the ideas in [4] and [116], Cross et al. [30]

implemented a parallax-based technique in which images are registered using a
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reference plane to “undo” the effect of rotation. Related work also includes [64]

in which a calibrated trinocular stereo rig with known geometry was used.

This chapter tackles the problem of structure and motion from silhouettes ob-

served under perspective projection using a single camera. The approach here is

to first constrain the motion to be circular. This allows a trivial initialization of

the parameters which all bear physical meanings (e.g. image of the rotation axis,

the horizon and the angles of rotation). When there are 3 or more images in the

circular motion sequence, a solution is possible by using only the 2 outer epipolar

tangents to the silhouettes. In the case of complete circular motion with dense

image sequence, the image of the rotation axis can be estimated conveniently and

independently by exploiting the symmetry [147, 33, 45] associated with the im-

age of the surface of revolution swept by the rotating object. The drawbacks of

using circular motion alone are then overcome by incorporating new views from

arbitrary general motion. The initialization of the general motion can be done

relatively easily by using the model built from the estimated circular motion. By

registering the silhouette in the new view with the set of silhouettes resulted from

the circular motion, the camera motion can again be estimated using only the 2

outer epipolar tangents.

5.3 Epipolar Constraint between Silhouettes

Silhouettes are projections of contour generators which are viewpoint dependent,

and hence they do not readily provide point correspondences. A frontier point is

given by the intersection of 2 contour generators from 2 distinct viewpoints, and

is visible in both images. A frontier point lies on an epipolar plane tangent to the
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surface, and hence it will be projected onto a point in the silhouette which is also

an epipolar tangent point (see Section 2.4). Epipolar tangent points thus provide

point correspondences that satisfy the epipolar constraint, and can be exploited for

motion estimation.

Theoretically, if 7 or more pairs of corresponding epipolar tangent points are

available, the epipolar geometry between the 2 views can be estimated, and the

camera intrinsic parameters can then be used to recover the relative motion [78,

39]. However, when the epipolar geometry is not known, the localization of the

epipolar tangents involves a nonlinear optimization. Examples of this iterative

approach can be found in [22, 4]. The need for a good but nontrivial initializa-

tion, the unrealistic demand for a large number of epipolar tangent points, and the

presence of local minima all make this approach impractical.

In Section 5.4 and Section 5.5, 2 motion estimation algorithms which only

require the 2outer epipolar tangentsare presented. The outer epipolar tangents

correspond to the 2 epipolar tangent planes which touch the object (see figure 5.1).

Except when the baseline passes through the object, the 2 outer epipolar tangents

are always available in any pair of views and are guaranteed to be in correspon-

dence. The use of the outer epipolar tangents avoids false matches due to self-

occlusions and greatly simplifies the matching problem. This is illustrated in fig-

ure 5.2 which shows 2 silhouettes from 2 distinct viewpoints. The silhouette in the

left image has 11 epipolar tangents, whereas the silhouette in the right image has

only 6 epipolar tangents. A careful examination will show that not all 6 epipolar

tangents in the right image have a correspondence in the left image. There are

actually only 4 pairs of corresponding epipolar tangents, which are the 2 outer

epipolar tangents and another 2 tangents at the front and back left legs. By con-
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sidering only the outer epipolar tangents, possible false matches are eliminated

and the problem is reduced to matching only 2 epipolar tangents against another

2, leaving only 2 possible cases.

points

camera
centers

frontier

baseline

Figure 5.1: The outer epipolar tangents correspond to the 2 epipolar tangent planes
which touch the object, and are always available in any pair of views except when
the baseline passes through the object.

5.4 Circular Motion

5.4.1 Fixed Image Features under Circular Motion

Consider a pin-hole camera rotating about a fixed axis. Let�� be the vanishing

point corresponding to the normal direction�� of the plane�� that contains the

axis of rotation and the camera center, and�� be thehorizonwhich is the image

of the plane�� that contains the trajectory of the camera center. By definition,

the epipoles are the projections of the camera center and must therefore lie on��.

Besides, since�� is parallel to the plane��, it follows that�� also lies on��.

The plane�� will be projected onto the image plane as a line��, which is also the
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Figure 5.2: Two discrete views showing 17 epipolar tangents in total, of which
only 4 pairs are in correspondence. The use of the 2 outer epipolar tangents (in
solid lines), which are guaranteed to be in correspondence, avoids false matches
due to self-occlusions, and greatly simplifies the matching problem.

camera
center

axis of rotation

x

lh

v

ls

Figure 5.3: If the intrinsic parameters of the camera are assumed to be fixed, the
image of the rotation axis��, the horizon�� and the vanishing point�� corre-
sponding to the normal direction of the plane that contains the rotation axis and
the camera center, will be fixed throughout the image sequence.
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image of the rotation axis. It has been shown in Section 3.5 that�� is related to��

by the camera calibration matrix�, given by

�� � ������ (5.1)

If the intrinsic parameters of the camera are assumed to be fixed, due to symmetry

in the configuration,��, �� and�� will be fixed throughout the image sequence

(see figure 5.3). The fundamental matrix associated with any pair of views in the

circular motion sequence can be parameterized explicitly in terms of these fixed

features [135, 44], and a simple derivation of this parameterization is given in the

next section.

5.4.2 Parameterizations of the Fundamental Matrix

Parameterization via Fixed Image Features of Circular Motion

Consider 2 pin-hole cameras��� and ��
, given by

��� � ��	 ��� ��� (5.2)

��
 � ���	�
 ��� (5.3)

where� � �� � ��� and��	�
 is a rotation by an angle� �� � about the�-axis,

given by

��	�
 �

�
� ��� � � ��� �

� � �
� ��� � � ��� �

�
� � (5.4)

Under this camera configuration, the image of the rotation axis, the horizon and

the special vanishing point are given by

��� � �� � ���� (5.5)

��� � �� � ���� ��� (5.6)

��� � �� � ��� (5.7)
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respectively. By substituting��� and ��
 into (2.15), the fundamental matrix asso-

ciated with��� and ��
 is given by

�� �

�
� � ��� �



�

��� �



� ��
� � �

�
�

�

�
� �

�
�

�
�
�

� ���
�

�

�
�
�
� �

�
�

�
� �� � �� �

�
� �

�
�

�
� �� � ��

�
� � (5.8)

By substituting (5.5), (5.6) and (5.7) into (5.8), the fundamental matrix can be

rewritten in terms of the fixed image features under circular motion, and is given

by [94, 96]

�� � ������ � ���
�

�
	�����

�
� ������

�
� 
� (5.9)

Consider now a pair of camera�� and�
 obtained by introducing the intrinsic

parameters represented by the camera calibration matrix� to ��� and ��
 respec-

tively, and by applying the rotation� to ��� and ��
 about their optical centers

respectively. Hence�� � ���� and�
 � ���
, where� � ��. The funda-

mental matrix associated with�� and�
 is then given by [94, 96]

� � ��� �����

�
�

��	�

����� � ���

�

�
	���

�
� � ���

�
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�
�

��	�

����� � ���

�

�
	���

�
� � ���

�
� 
� (5.10)

where�� � ������, �� � ������ and�� � ����. Note that��, �� and�� are the im-

age of the rotation axis, the horizon and the special vanishing point, respectively,

under this new camera configuration.

Equation (5.10) gives a simple parameterization of the fundamental matrix re-

lating any pair of views in the circular motion sequence. This parameterization
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allows a trivial initialization of the parameters which all bear physical meanings,

and greatly reduces the dimension of the search space for the optimization prob-

lem in motion estimation. When the intrinsic parameters of the camera are fixed

and known, 2 parameters are enough to fix�� and��. Since�� must also lie on

��, only 1 further parameter is needed to fix��. As a result, a sequence of� im-

ages taken under circular motion can be described by� � � motion parameters

(2 for �� and��, 1 for �� and the� � � rotation angles). By exploiting the 2 outer

epipolar tangents, the� images will provide�� (or � when� � �) independent

constraints on these parameters, and a solution will be possible when� � �. The

algorithm for estimating these� �� motion parameters is given in Section 5.6.3.

Parameterization via Harmonic Homology

Consider again the pair of cameras��� and ��
 given in equations (5.2) and (5.3).

The epipoles can be obtained by projecting the camera center of��
 into ��� and

vice versa, and are given by

��� �

�
� ��� �

�
� ��� � � �

�
� ��� ��
 �

�
� � ��� �

�
� ��� � � �

�
� � (5.11)

Equation (5.11) shows that the epipoles are related by the transformation

��
 �

�
� �� � �

� � �
� � �

�
� ���

� ����� (5.12)

where� is the harmonic homology with axis��� and center��� (see Section 3.4).

Consider now the pair of cameras�� � ���� and�
 � ���
, where� � ��.

The epipoles can be obtained by transforming��� and��
 by � respectively, and
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are given by

�� � ����� ��� (5.13)

�
 � ���
� (5.14)

Substituting (5.13) and (5.14) into (5.12) gives

����
 � ������

�
 � �������

� ���� (5.15)

where� is the harmonic homology with axis�� and center�� (see Section 3.4).

Note that� is the harmonic homology associated with the image of the surface of

revolution swept by the rotating object. Given a dense image sequence taken under

complete circular motion, say the angles of rotation are less than��Æ, the image

of this surface of revolution can be approximated by overlapping all the images

in the sequence and the associated harmonic homology� can be estimated from

the resulting image using the algorithm described in Section 3.6.1. Since�� is a

point-wise fixed feature in the image sequence and is invariant to�, it follows

from equation (5.15) that corresponding epipolar lines�� and�
 are related by

�
 � ����� ��� (5.16)

�� � ���
� (5.17)

In Section 2.3.3, it has been shown that the fundamental matrix can be written in

a plane plus parallax representation, given by

� � ��
���� (5.18)
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where� is any plane induced homography such that corresponding epipolar lines

are mapped by��� and�� respectively. Hence, from equations (5.16) and

(5.17), it follows that the fundamental matrix can be parameterized as [94, 96]

� � ��
���� (5.19)

Note that� is the homography induced by the plane�� that contains the axis

of rotation and bisects the line segment joining the 2 camera centers [95, 96].

Consider any point� on the plane��, given by

� �

�
���

% ��� �



&
�% ��� �




�

�
��� � (5.20)

where% and& are some real numbers. Its image in��
 is given by

��
 � ��
�

� ��	�
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� % ��� �
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� �

�
�

� �����

� ����� (5.21)

where��� � ���� is the image of� in ���. The images of� in �� and�
 can be

obtained by transforming��� and��
 by� respectively, and are given by

�� � ����� ��� (5.22)

�
 � ���
� (5.23)
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Substituting (5.22) and (5.23) into (5.21) gives

����
 � ������

�
 � �������

� ���� (5.24)

Equation (5.24) implies that the homology� is induced by the plane�� that

contains the axis of rotation and bisects the line segment joining the 2 camera

centers. The plane plus parallax parameterization given in equation (5.19) sug-

gests that the harmonic homology� can be used to register the images and

the parallax-based technique introduced in [4, 30] can be applied to estimate the

camera motion by locating the epipoles using common tangents. However, the

epipoles obtained in this way are not constrained to lie on the horizon��, and

hence a full optimization using the parameterization given in equation (5.10) is

necessary to refine the solution so that the resulting camera motion is constrained

to be circular.

5.5 General Motion

Circular motion allows a trivial initialization of the motion parameters which all

bear physical meanings, and can be estimated accurately using only the 2 outer

epipolar tangents. However, new views cannot be added easily at a later time, and

part of the structure will always remain invisible under circular motion. These

limit the usefulness of circular motion in model building from silhouettes. The

drawbacks of using circular motion alone are overcome by the incorporation of

arbitrary general views. In this section, it is shown that circular motion can be

exploited for the registration of any arbitrary general view using only the 2 outer
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epipolar tangents, and that the initial 3D model built from the circular motion can

be used to aid the initialization of the motion parameters for the general motion.

Circular motion will generate aweb of contour generatorsaround the object

(see figure 5.4), which can be used for registering any new arbitrary general view.

Given an arbitrary general view, the associated contour generator will intersect

with this web and form frontier points. If the camera intrinsic parameters are

known, the 6 motion parameters (3 for rotation and 3 for translation) of the new

view can be determined when there are 6 or more frontier points on the associated

contour generator. This corresponds to having a minimum of 3 views under cir-

cular motion, each providing 2 outer epipolar tangents to the silhouette in the new

general view (see figure 5.5). The motion parameters of the arbitrary general view

can then be estimated by minimizing the reprojection errors of the 2 outer epipolar

tangents resulting from each view in the estimated circular motion sequence.

Figure 5.4: The circular motion will generate a web of contour generators around
the object, which can be used for registering any new arbitrary general view.

The difficulty of nontrivial initialization, which exists in every algorithm for

general motion estimation from silhouettes, is overcome by exploiting the 3D
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Figure 5.5: Three views from circular motion provide 6 outer epipolar tangents to
the silhouette in the new general view for estimating its pose.

model built from the circular motion. After the estimation of the circular mo-

tion, a volumetric model of the object can be constructed by an octree carving

technique [124] using the resulting camera configuration and the silhouettes. A

triangulated mesh can then be extracted from the octree using the marching cubes

algorithm [80]. The vertices in the mesh of the model are projected onto the new

view whose pose is to be estimated. A very good initialization can be obtained by

rotating and translating the camera (i.e. changing the 6 extrinsic parameters of the

camera) until the projection of the initial 3D model roughly matches the silhouette

in the new view (see figure 5.6).

5.6 Algorithms and Implementations

5.6.1 Extraction of Silhouettes

The cubic B-spline snake [23, 24] is chosen for the extraction of silhouettes from

the image sequence. Cubic B-spline snake provides a compact representation for



96 CHAPTER 5. MOTION ESTIMATION FROM SILHOUETTES

(a) (b)

(c) (d)

Figure 5.6: The arbitrary general motion can be initialized by rotating and translat-
ing the camera until the projection of the initial 3D model, built from the estimated
circular motion, roughly matches the silhouette in the new view.

silhouettes of various complexity, and can achieve sub-pixel localization accuracy.

Its parameterization also facilitates the localization of epipolar tangents.

The process of extracting a silhouette from an image using a B-spline snake

is illustrated in figure 5.7. A B-spline snake is first initialized close to the target

silhouette by selecting the control points manually. Points are then sampled along

each spline segment and a search for intensity discontinuity (i.e. image edge)

along the direction normal to the local tangent at each sample point is carried out.

The control points of the B-Spline snake are then updated by a linear least-squares

method, so that each sample point attaches to the location of intensity discontinu-

ity found. In the implementation presented in this chapter, closed B-spline snake
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is used to extract the complete silhouette of the object in the image.

Figure 5.7: (a) A B-spline snake is initialized close to the target silhouette. (b)
Points are sampled from each spline segment and a search for intensity disconti-
nuity along the direction normal to the local tangent at each sample point is carried
out. (c) The control points of the B-spline snake are updated so that each sample
point attaches to the location of intensity discontinuity found.

5.6.2 Reprojection Errors of Epipolar Tangents

The motion estimation proceeds as an optimization which minimizes the repro-

jection errors of epipolar tangents. Given a pair of views' and�, the associated

fundamental matrix�� is formed and the epipoles�� and�� are obtained from

the right and left nullspaces of�� respectively. The outer epipolar tangent points

���, ��� and���, ��� are located in view' and view� (see figure 5.8). The

reprojection errors are then given by the geometric distances between the epipolar

tangent points and their epipolar lines [81]

��� �
����������

	������



� � 	������







� ��� (5.25)

��� �
����������

	�����

� � 	�����



� (5.26)

where	������
� and	������

 indicate the��� and��� coefficients of	������


respectively. Similarly,	�����
� and	�����

 indicate the��� and��� coeffi-

cients of	�����
 respectively.
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Figure 5.8: The motion parameters can be estimated by minimizing the repro-
jection errors of epipolar tangents, which are given by the geometric distances
between the epipolar tangent points and their epipolar lines.

5.6.3 Estimation of the Circular Motion

For a sequence of� images taken under circular motion, the��� rotation angles

are arbitrarily initialized. Usually by just inspecting the image sequence, a very

good initialization for the image of the rotation axis�� can be obtained manually.

The horizon�� is initialized manually by having a rough idea of the camera setup.

Nonetheless, experimental results show that even with a poor initialization of��

and ��, the algorithm always converges to the same solution (see Appendix G).

As a result,�� and�� can be conveniently initialized as the vertical and horizontal

lines through the image center respectively (see figure 5.9).

During each iteration of the optimization, a fundamental matrix�� between

views ' and � is computed from the current estimate of the motion parameters

using equation (5.10) and the reprojection errors���	�
, ��
	�
, ���	�
 and
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Figure 5.9: By inspecting the image sequence, or by having a rough idea of the
camera setup, a very good initialization for the image of the rotation axis�� and the
horizon�� can be obtained manually, as shown in the left image. Alternatively,��
and�� can be conveniently initialized as the vertical and horizontal lines through
the image center respectively, as shown in the right image.

��
	�
 are determined. The cost function for the circular motion is then given by

����� 	�
 �

��� �
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where� consists of the� � � motion parameters. Note that the cost����� 	�


to be minimized is the rms reprojection error of the epipolar tangents. The cost

is minimized using theconjugate gradient method[109], with the gradient vector

computed by finite differences using a delta change of���! for each parameter.

Typically, the cost is less than 0.2 (pixels) at the end of the optimization.

5.6.4 Registration of the General Motion

The 6 motion parameters for the optimization of the general motion are initialized

by observing the projection of the 3D model built from the circular motion, as de-

scribed in Section 5.5. This is achieved by using a user-friendly interface in which

the rotation and translation of the camera are controlled by the mouse movement.

Usually, an initialization obtained by this method gives a very small rms reprojec-
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tion error of just a few pixels, and is good enough to avoid local minima and allow

convergence to the global minimum in a few iterations.

During each iteration of the optimization, the projection matrix� of the ar-

bitrary general view' is formed using the current estimate of the motion parame-

ters. For each view�, with projection matrix��, in the estimated circular motion

sequence, a fundamental matrix�� is computed from� and�� using equa-

tion (2.15) and the reprojection errors���	��
, ��
	��
, ���	��
 and��
	��


are determined. The cost function of general motion for view' is then given by

����" 	�
�
 �

�����

��� ��
�
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 � ���	��




�
��

��� ��
� (5.28)

where� is the number of views in the estimated circular motion sequence, and��

consists of the 6 motion parameters for the arbitrary general view' whose pose is

to be estimated. The coefficient�� is determined by the availability of the 2 outer

epipolar tangents between views' and� (see Section 5.3). It is 0 if the baseline

between views' and � passes through the object, otherwise it is 1. Similar to

the circular motion case, the cost����" 	�
�
 is the rms reprojection error of the

epipolar tangents, and is minimized using the conjugate gradient method with the

gradient vector computed by finite differences.

The complete process of generating 3D model from 2D silhouettes is summa-

rized in algorithm 5.1.

5.7 Degenerate Case

A degenerate case for the estimation of circular motion occurs when the object

being viewed is a surface of revolution and is being rotated about its axis of revo-

lution. In this situation, there will be no relative motion of the silhouettes. In fact,
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Algorithm 5.1 Generation of 3D model from silhouettes.
extract the silhouettes using cubic B-spline snakes;

initialize ��, �� and the� � � angles for the circular motion;
while not convergeddo

for each view' do
form the fundamental matrices with the next 2 views;
determine the reprojection errors of the epipolar tangents;

end for
compute the cost for the circular motion using (5.27);
update the� � � motion parameters to minimize the cost
using conjugate gradient method;

end while

form the set of fundamental matrices from the estimated motion parameters;
upgrade the fundamental matrices to essential matrices
using the camera calibration matrix;

decompose the essential matrices to form the projection matrices;
build an initial 3D model of the object
by an octree carving technique (see Chapter 6 for details);

extract a triangulated mesh from the octree
using the marching cubes algorithm (see Chapter 6 for details);

for each arbitrary general view' do
initialize the� motion parameters with the aid of the initial 3D model;
while not convergeddo

for each view� in the estimated circular motion sequencedo
form the fundamental matrix��;
determine the reprojection errors of the epipolar tangents;

end for
compute the cost for the general motion using (5.28);
update the� motion parameters to minimize the cost
using conjugate gradient method;

end while
end for
refine the 3D model using the estimated general views;
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the silhouettes observed from all viewpoints will be identical, and hence they pro-

vide no cues for motion. In [105], Pollick studied human perception of structure

and motion from silhouettes, and reported similar results from the human subjects

of his experiments.

This degenerate situation can be better understood by considering the parallax-

based technique, where the silhouettes are first registered by the harmonic homol-

ogy� associated with the circular motion, followed by the computation of the

epipoles using common tangents to the registered silhouettes. When the axis of

rotation coincides with the revolution axis of the surface of revolution, the sil-

houettes of the surface will be invariant to the harmonic homology� (see Sec-

tion 3.4) and hence the registration has no effect on the silhouettes. All the silhou-

ettes will remain being identical, and thus the epipoles can no longer be located

using common tangents. Note that such a degenerate case also occurs when the

object is justlocally a surface of revolution at either ends.

The degenerate situation mentioned above can be easily avoided by simply

ensuring that the revolution axis of the surface does not coincide with the axis of

rotation. Experiments show that better and more stable results can be obtained

by placing the object further from the rotation axis, and typically the degenerate

case disappears when the images of the revolution axis and the rotation axis are

separated by a distance of about 50 pixels [96].

5.8 Experiments and Results

The first experimental sequence consisted of 18 images of a polystyrene head

model taken under controlled circular motion (see figure 5.10). Each image was
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taken after rotating the model by��Æ on a hand-operated turntable with a resolu-

tion of ����Æ. The circular motion was estimated using the algorithm described

in Section 5.6.3. Note that neither the knowledge of the rotation angles nor the

fact that it was a closed sequence was used in estimating the motion. Figure 5.11

shows the initial and final configurations of the image of the rotation axis and the

horizon. Table 5.1 shows the estimated rotation angles between adjacent images

and their errors. It can be seen from table 5.1 that the errors in the rotation angles

ranged from����!!Æ to ������Æ, and the rms error of the rotation angles was only

������Æ. The resulting camera poses and the 3D model built from the estimated

motion are shown in figure 5.12 and figure 5.13 respectively.

Table 5.1: Estimated rotation angles between adjacent images.
views rotation angle error views rotation angle error

1–2 �"�  ��Æ �������Æ 10–11 �������Æ �������Æ

2–3 �"�"���Æ �������Æ 11–12 �������Æ �������Æ

3–4 �������Æ �������Æ 12–13 �������Æ �������Æ

4–5 �"�"!�!Æ �����"�Æ 13–14 �������Æ �������Æ

5–6 �������Æ �������Æ 14–15 �������Æ �������Æ

6–7 �"� � �Æ �������Æ 15–16 �������Æ �������Æ

7–8 ���� ��Æ ���� ��Æ 16–17 �����"�Æ �����"�Æ

8–9 ����!� Æ ����!� Æ 17–18 �"��"""Æ �������Æ

9–10 �"�""��Æ �����!!Æ

The second experimental sequence consisted of 15 images of a Haniwa (large

hollow baked clay sculpture placed on ancient Japanese burial mounds), of which

the first 11 images were taken under unknown circular motion of the Haniwa, and

the last 4 were taken under unknown general motion (see figure 5.14). The circu-

lar motion was first estimated using the algorithm described in Section 5.6.3. The

3D model built from the estimated circular motion alone is shown in figure 5.15.
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Figure 5.10: Eighteen images of a polystyrene head model under controlled cir-
cular motion. Each image was taken after rotating the model by��Æ on a turntable
with a resolution of����Æ. Note that the head model is locally close to a surface
of revolution at the top and bottom. In order to avoid the degenerate situation
mentioned in Section 5.7, it was therefore placed further from the axis of rotation.
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Figure 5.11: The initial (in dash lines) and final (in solid lines) configurations of
the image of the rotation axis�� and the horizon��.
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Figure 5.12: Camera poses estimated from the polystyrene head sequence.
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Figure 5.13: 3D model of the polystyrene head built from the estimated circular
motion.
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The gaps between the legs were not carved away since they never appeared as

part of the silhouettes, and textures were missing in areas (top and bottom) which

were invisible under circular motion. The last 4 views were then registered using

the general motion algorithm described in Section 5.6.4. Figure 5.16 shows the

refined model after incorporating the 4 arbitrary general views. The model was

now fully covered with textures and showed great improvements in shape, espe-

cially in the front, back and top views. The resulting camera poses are shown in

figure 5.17.

Figure 5.14: Fifteen images of a Haniwa, of which the first 11 images (top 3 rows)
were taken under unknown circular motion of the Haniwa, and the last 4 images
(bottom row) were taken under unknown general motion.

The third experimental sequence consisted of 13 images of a human head,

of which the first 10 images were taken under unknown circular motion of the
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Figure 5.15: 3D model of the Haniwa built from the estimated circular motion
alone. The gaps between the legs were not carved away since they never appeared
as part of the silhouettes, and textures were missing in areas (top and bottom)
which were invisible under circular motion.
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Figure 5.16: Refined model of the Haniwa after incorporating the 4 arbitrary gen-
eral views. The model was now fully covered with textures and showed great
improvements in shape, especially in the front, back and top views.
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Figure 5.17: Camera poses estimated from the Haniwa sequence.

camera, and the last 3 were taken under unknown general motion (see figure 5.18).

The circular motion was, again, first estimated using the algorithm described in

Section 5.6.3. The 3D model built from the estimated circular motion alone is

shown in figure 5.19, with textures missing at the top of the head and under the

chin. The last 3 views were then registered using the general motion algorithm

described in Section 5.6.4, and the refined model after incorporating the 3 arbitrary

general views is shown in figure 5.20. The top of the head and the chin were now

covered with textures. The resulting camera poses are shown in figure 5.21.

The fourth experimental sequence consisted of 9 images of a Haniwa taken

in front of a calibration grid (see figure 5.22), and was used for quantitative eval-

uation. Each view in the sequence was calibrated independently using the DLT

technique followed by an optimization which minimized the reprojection errors

of the corner features from the calibration grid. The algorithm for estimating the
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Figure 5.18: Thirteen images of a human head, of which the first 10 images (top
3 rows) were taken under unknown circular motion of the camera, and the last 3
images (bottom row) were taken under unknown general motion.
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Figure 5.19: 3D model of the human head built from the estimated circular motion
alone. Textures were missing at the top of the head and under the chin.
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Figure 5.20: Refined model of the human head after incorporating the 3 arbitrary
general views. The top of the head and the chin were now covered with textures.
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Figure 5.21: Camera poses estimated from the human head sequence.

pose of an arbitrary general view, as described in Section 5.6.4, was then used

to register the"�� view using different subsets of the first 8 images. The results

are presented in table 5.2 which shows the rms reprojection errors of the corner

features from the calibration grid in the"�� view. Though the errors resulted from

the motion estimated using epipolar tangents were not as small as that from the

calibration using the calibration grid (which directly minimized the reprojection

errors of those corner features), the results were indeed very good since only 6–16

epipolar tangent points had been used, compared with 192 corners used in the case

of calibration using the calibration grid. Besides, the cameras were positioned rel-

atively far from the Haniwa so as to keep the calibration grid visible inside the

images. As a result, each silhouette of the Haniwa occupied only a very small

region of the image and this limited the accuracy that could be achieved by the

algorithm.
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Figure 5.22: Nine images of a Haniwa in front of a calibration grid used for quan-
titative evaluation.

Table 5.2: Reprojection errors (in pixels) of the�"� corner features from the cali-
bration grid.

motion estimated from: reprojection error:
silhouettes no. of rms
in views tangent pts (in pixels)

1–3 6 1.1824
1–4 8 0.9407
1–5 10 0.8858
1–6 12 0.7311
1–7 14 0.7856
1–8 16 0.7963

ground truth corners rms (in pixels)
calib. grid 192 0.3853
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The fifth experimental sequence consisted of 10 images of a human head ac-

quired from an imperfect circular motion of the camera (see figure 5.23). Due

to vibration of the rotating arm to which the camera was attached, the camera

wobbled up and down during the circular motion. The camera poses, obtained by

applying the algorithm described in Section 5.6.3 for circular motion, are shown

in figure 5.24, and the resulting 3D model is shown in figure 5.25. As shown in

figure 5.24, the camera was constrained to follow a perfect circular path. How-

ever, since the camera did not actually follow a circular path, the reconstructed

head model was highly distorted. These camera poses were then iteratively re-

fined by applying the general motion algorithm. Each view in the sequence was

taken in turn and registered using the rest of the views, and the process was re-

peated until there were no further improvements in the reprojection errors of the

epipolar tangents. The refined camera poses showed the wobbliness of the actual

camera motion (see figure 5.27). The 3D model built from the refined motion is

shown in figure 5.26, and it showed great improvements over the model shown in

figure 5.25.

The last experimental sequence consisted of 14 images of an outdoor sculpture

acquired by a hand-held camera (see figure 5.28). An approximate circular motion

of the camera was achieved by using a string which was fixed to the ground by a

peg at one end. A circular path on the ground was then obtained by rotating the

free end of the string about its fixed end. Each image in the sequence was acquired

by positioning the camera roughly at a fixed height above the free end of the (ro-

tating) string, and pointing it towards the sculpture. Note that since the camera

center, the string and the rotation axis were roughly coplanar, the image of the

string in each image provided a very good estimate for the image of the rotation



5.8. EXPERIMENTS AND RESULTS 117

Figure 5.23: Ten images of a human head acquired from an imperfect circular
motion of the camera. Due to vibration of the rotating arm to which the camera
was attached, the camera wobbled up and down during the circular motion.
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Figure 5.24: Camera poses obtained by assuming circular motion.
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Figure 5.25: 3D model of the human head built from the estimated circular mo-
tion. Since the camera did not actually follow a circular path, the reconstructed
head model was highly distorted.
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Figure 5.26: 3D model of the human head built from the refined motion.
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Figure 5.27: Camera poses obtained by iteratively refining the camera poses from
the estimated circular motion using the general motion algorithm. The refined
camera poses showed the wobbliness of the actual camera motion.

axis ��. Although the camera center roughly followed a circular path, the orienta-

tion of the camera was unconstrained and hence the image of the rotation axis��

and the horizon�� were not fixed throughout the image sequence. In order to allow

the camera motion to be estimated using the circular motion algorithm described

in Section 5.6.3, the images were first rectified using the technique described in

Section 4.6.2 so that the image of the string (i.e. the image of the rotation axis)

became a fixed vertical line passing through the principal point throughout the

sequence. A transformation induced by a rotation about the�-axis of the camera

was then applied to each image so that the image of the fixed end of the string

became a fixed point on�� throughout the rectified sequence (see figure 5.29).

The resulting image sequence resembled a circular motion sequence, in which

the horizon��, the image of the rotation axis��, and the special vanishing point

�� were fixed (see figure5.30). The algorithm for circular motion estimation was

then applied to this rectified sequence, and the resulting camera poses were then
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iteratively refined by applying the general motion algorithm. The final camera

poses estimated from the rectified sequence are shown in figure 5.31, and the 3D

model built from the estimated motion is shown in figure 5.32.

Figure 5.28: Fourteen images of an outdoor sculpture acquired by a hand-held
camera. Although the camera center roughly followed a circular path, the orien-
tation of the camera was unconstrained and hence the image of the rotation axis
and the horizon were not fixed throughout the image sequence.

5.9 Discussions

In this chapter, a complete and practical system for generating high quality 3D

models from 2D silhouettes is presented. The input to the system is an image

sequence of an object under both unknown circular motion and unknown general

motion. The circular motion is exploited to provide a simple parameterization of
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(a) (b)

Figure 5.29: (a) The images of the string in the outdoor sequence did not coincide,
and this implied that the image of the rotation axis was not fixed throughout the
sequence. (b) The images were rectified so that the image of the string became a
fixed vertical line passing through the principal point of the camera and the image
of the fixed end of the string became a fixed point throughout the sequence.

Figure 5.30: The rectified sequence resembled a circular motion sequence in
which the horizon��, the image of the rotation axis��, and the special vanish-
ing point�� were fixed.
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Figure 5.31: Camera poses estimated from the rectified outdoor sculpture se-
quence.

the fundamental matrix relating any pair of views in the circular motion sequence.

Such a parameterization greatly reduces the dimension of the search space for the

optimization problem, which can now be solved using only the 2 outer epipolar

tangents. The parameterization also leads to a trivial initialization of the param-

eters which all bear physical meanings (i.e. image of rotation axis, horizon and

rotation angles). In the case of complete circular motion with dense image se-

quence, the harmonic homology associated with the image of the surface of rev-

olution swept by the rotating object can be exploited to obtain the image of the

rotation axis conveniently and independently.

The incorporation of arbitrary general views reveals information which is con-

cealed under circular motion, and greatly improves both the shape and textures

of the 3D models. It also allows incremental refinement of the 3D models by

adding new views at any time, without the need of setting up the exact, identi-

cal scene carefully. The registration of general motion using circular motion (or

alternatively 3 or more known views) avoids the problems of local minima and

nontrivial initialization, which exist in every algorithm for general motion esti-
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Figure 5.32: 3D model of the outdoor sculpture built from the estimated motion.
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mation using silhouettes. Like the algorithm for circular motion estimation, the

registration of the general motion requires only the 2 outer epipolar tangents. In

the case of approximate (imperfect) circular motion, the motion can be estimated

by first assuming circular motion. The camera poses obtained from the circular

motion algorithm are then iteratively refined by using the general motion algo-

rithm. Since only silhouettes have been used in both the motion estimation and

model reconstruction, no corner detection nor matching is necessary. This means

that the system is capable of reconstructing any kind of objects, includingsmooth

andtexturelesssurfaces. Experiments on various objects had produced convincing

3D models, demonstrating the practicality of the system.
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Chapter 6

Reconstruction from Silhouettes:
Implementation

“ I can’t work without a model.”

- Vincent van Gogh.

6.1 Introduction

In Chapter 5, a complete and practical system for generating high quality 3D mod-

els from 2D silhouettes has been introduced. The system can be decomposed into

2 modules, namely themotion moduleand thestructure module. The motion mod-

ule is responsible for estimating the camera motion from the silhouettes, whereas

the structure module is responsible for producing 3D models from the silhouettes

and the estimated camera poses. The algorithms and implementations for mo-

tion estimation from silhouettes, which form the core of the motion module, have

been presented in Chapter 5. This chapter studies the problem of model recon-

struction from silhouettes, and gives the algorithms and implementation details

for the structure module. Results on real data are presented, showing the qual-

ity of the reconstruction, as well as the quality of the motion estimated using the

127



128 CHAPTER 6. RECONSTRUCTION FROM SILHOUETTES

techniques introduced in Chapter 5.

A survey of the literature on model reconstruction from silhouettes is given

in Section 6.2. Section 6.3 briefly reviews the octree representation, and an effi-

cient algorithm for constructing an octree using silhouettes from multiple views

is presented in Section 6.4. Section 6.5 gives the implementation details for the

silhouette extraction and intersection test. The extraction of a triangulated mesh

from the octree is then described in Section 6.6. Experimental results on real data

are presented in Section 6.7, followed by discussions in Section 6.8.

6.2 Previous Works

The surface reconstruction of smooth objects from silhouettes was pioneered by

Giblin and Weiss [46]. Under the assumption of orthographic projection, they

demonstrated that a surface can be reconstructed from the envelope of all its tan-

gent planes computed directly from the family of silhouettes of the surface under

planar viewer motion. Cipolla and Blake [24] extended the studies of Giblin and

Weiss to curvilinear viewer motion under perspective projection, and developed

theosculating circle methodby introducing theepipolar parameterization. Vail-

lant and Faugeras [134] developed a similar technique in which the surface is

parameterized by theradial curvesinstead of theepipolar curves. Based on the

osculating circle method, Szeliski and Weiss [125] used a linear smoother to com-

pute epipolar curves on the whole surface together with an estimate of uncertainty,

and reported improvements in the reconstruction. In [12], Boyer and Berger de-

rived a depth formulation from a local approximation of the surface up to order

two for discrete motion. In [140], Wong et al. developed a simple technique based
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on a finite-difference implementation of [24]. Despite its simplicity, the method

developed in [140] was reported to produce results comparable to those in [24]

and [12].

The volume intersection technique for constructing volumetric descriptions of

objects from multiple views was first proposed by Martin and Aggarwal [90], who

introduced thevolume segmentrepresentation. In [21], Chien and Aggarwal pre-

sented an algorithm for generating an octree of an object from 3 orthogonal views

under orthographic projection. Their work was further developed by Ahuja and

Veenstra [2], who extended the algorithm to handle images from any subset of 13

standard viewing directions. In [56], Hong and Shneier introduced a technique for

generating an octree from multiple arbitrary views under perspective projection.

Their approach first constructs an octree for each image by projecting the octree

cubes onto the image and intersecting their projections with the silhouette, and

the final octree of the object is given by the intersection of the octrees obtained

from all images. In [108], Potmesil described a similar approach in which the im-

ages are represented byquadtreesto facilitate the intersection of the projections

of the cubes with the silhouettes. Other similar approaches also include [103]

and [120], where the octree for each image is constructed by intersecting, in 3D

space, the octree cubes with the polyhedral cone formed from the back-projection

of the silhouette. In [124], Szeliski introduced an efficient algorithm which con-

structs an octree in a hierarchical coarse-to-fine fashion. His approach is similar

to that of [108], except that only a single octree is constructed using all the images

simultaneously.

In this chapter, the volume intersection approach is chosen due to its ability

to describe objects with more complex topologies (e.g. object with holes). Based
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on [124], an algorithm for generating an octree using silhouettes from multiple

views is presented. The main difference between the work presented in [124] and

the technique developed here is that instead of using abackground subtraction

technique as described in [124], the object/background binary images are com-

puted directly from the B-spline snakes which are used to extract and represent

the silhouettes during motion estimation (see Chapter 5). The sub-pixel accuracy

of the B-spline snakes allows a binary image to have a resolution higher than the

original image, and this may help to improve the cube classification when the ob-

ject is relatively small in the image. For the sake of display, a triangulated mesh

is extracted from the octree, and the colors of the vertices in mesh are estimated

from the original images.

6.3 Octree Representation

An octree [63, 92] is a tree data structure in which each non-leaf node has at most

8 child nodes. It is commonly used in computer graphics to provide a volumetric

representation of an object, where each node in the tree represents avoxel(vol-

ume element) in space. The root node of the octree consists of a single large voxel

which defines the bounding volume of the object. The octree is constructed by

recursively subdividing each voxel in the tree into 8 sub-voxels, which are repre-

sented by the 8 child nodes. Each node in the tree is assigned one of the 3 colors

(black, gray and white) according to its occupancy. Ablack noderepresents a

voxel which is totally occupied, agray noderepresents a voxel which is partially

occupied, and awhite noderepresents a voxel which is completely empty. Note

that both black and white nodes do not have any child node, and hence they are
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leaf nodes in the tree. A gray node is an interior node in the tree, which has child

nodes with different colors. It represents a voxel which lies on the boundary (sur-

face) of the object. Figure 6.1 shows a simple volume represented by an octree

and the corresponding tree structure with colored nodes. Further details on octree

representations, constructions and manipulations can be found in [18, 20, 113].
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Figure 6.1: A simple volume represented by an octree and the corresponding tree
structure with colored nodes.

In the implementation presented in this chapter, the voxels are cubes and each

subdivision produces 8 identical sub-cubes. Each node in the octree stores the

color (occupancy), the length, and the 3D coordinates of the center of the cube

it represents. It also contains pointers to its child nodes, if there are any. In

addition, each node also stores an 8-bit index which represents the occupancy

of the 8 corners of the cube (see figure 6.2). This 8-bit index is used to index

into a lookup table during the marching cubes algorithm [80] for extracting a

triangulated mesh from the octree. In order to allow fast access to the cubes in

a particular level, all cubes in the same level are stored in a level-list and all the

level-lists are kept in an array.
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Figure 6.2: An 8-bit index indicating the occupancy of the 8 corners of a cube. A
bit is set to 1 if the corresponding corner is occupied, otherwise it is set to 0.

6.4 Octree Construction from Multiple Views

For the purpose of generating an octree from silhouettes, the interpretation of the

colors used in the octree representation is slightly modified. A black node here

represents a cube which lies completely inside the object, a white node represents

a cube which lies completely outside the object, and a gray node represents a cube

which is ambiguous.

The root node of the octree is first initialized as a single gray cube which

completely encloses the object. To refine the octree, a new level is first formed by

subdividing each gray cube in the finest level into 8 sub-cubes. Note that black

and white cubes do not need to be subdivided since all their child nodes will have

the same classifications as their parent nodes. Initially, all the cubes in the new

level are assumed to be completely inside the object and are assigned the black

color, and the 8-bit index of each cube is set to 255. The cubes are then projected

onto each image and tested for intersection with the silhouette so as to determine

their occupancy and have their colors updated accordingly.

Each cube in the new level is projected onto each image in the sequence using
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the associated projection matrix. If its projection lies completely outside the sil-

houette in the current image, it must lie completely outside the object. It is then

assigned the white color and further checking against other images is not neces-

sary. If its projection lies partially inside the silhouette in the current image, it

must lie close to the boundary of the object. Its color is then updated to gray to

indicate that its occupancy is ambiguous, and thus further refinement is needed.

Finally, if its projection lies completely inside the silhouette in the current image,

its occupancy cannot be determined and hence it just keeps its current color. If the

cube remains being black after checking its projections against all the silhouettes,

it must then lie completely inside the object. Note that the color of a cube can

only change from black to gray, from back to white, or from gray to white. This

is because cubes can only be removed or “carved away” from the octree.

The above refinement process is repeated until there is no gray cube in the

finest level, or, in practice, a preset resolution level is reached. The algorithm

for generating an octree using silhouettes from multiple views is summarized in

algorithm 6.1. This algorithm is very efficient in that white cubes are identified

in the earliest possible stage, and thus it avoids all unnecessary cube projections,

intersection tests and cube subdivisions. Since only gray cubes in the finest level

are being considered and refined during each iteration of the refinement process,

care must be taken not to classify a cube as black (i.e. completely inside) or white

(i.e. completely outside) unless this is certain. On the contrary, if a black or white

cube is wrongly assigned the gray color, it only indicates that the occupancy of the

cube is ambiguous and the cube will be reconsidered and refined in the next level.

The implementation details for the silhouette extraction and intersection test are

given in the next section.
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Algorithm 6.1 Octree construction using silhouettes from multiple views.
initialize the root node of the octree as a single gray cube
that completely encloses the object;

while max level not reacheddo
if no gray cube in the finest levelthen

break thewhile-loop;
end if
for each gray cube in the finest leveldo

subdivide it into 8 sub-cubes;
for each sub-cubedo

set its color to black;
set its 8-bit index to 255;
for each image in the sequencedo

project the cube onto the image
using the associated projection matrix;

if the projection lies completely outside the silhouettethen
update the cube’s color to white;
break the innerfor-loop;

else if the projection lies partially inside the silhouettethen
update the cube’s color to gray;

else
keep the current color of the cube;

end if
end for

end for
end for

end while
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6.5 Silhouette Extraction and Intersection Test

In Chapter 5, closed cubic B-spline snakes are used to extract and represent the

silhouettes from the image sequence. In this chapter, for the sake of the inter-

section test, the silhouettes are represented by object/background binary images

where object pixels and background pixels are represented by 1s and 0s respec-

tively. Instead of using background subtraction techniques [121, 127, 62], the

binary images are computed directly from the B-spline snakes which are obtained

during the motion estimation stage (see Chapter 5). The sub-pixel accuracy of the

B-spline snakes allows a binary image to have a resolution higher than the orig-

inal image, and this may help to improve the cube classification when the object

is relatively small in the image. For each B-spline snake in a image, a binary

image at a chosen resolution, with the region enclosed by the snake filled with

1s, is constructed using some conventional graphics drawing routines. The ob-

ject/background binary image is then obtained by combining these binary images

using “xor” (see figure 6.3).

To classify a cube in the octree, the 8 corners of the cube are first projected

onto the binary image, and the 8-bit index of the cube is updated by setting the bits

corresponding to those corners which are projected onto background pixels to 0s.

The projection of the cube, which is a hexagon in general, is then approximated

by its bounding box computed from the projections of the 8 corners, and the pixels

of the binary image within the bounding box are examined. If the bounding box

is completely occupied (i.e. all pixels are 1s), the projection of the cube must

also be completely occupied. Similarly, if the bounding box is completely empty

(i.e. all pixels are 0s), the projection of the cube must also be completely empty.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: (a) The original image of a miniature David statue. (b) The silhouette
is extracted and represented by 3 closed B-spline snakes. (c)–(e) A binary image
is formed from each of the B-spline snakes. (f) The object/background binary
image is obtained by combining the binary images in (c)–(e) using “xor”.

Since the bounding box is always bigger than or equal to the actual projection of

the cube, there maybe chances when the bounding box is only partially occupied

whereas the actual projection of the cube is completely occupied or completely

empty (see figure 6.4). In such situations, the cube will be classified as ambiguous.

Nonetheless, this only postpones the classification of the cube and causes no harm

to the algorithm (see Section 6.4).

6.6 Surface Extraction and Coloring

In order to allow the reconstructed 3D model to be displayed efficiently with con-

ventional graphics rendering algorithms (implemented either in hardware or soft-

ware), a triangulated mesh is extracted from the octree using standard marching

cubes algorithm [80]. Due to its practicality and simplicity, the marching cubes
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(a) (b) (c) (d)

Figure 6.4: (a) If the bounding box is completely occupied, so is the projection
of the cube. (b) If the bounding box is completely empty, so is the projection
of the cube. (c) The bounding box is partially occupied but the projection of the
cube is completely occupied. (d) The bounding box is partially occupied but the
projection of the cube is completely empty.

algorithm has been widely using for visualizing volumetric data like those pro-

duced from computed tomography (CT), magnetic resonance (MR) and single-

photon emission computed tomography (SPECT). The marching cubes algorithm

uses the occupancy information of the 8 corners of a cube to determine how the

surface intersects the edges of the cube, and produces triangle patches that best

approximate the surface. Since there are 8 corners in a cube and each corner

can either be inside or outside the surface, there are totally�# � ��� ways a

surface can intersect the cube. By complementary symmetry and rotational sym-

metry considerations, Lorensen and Cline [80] showed that these 256 cases can

be reduced to 15 patterns for which they developed explicit triangulations (see

figure 6.5). A lookup table consisting of the triangulation information for the 256

cases was then built from the permutation of these 15 basic patterns. An 8-bit

index, constructed from the occupancy information of the 8 corners of a cube (see

figure 6.2), is used to index into this lookup table to produce triangle patches for

that cube.

To extract surface triangles from the octree, the 8-bit index of each gray cube
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Figure 6.5: Fifteen patterns of triangulated cubes for the marching cubes algo-
rithm.
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in a particular level can be used to index directly into the lookup table to pro-

duce triangle patches for that cube. However, this approach makes it difficult to

maintain the connectivity information between vertices, edges and triangles in the

mesh. In the implementation presented in this chapter, a 3D voxel array is first

constructed from the octree and the marching cubes algorithm, with a modified

lookup table [98] which prevents the creation of holes in the surface [37], is then

applied to produce a triangulated mesh. In the original implementation [80] of the

marching cubes algorithm, the surface intersection along each edge of a cube is

obtained by linear interpolation using the data at the 2 corners. Since the octree

only contains binary data, linear interpolation is not necessary and the surface in-

tersection is simply approximated by the midpoint of the edge [97]. In order to

reduce the jaggedness in appearance resulting from the midpoint approximation,

each vertex in the mesh is smoothed locally by taking the mean position of its

directly connected neighboring vertices. The normal vector of each vertex is then

taken as the mean of the normal vectors of those triangles which contain that ver-

tex, and the color of the vertex is computed as the weighted average of the color

values of its projections on all views. The weighting factor! is given by

! �

�
�� �   	�# $���%&


� 	�������

� (6.1)

where� is the unit normal vector of the vertex (pointing outwards) and  is the

unit viewing direction of view'.

6.7 Experiments and Results

The experimental sequence consisted of 19 images of a miniature David statue, of

which the first 18 images were taken under unknown circular motion of the statue,
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and the last image was taken under unknown general motion (see figure 6.6). The

camera motion was estimated from the silhouettes using the algorithms presented

in Chapter 5 for circular and general motion, and the resulting camera poses are

shown in figure 6.7. An octree was constructed from the silhouettes and the es-

timated camera motion using the algorithms presented in this chapter. Figure 6.8

shows the resulting octree at different levels, together with the number of cubes in

each level. It can be seen from figure 6.8 that the number of cubes grew roughly

by a factor of 4 after each level of refinement. This was consistent with the find-

ings of Meagher [92] and Szeliski [124] that the number of cubes is proportional

to the surface area of the object measured in units of the finest resolution. Two

surface models obtained by applying the marching cubes algorithm to level 7 and

level 8 of the octree are shown in figure 6.9 and figure 6.10 respectively. The

model extracted from level 7 of the octree had only 27,720 triangles and was

suitable for real time rendering, whereas the model extracted from level 8 of the

octree was composed of 113,384 triangles and hence had a much higher resolu-

tion. The difference in resolution of the 2 surface models can be seen more clearly

in figure 6.11, which shows 2 close up views of the 2 models.

Other experimental results on model reconstruction from silhouettes can be

found in Chapter 5, and the triangulated meshes of those 3D models are shown in

figures 6.12–6.16.

6.8 Discussions

In this chapter, an algorithm for model reconstruction using silhouettes from mul-

tiple views is presented. The implementation is based on an octree carving tech-
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Figure 6.6: Nineteen images of a miniature David statue, of which the first 18
images were taken under unknown circular motion of the statue, and the last image
was taken under unknown general motion.
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Figure 6.7: Camera poses estimated from the miniature David statue sequence.
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lv 0 (1 cube) lv 1 (8 cubes) lv 2 (32 cubes)

lv 3 (80 cubes) lv 4 (400 cubes) lv 5 (1,664 cubes)

lv 6 (7,160 cubes) lv 7 (30,056 cubes) lv 8 (120,592 cubes)

Figure 6.8: An octree constructed from the silhouettes and the estimated camera
motion of the miniature David statue sequence. The number of cubes in each level
includes all black, gray and white cubes, whereas only gray cubes are drawn.
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Figure 6.9: Surface model of the miniature David statue extracted from level 7 of
the octree. This model was composed of 27,720 triangles.

Figure 6.10: Surface model of the miniature David statue extracted from level 8
of the octree. This model was composed of 113,384 triangles.
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level 7 level 8

Figure 6.11: Two close up views of the surface models shown in figure 6.9 and
figure 6.10. It can been seen that the model extracted from level 8 of the octree
had a higher resolution and showed more details of the surface.

nique introduced in [124], with a few modifications to make it fit into the frame-

work of the model building system introduced in Chapter 5. In particular, instead

of using background subtraction techniques, the object/background binary images

for the intersection tests are computed directly from the B-spline snakes, which are

used to extract and represent the silhouettes during motion estimation. In addition

to the colors of the cubes, the occupancy information of the 8 corners of each cube

in the octree has been computed during the octree construction. This information

allows a triangulated mesh to be extracted from the octree conveniently using

standard marching cubes algorithm. Such a triangulated mesh can then be dis-

played efficiently with conventional graphics rendering algorithms. Experimental

results show that the algorithm is capable of reconstructing objects with relatively

complex topologies (like object with holes). Like any other silhouette-based re-

construction technique, the model produced here is only the visual hull [73, 74] of
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Figure 6.12: Triangulated mesh of the polystyrene head model. This model was
composed of 26,696 triangles.
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Figure 6.13: Triangulated mesh of the Haniwa model. This model was composed
of 12,028 triangles.
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Figure 6.14: Triangulated mesh of the��� human head model. This model was
composed of 34,348 triangles.
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Figure 6.15: Triangulated mesh of the��� human head model. This model was
composed of 37,404 triangles.
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Figure 6.16: Triangulated mesh of the outdoor sculpture model. This model was
composed of 29,672 triangles.
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the object with respect to the set of viewpoints from which the image sequence is

acquired. In order to reconstruct concavities in the object, techniques likespace

carving[72, 14] which exploit texture information should be used. An even better

approach is to use both silhouettes and texture information, as proposed by Cross

and Zisserman [32]. In spite of that, the system introduced in Chapter 5 aims at

recovering the structure and motion of an object from its silhouettes alone. By

not depending on texture information, the system is capable of reconstructing any

kind of objects, includingsmoothandtexturelesssurfaces.



Chapter 7

Conclusions

“This is not the beginning of the end, but it is the end of the beginning.”

- Winston Churchill.

7.1 Summary

This thesis has presented theoretical and practical solutions to the problem of

structure and motion from silhouettes. Novel algorithms for camera calibration,

motion estimation and shape recovery have been developed from the analysis of

the projective invariant of surfaces of revolution and the epipolar constraint be-

tween the silhouettes of an arbitrary object. Based on these algorithms, a com-

plete, practical and easy-to-use system has been built for generating high quality

3D models from 2D silhouettes. A brief summary of the algorithms and tech-

niques introduced is given below.

In this thesis, the projective invariant of surfaces of revolution has been stud-

ied. It has been shown that under perspective projection, the silhouette of a surface

of revolution will be invariant to a harmonic homology. Such a harmonic homol-

ogy can be exploited in 2 ways. First, it has been shown that the axis and the
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center of such a harmonic homology are related by the dual image of the absolute

conic, and hence they provide 2 constraints on the intrinsic parameters of a cam-

era. Based on this observation, a simple technique for camera calibration has been

developed in Chapter 3, which allows a camera to be calibrated from 2 or more

silhouettes of surfaces of revolution. Second, the intrinsic parameters of the cam-

era and the harmonic homology can be exploited to rectify the image so that the

silhouette becomes bilaterally symmetric about the�-axis. This corresponds to

normalizing and rotating the camera until the axis of the surface of revolution lies

on the�-� plane of the camera coordinate system. A simple algorithm, based on

the coplanarity constraint between the surface normal and the revolution axis, has

been developed in Chapter 4 for recovering the 3D shape of a surface of revolu-

tion from its rectified silhouette up to an 1-parameter ambiguity. This 1-parameter

ambiguity in the reconstruction corresponds to the 1-parameter ambiguity in the

orientation of the revolution axis on the�-� plane.

The problem of motion estimation has been tackled in Chapter 5. In the case of

circular motion, the 3 main image features, namely the image of the rotation axis,

the horizon and a special vanishing point, are fixed throughout the sequence, and

the fundamental matrix can be parameterized explicitly in terms of these features.

Such a parameterization allows a trivial initialization of the parameters which all

bear physical meanings (i.e. image of rotation axis, horizon and rotation angles).

It also greatly reduces the dimension of the search space for the optimization

problem, which can now be solved using only the 2 outer epipolar tangents. The

drawbacks of using circular motion alone for model building are then overcome

by the incorporation of arbitrary general views, which reveals information that is

concealed under circular motion. It has been shown that the web of contour gen-
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erators generated by the circular motion can be exploited to register any arbitrary

general view. The coarse model built from the circular motion has been used to aid

the initialization of the registration, and again only the 2 outer epipolar tangents

are needed for the estimation of the general motion. This 2-stage motion estima-

tion technique avoids the common problems that exist in virtually every algorithm

for motion estimation from silhouettes, namely the need for a good but nontrivial

initialization, the unrealistic demand for a large number of epipolar tangent points,

and the presence of local minima.

Finally, based on an octree carving technique and the marching cubes algo-

rithm, a simple method for constructing a triangulated mesh of the surface from

the silhouettes has been described in Chapter 6. Together with the techniques de-

veloped for camera calibration and motion estimation, a complete and practical

system for generating 3D models from 2D silhouettes has been implemented.

7.2 Future Work

Though the model building system presented in this thesis is very practical and

produces high quality 3D models, there are certainly rooms for improvements:

� Surface Reflectance

In the implementation presented in this thesis, the texture of the model

has been computed using an ad hoc method. In order to produce a photo-

realistic 3D model under different lighting conditions, it would be desirable

to develop algorithms for recovering the surface reflectance of the model.

� Surface Representation

The marching cubes algorithm has been employed to extract a triangulated
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mesh from the octree. Despite its extensive use in many applications, the

marching cubes algorithm often produces excessive output data fragmenta-

tion which prevents interactive rendering. A more efficient representation,

especially for smooth surfaces, is required.

� Viewpoint Control

The coarse 3D model built from the circular motion contains information

about which part of the object has not yet been fully explored. This infor-

mation can be used to develop strategies to determine the viewpoints of the

new arbitrary views for model refinement.

� Fusion of Information

The work described in this thesis has only used information from the silhou-

ettes to solve the structure and motion problem. Nonetheless, other image

features like corners, edges, shadows, textures and specularities also pro-

vide strong cues to surface shape and orientation. An ideal approach would

be to design a system that exploits all the information available to provide a

robust solution to the structure and motion problem.

� Self-Calibration

The motion estimation algorithms presented in this work depend on off-line

camera calibration. It would be desirable if self-calibration techniques can

be incorporated into the algorithms.



Appendix A

Definition of
the Harmonic Homology

A perspective collineation[29], with center�� and axis��, is a collineation which

leaves all the lines through�� and points of�� invariant. If the center�� and the

axis �� are not incident, the perspective collineation is called ahomology[29];

otherwise it is called anelation [29]. Consider a point� which is mapped by

a homology with center�� and axis�� to the point��. Let ��� be the point of

intersection between the axis�� and a line passing through the points� and��.

The homology is said to be harmonic if the points� and� � are harmonic conju-

gates with respect to�� and��� (i.e. the cross-ratio���,���;�,��	 equals��). The

matrix� representing aharmonic homology[29] with centre�� and axis��, in

homogeneous coordinates, is given by

� � �	� �
���

�
�

��� ��
� (A.1)

More details on harmonic homology can be found in [117, 29].
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Appendix B

Bilateral Symmetry and
Surfaces of Revolution

Let ���	�
 � �(	�
 �	�
 ��� be a regular planar curve on the�-� plane where

( �� such that� ) (	�
 ) ( �� ��. A surface of revolution can be generated by

rotating ��� about the�-axis, and is given by

���	�� �
 �

�
� (	�
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�	�

(	�
 ��� �

�
� � (B.1)

where� is the angle parameter for a complete circle. The tangent plane basis

vectors are given by
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respectively. Since the surface normal must be orthogonal to both tangent plane

basis vectors, it is thus given by

�	�� �
 �
����
��

�
����
��

�

�
� (	�
 ��	�
 ��� �

�(	�
 �(	�

(	�
 ��	�
 ��� �

�
� � (B.3)
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Consider now a pin-hole camera�� � ��	 ��, where� � �� � ��� and�� � ( ��.

The silhouette�� of ��� formed on the image plane of�� is the projection of the locus

of points on��� at which the line of sight is orthogonal to the surface normal. This

constraint can be expressed as

	���	�� �
 � �
 � �	�� �
 � ��
� (	�
 ��� �

�	�

(	�
 ��� � � ��

�
� �
�
� (	�
 ��	�
 ��� �

�(	�
 �(	�

(	�
 ��	�
 ��� �

�
� � �

(	�
 ��	�
� �(	�
�	�
 � �� ��	�
 ��� � � �

�(	�
�	�
� (	�
 ��	�


�� ��	�

� ��� �� (B.4)

Now by projecting��� using ��, the image of���, in homogeneous coordinates, is

given by

�!� � ������� ���

�

�
� (	�
 ��� �

�	�

(	�
 ��� � � ��

�
� � (B.5)

Finally, by removing the dependency of� from �!� using (B.4), the silhouette is

then given by
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It follows from equation (B.6) that the silhouette of���, formed on the image plane

of ��, is bilaterally symmetric about the image of the revolution axis��� � �� � ���

(i.e. the�-axis in the image).



Appendix C

Ambiguity in Reconstruction of
Surfaces of Revolution

Consider a surface of revolution�� whose axis of revolution coincides with the

�-axis, and a pin-hole camera�� � ��	 �� where� � �� � ���
� and�� � �. The

silhouette�� of ��, formed on the image plane of��, will be bilaterally symmetric

about the image of the revolution axis��� � �� � ��� (see Appendix B) and invariant

to the harmonic homology�, given by
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� � �

�
� � (C.1)

Given a point��	�
 � ��	�
 �	�
 ��� in the silhouette��, its associated surface

normal�	�
 is given by
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and its depth�	�
 along the optical axis is given by

�	�
 �
����	�


��	�
� �		�
�	�

(C.3)

(see Chapter 4 for details).
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Consider now a pin-hole camera�� obtained by rotating�� about its�-axis

by an angle�". Hence�� � ��	"
 ��, where

��	"
 �

�
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The silhouette�� of ��, formed on the image plane of��, can be obtained by

transforming every point in�� by ��	"
 (i.e. �� � ��	"
#�). Let �� and��� be a

pair of symmetric points in��, and�� � ��	"
�� and��� � ��	"
��
� be their

correspondences in��. The symmetry between�� and��� is given by
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Substituting�� and��� in (C.5) by���
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�� and���

� 	"
���, respectively, gives
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Equation (C.6) implies that the silhouette�� is also invariant to�. As a result,

given a silhouette� of a surface of revolution�� which is invariant to�, one can

only infer that the revolution axis of�� lies on the�-� plane of the camera coordi-

nate system. However, the relative orientation of the revolution axis with respect

to the�-axis of the camera cannot be deduced. This results in an 1-parameter

ambiguity in the reconstruction of the surface of revolution by applying equa-

tion (C.3) to the rectified silhouette of�� that is invariant to�. Consider again the
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point ��	�
 in ��, it is transformed by��	"
 to the point��	�
 in ��, given by
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The denominator"�	 ��	�
 in equation (C.7) is used to normalize��	�
 so that its

��� coefficient is 1. The surface normal associated with��	�
 can be obtained by

transforming�	�
 by��	"
, and is given by
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Substituting (C.7) and (C.8) into (C.3) yields
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and the resulting contour generator��, with the 1-parameter ambiguity in", is

then given by
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where��
�	�
 � �	 ��	�
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Appendix D

Estimation of the Orientation of the
Revolution Axis

Consider a surface of revolution�� whose revolution axis lies on the�-� plane

of a pin-hole camera�� � ��	 � 	 �. In general, a latitude circle* in �� will be

projected onto the image plane of�� as an ellipse which is bilaterally symmetric

about the�-axis. Such an ellipse can be represented by a�� � symmetric matrix

��, given by

�� �

�
� + � �

� � 
�  $

�
� � (D.1)

such that every point� on the ellipse satisfies�� ��� � �. Consider now a pin-

hole camera� obtained by rotating�� about its�-axis by an angle�,. Hence
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 ��, where
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The image� of the latitude circle*, formed on the image plane of�, can be

obtained by transforming the ellipse�� by��	,
, and is given by
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� 	,
 �����

� 	,


� ��	,
 ���
�
� 	,


�

�
� + � �

� �-
 � ��-� $�
 ��-� 	-
 � �

� $�-
� ��-� 	-
 � �

� $�- ��
 � ��-� $-


�
� � (D.3)

where- � ��� , and� � ���,. If the revolution axis of�� is parallel to the optical

axis (i.e.�-axis) of�, then the image� of the latitude circle* will be a circle,

i.e.

+ � ����
, � � ���, ��� , � $���
,� (D.4)

Hence by locating and fitting an ellipse to the image of a latitude circle in��,

the angle, can be obtained by solving equation (D.4) and the orientation of the

revolution axis of�� follows. Note that equation (D.4) is quadratic in���, and

��� ,, and hence in general there will be 2 distinct solutions of which only one

is correct. Such an ambiguity originates from the symmetry of the ellipse, and

can be resolved either manually or by fitting 2 ellipses to the images of 2 distinct

latitude circles which in general share only one common solution for,.



Appendix E

Projective Transformations and
Surfaces of Revolution

Consider a�� � nonsingular matrix
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representing a projective transformation that maps a surface of revolution
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to another surface of revolution
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both with the�-axis as their axes of revolution. Note that���� has the property

that it maps a latitude circle of a surface of revolution to a latitude circle of another

surface of revolution, as a latitude circle is by itself a surface of revolution in the

limiting case.
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The projective transformation���	�
�� ��
 � ������	�� �
 is represented, in

Cartesian coordinates, by the set of equations
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Since���� maps a latitude circle to a latitude circle,� �	��
 should therefore be

independent of� (i.e. � ������
� �

� �). Hence differentiating (E.5) with respect to�

gives
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which holds for all values of(	�
, �	�
 and �. Equation (E.7) thus yields the

following 5 constraints,
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Consider now the sum of the squares of (E.4) and (E.6),
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Since the transformation���� is a point-to-point mapping,( �	��
 must be zero

whenever(	�
 is zero. Substituting(	�
 � � and(�	��
 � � into (E.13) gives
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Equation (E.14) yields 2 constraints,
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which hold for all values of�	�
. Equations (E.15) and (E.16) imply that
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and the projective transformation���� thus has the form
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Substituting (E.17) into (E.13) gives
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Without loss of generality, let
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where� �� � and� �� �. Substituting (E.20) into (E.19) gives
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Since(�	��
 should be independent of� (i.e. � ������
� �

� �), hence differentiating

(E.21) with respect to� gives
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which holds for all values of(	�
, �	�
 and�. Equation (E.22) yields 2 constraints,
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Solving equation (E.23) yields 2 possible cases:

� case i
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where0� and0
 are any integers. Solving equation (E.24) then gives
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The projective transformation���� thus has the form
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For���� to be nonsingular, obviously both$

 and$
� cannot be zeros.

However, it then follows from equations (E.9)–(E.12) that$�� � $�	 � �,

causing���� to be singular.



169

� case ii

� � �� (E.28)

Substituting (E.28) into (E.20) gives
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The projective transformation���� thus has the form
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For���� to be nonsingular,$�
 and$�� cannot be both zeros at the same

time. It then follows from equations (E.9)–(E.12) that
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Finally, solving equation (E.24) gives
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Hence the projective transformation���� has the form
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Appendix F

Cubic B-splines

A cubic B-spline [43] is specified by� control points��$	��� and comprises

� � � cubic polynomial curve segments� �%	
��	
�� (see figure F.1). The equation

for each curve segment�% is given by
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where� � � � � and� � ' � � � �.
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Figure F.1: A cubic B-spline with 10 control points.

171



172 APPENDIX F. CUBIC B-SPLINES

B-splines are defined with*
 continuity at each joining point (knot) between

adjacent curve segments, though multiple knots may be used to reduce the conti-

nuity at knots. Each additional control point allows one more inflection, and the

B-splines may be open or closed as required. For a closed B-spline, the� control

points are used in a cyclic manner in equation (F.1) to produce� curve segments.

Unlike a single high order polynomial curve, B-splines exhibit local control. This

means that modifying the position of one control point causes only a small part of

the curve to change, making it particularly suitable for edge fitting (see figure F.2).
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Figure F.2: When the control point�$& is being moved up and down, only 4 out of
the 7 segments of the B-spline change.



Appendix G

Behaviour of the Cost Functions for
Motion Estimation

In Chapter 5, algorithms and implementations for motion estimation from silhou-

ettes have been presented. The motion estimation proceeds as an optimization

which minimizes the rms reprojection error of the epipolar tangents to the silhou-

ettes. The� � � motion parameters for a sequence of� images under circular

motion are given by

� � ��� �� �� ��	
 �
		 � � � ����	� �� (G.1)

where�� and�� define the image of the rotation axis��, and�� defines the inter-

section�� of the horizon�� with �� (see figure G.1). Given the camera calibration

matrix�, the special vanishing point�� � ����� and the horizon�� � �� � ��

can then be determined. The remaining��� parameters correspond to the���

angles between the� images, and�	� indicates the rotation angle between im-

age' and image�. Figure G.2 shows 4 different plots of the cost function (5.27)

for the Haniwa sequence under circular motion (see figure 5.14), when different

pairs of the motion parameters were varied. It can be seen from figure G.2 that

though local minima did occur when the 2 consecutive rotation angles were both
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close to"�Æ, the cost function was smooth in most of the search space and had a

well-defined global minimum. This explains why the algorithm for circular mo-

tion estimation always converges roughly to the same solution even with a poor

initialization of �� and�� (see Section 5.6.3).
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=
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Figure G.1: The 3 parameters defining��, �� and��.

For the registration of a general view with the circular motion, the 6 motion

parameters are given by

�� � ��� 23 34 � � ��� (G.2)

where� � �� � ��� represents a translation vector, and the angles��, 23

and34 define a rotation matrix� (see figure G.3). Note that� and� represent

the extrinsic parameters of the projection matrix of the general view. Figure G.4

shows 4 different plots of the cost function (5.28) for registering the���� view

in the Haniwa sequence with the first 11 views (see figure 5.14). It can be seen

from figure G.4 that the cost function was not as smooth as that for the circular

motion, and that there were lots of local minima around the true solution. As
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Figure G.2: Plots of the cost function for the Haniwa sequence under circular
motion, when different pairs of the motion parameters were varied.

a result, a very good initialization is required for the algorithm to converge to

the true solution. This is achieved by rotating and translating the camera, using

a user-friendly mouse-controlled interface, until the projection of the initial 3D

model built from the circular motion roughly matches the silhouette in the new

view (see Section 5.5).
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Figure G.3: The 3 parameters of the rotation matrix� are the rotation angle��,
the azimuth23 and the elevation34.
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Figure G.4: Plots of the cost function for registering the���� view of the Haniwa
sequence with the first 11 views, when different pairs of the motion parameters
were varied. Note that the cost function was not as smooth as that for the circular
motion, and that there were lots of local minima around the true solution. As a
result, a very good initialization is required for the algorithm to converge to the
true solution.
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