String Algorihtms |
Rabin-Karp, Trie

Introduction

Rabin-Karp

Trie

Section 1

Introduction

String

A String is a sequence of elements from alphabet set X. For
example, if the alphabet set is the lower case letters in English,
then abcccda is a string. In this lecture, we assume the alphabet
set is the lower case letters plus the empty letter. We number the
elements in X from 0 to |X| — 1 which allows the elements
participating arithmetic operations. (Hence the lower case letters
are numbered from 0 to 25, and the empty letter is 26)

For a string S, a substring of S is a contiguous sub seuqgnce of S.
For example, if S=abcde, then abc is a substring of S, but abd is
not.

Overview

String matching is the central of study. By matching, we mean the
exact sub-string matching. For example, a classical problem is
given strings S and T, check if T matches some substring of S.

We will introduce the following kinds algorithms.
» Hashing based: Rabin-Karp
» Automata based: Trie and AC automata

» Suffix structure based: Suffix tree (array), Suffix automata

Section 2

Rabin-Karp

Rabin-Karp: Hash Function

A hash function maps a string to an integer. The hash function of
RK algorithm for a string S is defined to be
r(S) = leio_l S; - pl*I=1=" ‘mod N, for some constant p, N.

Observe that if we set p = |X| then the hash function is actually
the representation of the string in base p, except that we have to
mod N.

We note that if for string S and T, r(S) # r(T), then we know
S # T for sure; however, if r(S) = r(T), we actually have to check
whether S really equals T. This issue is usually called collision.

Rabin-Karp: Implementation Notes

In reality the integer data type usually has a limited range. For
example, in C++/Java, “int" is only 32 bit, and the longest native
data type is only 64 bit. Therefore, we modify r(S) to be r(S)
mod N, where N is a large integer. The recommended way is set
N to be 232 if “int" is used, and set it to be 2% if long long is used
(in C++). This way, we may then avoid using the module operator
and just let the number overflow.

The guideline for setting p is to set it to be the least prime number
that is at least |X]|.

To accelerate the calculation p’, we can pre-calculate all the p'
mod N for all possible /.

Rabin-Karp: String Matching

We introduce the application of RK on the classical string
matching algorithm.
Suppose we are given S and T. Our goal is to test whether T is a
substring of S, and if it is, return the first occurence in S. Wlog,
assume |S| > |T]|.
Data: String S, T
begin
Let s =r(SoS1...57)-1), and t = r(T)
fori=0—1|S|—|T| do

if s=tandS;Sit1... Si+|T\71 = T then

‘ Report matching at / and terminate

end

si=p-(s= S pT 1)+ S 7
end

end
Algorithm 1: RK Matching

Analysis

The worst case complexity is O(|S| - |T|), since it is possible that
the hash value for each substring of S equals that of T but the
substrings are different.

However, in reality, the worst case is very hard to encounter. It is
believed that the algorithm usually performes in nearly linear time.
In particular, we may assume that the number of collision is at
most some constant. We can assume so even in ACM/ICPC.

Rabin-Karp: Recursion

A very important propoerty of RK hash function is used in the
matching algorithm: we can caclculate r(S[i +1,i +|T|]) in
constant time given r(S[i,i +|T| — 1]).

Another important property is for calculating the hash for the
concatenation of two strings S and T. Suppose we know r(S) and
r(T), then r(ST) = plTl . r(S) + r(T).

Rabin-Karp: Dynamic String Matching

We consider a dynamic string matching problem?.

We are given n (n < 104) keywords wy, wo, ... w,, where the total

length of w;'s is at most 2 - 10°. Initially, we are also given a string
S with length at most 10°. Then we have m (m < 10°) operations
each in one of the following forms:

» Query(/, r). Check whether S[/, r] is a keyword, and return
“true” if it is and “false” otherwise.

» Change(x, ¢). Change S[x] to be c.

'From http://acm.fzu.edu.cn/problem.php?pid=2045

http://acm.fzu.edu.cn/problem.php?pid=2045

Rabin-Karp: Dynamic String Matching

Native approach: just maintain strings in a naive way (in arrays). If
the operation is “Change”, then it takes O(1) time; otherwise, we
first fetch S[/, r] and then scan w;'s once in O(S -)", |w;|) time.

We can use RK to improve it. Observe that the keyword set is
static, we may calculate the hash value for them once, and use the
hash value to represent them. If we then have the hash value of
S|/, r] by some way, we can perform a binary search to test if it is
contained in the keyword set.

Rabin-Karp: Dynamic String Matching

To calculate S[/, r] efficiently, we may use a segment tree. The
segement tree essentially maintains the string (array) S, and we
also maintain the hash value for each interval.

This way, by the recursion r(ST) = plTl - r(S) 4 r(T), we can
implement the segment tree, and both the update and query can
be performed in O(log |S]) time.

Rabin-Karp: Collision

However, in the above approach, we have no way to test whether a
“match” is a collision or not, since it is too time consuming
(recalling that |w;| < 10%). Luckily, since the bad input is not easy
to generate, even if we do not check, we may still get accepted.

But is there a really reliable way to solve the problem? Actually
the original RK algorithm is randomized, and we can really
guarantee that the collision does not happen for all the operations
with very high probability.

Rabin-Karp: Randomized Testing

The key is a randomized matching testing. Suppose we have a
string S and T (of the equal length), such that r(S) = r(T). To
test wether S = T, the safest way is to scan through S and T and
compare. However, an observation is that if S # T but

r(S) = r(T) happens then it must be because we choose the bad
N, since if we do not module any number then there is no such
case. So the idea is to randomly choose k modules N; for
i=1,2,...,k in advance, and define ry,(S) to be the hash
function that mods N;.

In the original RK paper “Efficient randomized pattern-matching
algorithms” http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.86.9502, the k random numbers are
drawn uniformly from the prime numbers at most M, where M and
k are to be picked later.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9502
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9502

Rabin-Karp: Randomized Testing

In Corollary 4(b) of the paper, if the sub-string to be match is of

length at most n, and the number of matchings to be performed is

t, then the failure probability is upper bounded by t - (:((,C,)))k, for

n > 29 and 7(x) is the number of prime numbers at msot x. A
classical result shows that m(x) = ©(;;). Here by “failure”, we
mean at least one of the t tests fails.

Therefore, in our question, we set n = 10° (the length of S), and
t = 10*-10% = 10° (since each query operation tries to match all
the keywords). By picking k = 4, M = 10°, we have that the

probability that all the t tests are successful is at least 1 — 1077,

Rabin-Karp: Ranomized Testing

In a nutshell, we pick k = 4 and M = 10%, and sample

Ny, Ny, N3, Ny at the very beginning of the program. Then
whenever we have r(S) = r(T) for some S and T, we test for

k =1 — 4 whether all the ry.(S) = ry.(T). We report a matching
only if all the N;'s indicates an equality.

Rabin-Karp: Matrix Matching

The power of RK is not limited to 1-dimensional matching. In fact,
we can generalize the hash function into high dimension.

Consider the maximum sub-matrix problem?. We are given a lower
case letter matrix of n rows m columns (m, n < 500). We say two
sub-matrix are equal, if they are of the same dimension and all the
corresponding letters are the same. Our goal is to find the largest
K such that there exists two distinct equal K x K sub-matrix. By
distinct, we mean they have different upper left coner coordinate.

*http://acm.timus.ru/problem.aspx?space=1&num=1486

http://acm.timus.ru/problem.aspx?space=1&num=1486

2-dimensional RK

We generalize the RK to 2-dimensional. For a matrix M, we define
r(M) to be the hash value of the string obtained by concatenating
all the row strings.

We claim that by a O(mn) pre-calculation, we can calculate r(M)
for any submatrix M in O(1) time. Please try to derive the
recursion on your own.

Matrix Matching

Then we go back to the matrix matching problem. We present a
O(mnlog? mn) algorithm.

First of all, we can binary search K. That is, if some K is feasible,
then the smaller K's are feasbile as well. Observe that

K < max{m, n}, we know that it is sufficient to enumerate

O(log m + n) number of K's.

It remains to check for the feasibility for a given K. We take
O(mn) time to calculate and record all the hash values of
submatrix of dimension K x K. Then we sort and search if there
are two of them have the same hash value, and test if they are
really equal or not. This step takes O(mnlog mn).

Since we are affordable to check for the hash collision, we do not
need randomness (although we may still use the randomness for
safety).

Compressed String Matching?

First we look at the naive approach. Since the field is not large, we
may enumerate the starting position. For a starting position and a
given length L, the string that is read from the field can actually
be represented by a compressed string. Since the input is also a
compressed string and we can calculate the length after the
decompression, we are essentially asked to test whether the two
compressed strings are equal.

*http://acm.sgu.ru/problem.php?contest=0&problem=392

http://acm.sgu.ru/problem.php?contest=0&problem=392

Compressed String Matching

If we have the hash value of the two strings, then we may use RK.
However, the two strings are very long and we cannot test the hash
collision.

Observe that the string is repetitive, so the collison is actually
small. We may either just ignore the collision or use the
randomized testing. (Exercise: how do we pick M and k in this
case?)

The only remaining problem is to calculate the hash value. We still
use the recursion of the concatenation. The recursion is similar as
in calculating a” in O(log(n)) time. Let f(n) denote the hash
value for A", where A is a sring and A” means the concatenation
of A for n times.

Then,
» f(n)=f(n—1)-plA + r(A), when n > 1 and nis odd.
> f(n)=1(3)- (p"A'2 + 1), when nis even and n > 1.
» (1) = r(A).

Note that we module N for arithmetic operations. This recursion
can be solved in O(log(n)) time.
Combine the techniques together to solve the problem.

Section 3

Trie

Trie: Definition

Trie is a dictionary structure for strings. In particular, it supports
» Test if a given string S is inside Trie, in O(|S]|) time.
» Add a string S into Trie, in O(|S|) time.

We may implement it in an automata-like structure.

Trie: Implementation

We initialize the Trie by creating a single initial state gowith
transmit function 6(qo, c) = NULL,Vc € X, where NULL is a
special state. We define the two operations as follows, and the
exact structure of Trie is implied by the procedures.
Data: String S
begin
Let g = qo
fori=0—|S|—1do
if 0(g,S;) = NULL then
Create state ¢’ with 6(q’,c) = NULL,Vc € &
Let 6(q,S)) =¢
end
Let g = d(q, Si)
end
Mark g as an accepting state

end
Algorithm 2: Insert

Trie: Find
Data: String S
begin
Let g = qo
for i=0— |S|—1do
if 0(q,S;) = NULL then
‘ Return false
end
Let g = d(q, Si)
end
if g is an accepting state then
‘ Return true
end
else
‘ Return false
end

end
Algorithm 3: Find

Trie: Properties

From the above procedure, we have the following properties:

» Trie is acyclic (and therefore it is a tree), and each intersted
string corresponds to a path from the root () to an
accpecting state.

» For any state q in Trie, the path from gg to g corresponds to
a string P. Moreover, an inserted string S has prefix P, if and
only if the accepting state of S is in the subtree rooted at gq.
(That's why Trie is sometimes called “Prefix Tree")

Trie and Exclusive Or (Xor)

We are given an edge weighted tree T with n nodes (n < 10°),
where the weights are within the range of int. The distance of two
nodes is define by the exclusive or of the weights of the edges in
the path connecting them. Our goal is to calculate the maximum
distance between all pairs of nodes.*

Again, naive approach would take O(n?) time. The naive approach
is first fix node 1 as the root, and then do a DFS to calculate the

distances between the root 1 and other nodes. Denote d(x) to be

the distance from x to the root. Then the distance between x and
y is d(x) @ d(y) (please check by yourself).

*POJ 3764

Accelarating the Naive Approach

By using Trie, we may accelerate the native approach. In
particular, we still use DFS to pre-calculate d(x), and then for each
node x, we can calculate max,c7 d(x) @ d(y) in constant time.

Since the weights can all be represented in 32 binary bits, we can
treat all the d(x)’s as binary strings. Then we build a Trie using
those binary strings. We then suppose x is fixed, and we show how
to find a y such that d(x) @ d(y) is maximized.

We can try to guess the answer (optimal d(x) @ d(y)) bit by bit.
That is, from the highest bit (1st bit), we test if it can be 1. By
“can be”, we mean there exists y such that d(x) @ d(y) has
highest bit 1. If it can be 1, then we know that the optimal has
highest bit 1; otherwise even the optimal cannot have highest bit 1
and must be 0.

This way, we can determine the highest bit uniquely. Then we use
the same procedure for the second bit, third bit, ..., until we fix all

the 32 bits.

The following is an implementation of the idea.

Data: Fixed string S denoting d(x)

begin

Let g = qo

for i =0— 31 do

Let b = So & 1 denoting the desired bit of d(y) in order for
the i-th bit of S & d(y) being 1

if (g, b) # NULL then

Set the i-th bit of the result to be 1

q=4(q,b)
end
else
Set the i-th bit of the result to be 0
qg=194(q,bd1)
end

end

end

	Introduction
	Rabin-Karp
	Trie

