
Data Structure III
Segment Trees



Section 1

Segment Trees



Introduction

We introduce another data structural, segment trees, to support
the interval operation. Compared with the block list, it is usually
more efficient.

We will illustrate the idea by showing how to support the following
operations on an integer array A[1, 2, . . . , n].

I Update (i , j , k). Setting Ai ,Ai+1, . . . ,Aj to k .

I Sum (i , j). Return the value of
∑j

l=i Al .

By using a segment tree, we can perform each operation in time
O(log n), with an O(n) pre-processing (construction) time.



Definition

The segment tree is a binary tree. Each node in the tree represents
an interval [i , j ] where 1 ≤ i ≤ j ≤ n.

If the interval [i , j ] represented by a node satisfies i 6= j , then it has
exactly two child nodes. The left node represents interval
[i , b i+j

2 c], and the right node represents interval [b i+j
2 c+ 1, j ].

Otherwise, if some node represents an interval [i , i ], then it is a
leaf and has no child nodes.



Construction

We let the root represent interval [1, n]. Then all other nodes can
be constructed recursively.

It can be shown that the height of the segment tree is O(log n)
Moreover, there are at most 4n nodes in the segment tree, and
hence the construction takes linear time, and linear space.



Covering An Interval

Given any interval [i , j ] for 1 ≤ i ≤ j ≤ n, there exists an algorithm
that finds O(log n) nodes that partitions the interval [i , j ], running
in time O(log n).

We describe the procedure COVER(r , i , j), that takes i , j as the
input interval, and r as the root of the segment tree. It returns a
set S of nodes that represent the partition of [i , j ].



Covering An Interval: Algorithm

Step 1. If r represents [i , j ], then return {r}. Otherwise, go to
Step 2.
Step 2. Suppose r represents [L,R], and define M := bL+R

2 c.
I If j ≤ M, then it means that [i , j ] lies in the left child of r

entirely, and we return COVER(r .leftChild, i , j).

I If M + 1 ≤ i , then it means that [i , j ] lies in the right child of
r entirely, and we return COVER(r .rightChild, i , j).

I Otherwise, return
COVER(r .leftChild, i ,M) ∪ COVER(r .rightChild,M + 1, j).



Covering An Interval: Analysis

Obviously, the algorithm returns a set of nodes representing
intervals that partition [i , j ].

We shall show that the algorithm runs in O(log n) time, and hence
the size of the output is O(log n).

If the algorithm always goes into the first two “if” branches of Step
2, then it is immediate that the algorithm runs in O(log n) time.



Then we look at the case when the algorithm goes into the
“otherwise” branch of the Step 2, in which case
COVER(r .leftChild, i ,M) and Cover(r .rightChild,M + 1, j) are
invoked. We observe that if for all such cases, either r .leftChild
represents [i ,M], or r .rightChild represents [M + 1, j ], then the
algorithm still runs in O(log n).



It remains to consider the case that in the “otherwise” branch,
neither r .leftChild represents [i ,M], nor r .rightChild represents
[M + 1, j ].

We claim that this can only happen once among all the invocation
of the algorithm. To see it, we consider the first time this case
happends. Then r .leftChild represents an interval that ends at M,
and r .rightChild represents an interval that starts at M + 1. One
can verify that the subsequent invocations cannot fall in this case
again.



Maintaining Sum

Now we are to define some variable for each node in order to
support the desired operations.
We maintain a variable, sum, in each node. For a node u, u.sum
denotes the sum of the elements in the interval that u represents.



Query

Suppose we have maintained the sum variables for all nodes. Then
for a query (i , j), we can invoke COVER(root, i , j) to find O(log n)
nodes that represent a partition of [i , j ], and then we sum up the
“sum” variable in the nodes to get the answer.



Issues in Update

However, when it comes to the update, it seems updating the
O(log n) intervals returned by the COVER procedure is not
sufficient.

As an example, suppose we are going to update (1, n, x), which
asks us to set every element in the segment tree to be x . To make
every “sum” variable correct, we have to go through the tree, and
it takes O(n).



Lazy Variables

Can we just make some of the “sum” variables correct? Yes, we
can. Actually, we can just update O(log n) nodes in the update
proceudre.

For each node, we give it an additional boolean variable “lazy”,
and an additional integer variable “lvalue” which intends to mean
“lazy value”.

Whenever the “lazy” variable indicates “true”, then the sum value
of the current node, as well as its child nodes’, may not yet be
correctly set, but they are supposed to be set to “lvalue”.



Push Down The Lazy Value

For some node r , the procedure PUSHDOWN(r) is used to update
the sum field of r as well as the other information for child nodes
of r , using the lazy value of it.

PUSHDOWN(r) If r .lazy = true, then

I set r .sum to be r .lvalue times the length of the interval that r
represents;

I if r is not a leaf, then set the both the “lazy” variable of the
two child nodes to be true, set both the “lvalue” variable of
the two child nodes to be r .lvalue;

I set r .lazy = false.



Lazy Update

Combining with the idea introduced in COVER, we describe the
update procedure UPDATE(r , i , j , k) that runs in time O(log n),
where r is the root node. The procedure will set Ai ,Ai+1, . . . ,Aj

to k.

Step 1. If r represents the interval [i , j ] exactly, then set
r .lazy := true and r .lvalue := k . Return.
Step 2. Otherwise, PUSHDOWN(r).
Step 3. Suppose r represents interval [L,R], and define
M := bL+R

2 c. If j ≤ M then UPDATE(r .leftChild, i , j , k). If
M + 1 ≤ i then UPDATE(r .rightChild, i , j , k). Otherwise,
UPDATE(r .leftChild, i ,M, k) and
UPDATE(r .rightChild,M + 1, j , k).
Step 4. PUSHUP(r).



Push Up The Update

We elaborate the PUSHUP procedure used in Step 4. Since we
update the sum of some descendants of r , we need to update the
sum variable of r after updating the descendants. We use the
PUSHUP procedure to do so, which is used in Step 5 of the
UPDATE procedure.

PUSHUP(r) If r is a leaf, then return. Otherwise,
PUSHDOWN(r .leftChild), PUSHDOWN(r .rightChild), and set
r .sum := r .leftChild.sum + r .rightChild.sum.

We note that the PUSHDOWN in the procedure is necessary to
get the correct “sum” value of the child nodes.



Query Procedure

Since we use lazy update, we need to change the query procedure
QUERY(r , i , j) accordingly, where r is the root, and the procedure
returns the sum of elements of indices from i to j .

Step 1. PUSHDOWN(r).
Step 2. If r represents the interval [i , j ] exactly, then return r .sum.
Return.
Step 3. Otherwise, suppose r represents interval [L,R], and define
M := bL+R

2 c.
Step 4. If j ≤ M then return QUERY(r .leftChild, i , j). If
M + 1 ≤ i then return QUERY(r .rightChild, i , j). Otherwise,
return QUERY(r .leftChild, i ,M) + QUERY(r .rightChild,M + 1, j).



Conclusion

We have described the update and query procedure with lazy
update technique. We note that the lazy update technique is
necessary in order to achieve O(log n) time complexity.

The segment tree is not limited to support the example operations
discussed so far. To support other kinds of operations, we note
that it is usually only necessary to change the PUSHUP and
PUSHDOWN procedure as well as the variables defined in the
node.

You can explore how the segment trees support other kinds of
operations in the exercises.


	Segment Trees

