
Advanced Divide & Conquer

Fast Algorithm for Power of Matrix

Divide and Conquer on Trees

Section 1

Fast Algorithm for Power of Matrix

Calculating an: Fast Algorithm

Consider the simple question: calculate an, where a and n are
positive intergers. Assume any single multiplication takes constant
time1.
Naive approach requires O(n) multiplication. But what if n is
super large, say, 1018?
We introduce a simple O(log n) algorithm.

1In reality, only the multiplication of small integers take constant time.
However, for example, if we are instead interested in an mod P, where P is less
than 231, the assumption is actually valid.

The Algoritm

Data: Integer a and n.
Result: An integer, which is an.
begin

if n = 0 then
return 1

else if n = 1 then
return a

else if n is even then
return (Power(a, n/2))2

else
return Power(a, n − 1)× a

end

end
Algorithm 1: Power

Time Complexity

We claim that the complexity of the algorithm is O(log n).

Let f (n) denote the running time of Power(a, n), for the fixed a. If
n ≤ 1, f (n) = O(1). Otherwise, if n is even, then
f (n) = f (n2) + O(1), and if n is odd, then
f (n) = f (n − 1) + O(1) = f (n−12) + O(1).

Therefore, for n ≥ 2, f (n) ≤ f (bn2c) + O(1). It is immediate that
f (n) = O(log n).

Generalization: Sum of Geometric Series of Matrix

The algorithm is easy to be applied on the matrices, that is, we
can calulate Mn in O(mω log n), where M is an m×m matrix, and
mω is the complexity of a single matrix multiplication.

Next question: How to compute M + M2 + M3 + . . . + Mn

efficintly? Suppose now we have g(M, n) that can compute Mn in
time mω log n.

Generalization: Sum of Power Series of Matrix

Consider the procedure below.

Define f (M, n) to be M + M2 + M3 + . . . + Mn. If n = 1,
f (M, n) = M. If n = 2, f (M, n) = M + M2.

For general n, if n is even, then
f (M, n) = f (M, n2)× (I + g(M, n2)), and if n is odd, then
f (M, n) = f (M, n − 1) + g(M, n).

It is easy to see that the time compexity is O(log2 n)
You can practice this problem online at
http://poj.org/problem?id=3233.

http://poj.org/problem?id=3233

Improved Recursion for Sum of Power Series of Matrix

We actually have an algorithm running in O(log n) time. The
observation is that we can calculate the sum of power series and
Mn simultaneously.

Define f (M, n) to be the pair (M + M2 + M3 + . . . + Mn,Mn). If
n = 1, f (M, n) = (M,M). If n = 2, f (M, n) = (M + M2,M2).
For general n, if n is even, let (A,B) = f (M, n/2) and
f (M, n) = (A(A + I),B2); otherwise n is odd, let
(A,B) = f (M, n − 1) and f (M, n) = (A + BM,BM).

Application: Linear Recursion

Suppose we have an+2 = A · an+1 + B · an, a0 = x , a1 = y . How to
calculate an, in O(log n) time?

Observation:

(
an+1

an+2

)
=

(
0 1
B A

) (
an
an+1

)
Then,

(
an
an+1

)
=

(
0 1
B A

)n (
a0
a1

)
We convert the linear recursion into a matrix multiplication
problem. Similarly, we can find the sum

∑n
i=1 ai in O(log2 n)

matrix multiplications.

Also note that the dimension of the matrix is the order of the linear
recursion, and we can actually solve linear recursion of any order.
You can solve this problem online at
http://acm.hdu.edu.cn/showproblem.php?pid=1005.

http://acm.hdu.edu.cn/showproblem.php?pid=1005

Application: Vertices Visited in K Hops

Given a directed graph G = (V ,E), calculate the number of
different ways to visit each vertex by exactly K hops. A way to visit
a vertex is a sequence of vertices consisting of exactly K elements,
where each two consecutive vertices denote an edge in G .

Suppose M is the adjacent matrix of G . Then, consider S = MK .
We can show that Sij is the number of ways going from i to j .

You can practice a slightly more difficult problem at
http://poj.org/problem?id=3613.

http://poj.org/problem?id=3613

Section 2

Divide and Conquer on Trees

Median Decomposition

Given an edge weighted tree T , calculate the number of vertex
pairs (u, v) such that d(u, v) ≤ k , where d(u, v) is the distance on
the tree in terms of the weights, and k is some given constant.

Naive approach gives O(|T |2) running time.

We introduce a divide and conquer approach in which the running
time is O(|T |log2|T |).
After you learn the technique, you can test your understanding at
http://poj.org/problem?id=1741.

http://poj.org/problem?id=1741

Median Decomposition: Divide

We describe the divide and conquer framework in this problem. For
some fixed vertex r , suppose we pick r as root and the subtrees
rooted at the children of r are T1,T2, . . . ,Tm. The procedure for
picking r is described later, and we assume that r can be picked in
O(|T |) time.

For each Ti , we solve the problem recursively. Observe that now
the pairs (u, v) such that u, v are in the same Ti are solved. It
remains to deal with the pairs that are in the different Ti ’s.

Median Decomposition: Conquer

Suppose u is in Ti and v is in Tj . Obviously, the path from u to v
visits r . Since it’s a tree, d(u, v) = d(u, r) + d(v , r).

To avoid the n2 calculation, we first use DFS to calculate the
distance from any vertex to the root r . Then, the problem reduces
to find (u, v), such that u ∈ Ti , v ∈ Tj , for i 6= j ,
d(u, r) + d(v , r) ≤ k.

Observe that the number of pairs (u, v) in different subtrees such
that d(u, v) ≤ k , equals the total number of pairs (u′, v ′) in T
such that d(u, v) ≤ k , minus the number of pairs (u′′, v ′′) that are
in the same subtree Ti for all i , such that d(u′′, v ′′) ≤ k .

Median Decomposition: Counting

To calculate the number of pairs (u, v) in T such that
d(u, r) + d(v , r) ≤ k, we sort all the vertices u in T with respect
to d(u, r). Then in O(|T | log |T |) time, we can calculate the
number of pairs (u, v) such that d(u, r) + d(v , r) ≤ k .

We can then sort each Ti and count the pairs of vertices that are
both in Ti , using the similar approach as in the above, in
O(|T | log |T |) time.

Then we have the number of pairs that are in the different Ti ’s,
such that the distance between them is at most k .

Median Decomposition: Analysis of Divide and Conquer

Let f (T) denote the running time required for instance T . Then
the divide part takes

∑m
i=1 f (Ti) + O(|T |). In the conquer part,

we sort and count in time O(|T | log |T |) (assuming merge sort is
used).

Therefore, f (T) ≤
∑m

i=1 f (Ti) + C · |T | log |T |, where C is some
universal constant.

Median Decomposition: Analysis of Divide and Conquer

Observe that the final complexity depends on how we pick r .

Define the subtrees obtained by removing r and its adjacent edges
to be T1,T2, . . .Tc . We claim that there exists r such that for all
1 ≤ i ≤ c , |Ti | ≤ b |T |2 c. We prove the claim later. Here, we first
show if we pick such r , the complexity is O(|T | log2 |T |).

Recall that f (T) ≤
∑m

i=1 f (Ti) + C · |T | log |T |. We prove by
induction on |T |, that f (T) ≤ C · |T | log2 |T |. In the base case
when |T | = 1, the claim holds trivially.

For general T ,

f (T) ≤
m∑
i=1

f (Ti) + C · |T | log |T |

≤
m∑
i=1

C |Ti | log2 |Ti |+ C · |T | log |T |

≤
m∑
i=1

C |Ti | log |T | log
|T |
2

+ C · |T | log |T |

< C |T | log |T |(log |T | − log 2) + C |T | log |T | = C |T | log2 |T |

Median Decomposition: Picking Right r

Definition
Suppose we have a tree T . For vertex u, define

T
(u)
1 ,T

(u)
2 , . . . ,T

(u)
cu to be the subtrees obtained by removing u

and its adjacent edges. Define f (u) = max1≤i≤cu |T
(u)
i |. The

median of the tree is defined as arg minu∈T f (u).

Theorem
Suppose r is (any of) the median of tree T , and the subtrees
obtained by removing r and its adjacent edges are T1,T2, . . . ,Tc .
Then for any 1 ≤ i ≤ c, |Ti | ≤ 1 +

∑
j :j 6=i ,1≤j≤c |Tj |. Note that

this implies that |Ti | ≤ b |T |2 c.

Proof.
We suppose for contradiction that there exists i , such that
|Ti | > 1 +

∑
j :j 6=i ,1≤j≤c |Tj |. Define r ′ ∈ Ti to be the vertex

adjacent to r (Observing that r ′ is uniquely defined). We show
that f (r ′) < f (r), which leads to a contradiction.

First, we know that f (r) = |Ti |, since otherwise if there is a j such
that |Tj | > |Ti |,
2|Ti | < |Ti |+ |Tj | ≤ |T | = 1 +

∑c
j=1 |Tj | < 2|Ti |, contradiction.

Then, the subtrees obtained by r ′ contains

I Subtrees with vertex set that is a subset of Ti . These vertex
sets are of cardinality strictly less than |Ti |.

I Subtree with vertex set S = {r} ∪ (∪j :j 6=i ,1≤j≤cTj). We note
that |S | = 1 +

∑
j :j 6=i ,1≤j≤c |Tj | < |Ti |.

Therefore, f (r ′) < f (r), contradiction.

Median Decomposition: Finding The Median

We show that we can find the median in O(|T |) time, using the
following procedure.

1. Pick any vertex to be root. Define the children set of u for all
u ∈ T to be C (u).

2. Define s(u) to be the number of vertices in the subtree rooted
at u, for u ∈ T . We calculate s(u) by DFS, using the
recursion that s(u) = 1 +

∑
v∈C(u) s(v).

3. Find r ∈ T such that max{maxv∈C(r) s(v), |T | − s(r)} is
minimized. Return r as the median.

It is immediate that the procedure finds the median, and the first
two steps take O(|T |) time. In the third step, for each vertex u in
T , it takes O(|C (u)|) time, so the total time is

∑
u∈T O(|C (u)|),

which is at most constant times the number of edges of T .
Therefore, the running time is linear in |T |.

Median Decomposition

Combining the above, we recall the whole algorithm ALG(T):

1. Find r as the median of T .

2. Suppose the subtrees obtained by removing r and its adjacent
edges to be T1,T2, . . . ,Tm. Solve the sub-problems by
ALG(Ti).

3. Calculate the number of pairs (u, v) such that u and v are in
different subtrees that satisfy d(u, v) ≤ k .

4. Combine the results in step 2 and 3.

The whole algorithm, as has been analyzed, runs in |T | log2 |T |
time.

Heavy-light Decomposition
We consider the problem that doing statistics on the path of trees.

Given an edge weighted tree T with n vertices, we are to maintain
a structure that supports:

I Given vertex u and v , set the weights of each edges on the
path from u to v to be c .

I Given vertex u and v , query the sum of weights of edges on
the path from u to v .

We note that if T is a line, then the problem can be solved using
Segment Trees.

We introduce a way to partition the edges of the tree into paths
and other edges, such that for any u and v , the (unique) path
from u to v can be represented by O(log n) paths and O(log n)
other edges.

After you learn the technique, you can test your understanding at
http://www.spoj.com/problems/GSS7/.

http://www.spoj.com/problems/GSS7/

Heavy-light Decomposition

Pick some vertex r as the root of the tree. Define s(u) to be the
number of vertices in the subtree rooted at u, for u ∈ T . Define
the set of children of u to be C (u). For each vertex u, for
v ∈ C (u), if v is the one with the smallest index that satisfies
s(v) = maxw∈C(u) s(w), then (u, v) is defined to be a heavy edge;
otherwise, we define (u, v) to be a light edge.

Note that the heavy edges form paths, since each heavy edge can
only have at most one adjacent heavy edge on each of the end
points. We define paths consisting of heavy edges only to be heavy
paths.

Heavy-light Decomposition: Structural Theorem

Theorem
For any u and v in T , the unique path from u to v is covered by
at most O(log n) heavy paths, and O(log n) light edges.

Proof.
Define a to be the vertex on the path from u to v that is closest to
r . We consider the path from a to u, and the case from a to v is
similar. Denote the path from a to u by P. Denote the number of
light edges in P by L. Observe that the number of heavy paths is
at most |L|+ 1, so it is sufficient to prove |L| ≤ O(log n).
Suppose L = {e1, e2, . . . , el}, where ei ’s are ordered along the path
P. For each e = (x , y) ∈ L (where x is closer to a), we have that
s(y) ≤ 1

2s(x), by the selection of the light edges. Therefore, if u′ is
some vertex in P after visiting |L| light edges, then
1 ≤ s(u′) ≤ s(a) · 1

2|L|
. Since s(a) ≤ n, we know that

|L| ≤ O(log n).

Heavy-light Decomposition: Application

Assuming that we have built a heavy-light decomposition, by the
structural theorem, we can update/query any path via
update/query O(log n) heavy paths and O(log n) light edges. If we
use Segment Trees to maintain the heavy paths, and brute force
the light edges, we immediately have a O(log2 n) algorithm, where
one log n comes from the number of heavy paths, and another
comes from the Segment Tree.

It remains to construct the heavy-light decomposition efficiently. In
fact, we can construct it in linear time.

Heavy-light Decomposition: Construction

The heavy-light decomposition can be constructed by two DFS’s.

We perform a DFS to calculate s(u) for all u ∈ T , using recursion
s(u) = 1 +

∑
v∈C(u) s(v). In the same DFS, we can also label the

edges to be either heavy or light.

We perform another DFS on the graph with heavy edges only, and
label the connected components. Note that each connected
component corresponds to a heavy path.

If we use the Segment Tree on heavy path, we can use linear time
to initialize the Segment Tree on the heavy paths.

Heavy-light Decomposition: Summary

Using the heavy-light decomposition, we decompose the tree into
paths, so that any path on the tree can be represented by O(log n)
heavy paths, and O(log n) light edges.

Therefore, we can use techniques for chains to solve problems on
the paths on trees.

	Fast Algorithm for Power of Matrix
	Divide and Conquer on Trees

