
Data Structure I



More about The Competition

TLE? 108 integer operations, or 107 floating point operations, in a
for loop, run in around one second for a typical desktop PC.
Therefore,

I if n = 20, then exponential algorithm is safe;

I if n = 100, then O(n3) is safe;

I if n = 1000, then O(n2) is safe;

I if n = 104, then n · polylog(n) and n
√
n are safe.

I if n = 105, then n log(n) is safe.

I if n = 106, then O(n) is safe.

I if n = 109, then O(log(n) is safe.



No MLE in onsite contests. In C++, it is possible that memory
error turns out to be WA, instead of RE!

Try to master a modern IDE that is mostly available in the
contests. Eclipse is recommended. VS is not since Linux is the
mainstream in the contests.



Suggested data structure problem sets

I http://acm.timus.ru/problemset.aspx?space=1&tag=

structure.

I https://uva.onlinejudge.org/index.php?option=com_

onlinejudge&Itemid=13&page=show_contest&contest=

278.

I http://www.cnphp6.com/archives/36008 (Original by
notonlysuccess).

I SPOJ GSS series.

I SPOJ QTREE seires.

http://acm.timus.ru/problemset.aspx?space=1&tag=structure
http://acm.timus.ru/problemset.aspx?space=1&tag=structure
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=13&page=show_contest&contest=278
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=13&page=show_contest&contest=278
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=13&page=show_contest&contest=278
http://www.cnphp6.com/archives/36008


Section 1

BST, learn to use STL



Learn to Use STL

The STL implements most basic data structures and algorithms.
The reference can be found in the Internet, e.g.
http://en.cppreference.com/.

The following is particularly useful.

I vector. Can generally be used as a (dynamic) array, which
supports enlarging dynamically.

I priority queue. As the name suggests, included in queue
header file.

I sort. Reliable and fast implementation of sorting algorithm.
included in algorithm header.

I binary search, next permutation, lower bound, upper bound
etc. In algorithm header.

I set, map, multiset, multimap. Balanced search tree based set
and map.

http://en.cppreference.com/


Binary Search Tree as Dictionary

The basic usage of BST is as dictionary1. In other words, it
supports insertion, deletion and searching.

We can use STL map. It is a good place to learn the iterator, the
[] operator of map.

1http://poj.org/problem?id=2418

http://poj.org/problem?id=2418


Binary Search Tree: lower bound, upper bound

Question:
http://acm.timus.ru/problem.aspx?space=1&num=1613.

We are given n integers (n < 70000), a1, a2, . . . , an. There are q
queries (q < 70000), in each query, we are asked to report whether
there is a number x apears in {ai : l ≤ i ≤ r}, for the given l , r in
the query.

http://acm.timus.ru/problem.aspx?space=1&num=1613


We consider pairs (i , ai ), which also records the index for the given
integers. We then define a partial ordering for (i , ai )’s.
(i , ai ) < (j , aj), if and only if ai < aj , or ai = aj but i < j .

We put pairs {(i , ai )}i in a STL set. Then for a query (l , r , x), we
find whether there is an element (i , ai ) in the set such that ai = x ,
and l ≤ i ≤ r .

This can be done by finding the smallest element in the set that is
at least (l , x), and then test if it satisfies the constraints. The
lower bound method in STL set is exactly what is needed here.



Section 2

Monotone Queue



Introduction

A queue is a linear list, such that elements can be inserted at one
end only, and can be deleted at the other end only. We extend the
queue to support the query of the minimum element in it.

We present a data structure that supports each of the insertion,
deletion and minimum query operation in amortized O(1) time2.

2http://poj.org/problem?id=2823

http://poj.org/problem?id=2823


Observation

We suppose each insertion is defined as a pair (i , ki ), where i is the
index and ki is the value (keyword).
Suppose now we use a normal queue Q ′, but look at how the
minimum behaves.

Suppose we insert an element (n, kn). We note that before deleting
(n, kn), the minimum cannot be less than kn. Therefore, it is safe
not to store (n − 1, kn−1), (n − 2, kn−2), . . . , (n − i , kn−i ), such
that kj ≥ kn for 1 ≤ j ≤ i .

Hence, if we discard the non-necessary in this way, the keywords of
elements in the queue is increasing, in terms of indices, and it is an
important implication that the head element is the minimum.



Implementation

The implementation is very straightforward. We use an auxiliary
queue Q as the backend.

If it is insertion (i , ki ), we keep on discarding the tail element, until

1. Q is empty, or

2. the tail element is smaller than ki .

Then we append ki to the tail.

If it is deletion the i-th element, then we discard the head element
if i is equal to the index of the head element.

The minimum is always the head element.



Section 3

Block List



Block List

Suppose we are to maintain a list of at most n elements, and
support the following operations.

1. Insert an element e after index i .

2. Delete an element at index i .

3. Apply a simple operation to elements from index i to index j .
The simple operation can be (and not limited to) adding a
number to the elements, or querying the sum / minimum /
maximum of the elements.

The last operation is a range operation, which is non-trivial for a
standard linear list such as arrays and linked lists.
We will introduce a data structure that works in time O(

√
n) for

each of the operations.



Block List

For simplicity, we assume there is no insertion / deletion, and we
focus on the range query3. We assume we are to support

1. Change all elements in an interval [i , j ] to be x .

2. Query the sum of elements in an interval [i , j ].

We partition the indices into O(
√
n) segments, with each segment

of length L, where L := d
√
ne. For example, if n = 20, we partition

the indices to [1, 5], [6, 10], [11, 15] and [16, 20].

3http://poj.org/problem?id=3468

http://poj.org/problem?id=3468


Framework

The idea is to maintain segments individually, and when an
operation on interval [i , j ] comes, we update / summarize the
information in each segments that intersect [i , j ].
For each segment, we maintain several information.

1. The left and right endpoint for the segment, namely l and r .

2. The value of individual elements. Both array and linked list
work.

3. The sum s of all the elements in the segment. This can be
calculated in O(L) time.

4. A boolean variable b that denotes whether the whole interval
is to be updated, and if the variable is true, we also record y
to be the common element to which all elements in the
segment will be changed.

The last piece of information is important for efficiency. We will
elaborate more.



Maintain Individual Segments

We implement the change and query operation for a segment.

Change. Suppose we are to change [i , j ] to x . If i = l , j = r , then
we set the b to be true, and record y := x , s := x ∗ (r − l) + 1.
Otherwise, if b is true, then we use a brute force to set every
element to be y and set b to be false, and then (whatever b is) we
use brute force to change [i , j ] to be x , and calculate s.

Query. Suppose we are to answer query [i , j ]. If i = l , j = r , then
return s. Otherwise, if b is true then we first use a brute force to
set every element to be y and set b to be false, and then
(whatever b is) we use brute force to calculate the sum of [i , j ].

We note that both change and query operation is O(1) is i = l
and j = r , and O(L) otherwise.



Perform The Operations

According to our construction, there are at most two segments
that can intersect [i , j ], and others represent sub-intervals of [i , j ]
for any fixed [i , j ]. For example, [3, 17] partially intersects [1, 5]
and [16, 20], and contains [6, 10] and [11, 15] as sub-intervals.

Suppose S1, S2, . . . ,Sk are the consecutive segments that intersect
[i , j ]. To perform the operation on [i , j ] we perform the
corresponding operation on Si ’s. Observe that apart from S1 and
Sk , all other segments denote a subset of [i , j ], and the operation
can be performed in O(1) for each of them. Moreover, we can
perform the operation on S1 and Sk in time O(L).

Therefore, the operation can be performed in time
O(1) · O(

√
n) + O(L) = O(

√
n).



Handle Insertion and Deletion

Now we turn to insertion and deletion4.

We maintain the invariant that either each segment contains more
than L elements and less than 3L elements, or there is only one
segment and the segment contains less than 3L elements.

4http://poj.org/problem?id=3580

http://poj.org/problem?id=3580


Insertion

We first locate the segment S where we insert the element. This
takes O(

√
n).

We use brute force insertion on S , which takes O(L). If the size of
S reaches 3L, then we break it into two segments evenly (both
with 3

2L elements).



Deletion

We locate the segment S where we delete the element. This takes
O(
√
n).

We use brute force deletion on S , which takes O(L). If the size of
S reaches L, and if S has an adjacent segment, we combine the
two to form a new segment S ′. The size of S ′ is more than
L + L = 2L, and less than L + 3L = 4L. We then break S ′ evenly
to two new segments, and they each contain more than L elements
and less than 2L elements.


	BST, learn to use STL
	Monotone Queue
	Block List

