String Algorihtms Il
AC Automata

Introduction

We will study the multi-pattern string matching problem. Given a
set of n strings K = {P1, P>, ..., P,} as patterns, we are to test
whether a string S has a substring in K.

We will introduce the AC automata that is designed specially for
this problem. We will first talk about the construction of AC
automata, and then analyze the time complexity. Finally, we will
show some typical ICPC problems that can be solved using AC
automata.

Limitation of Trie

Recall that Trie is a dictionary structure for strings. Given a string
S, a Trie built on K can be used to test wether a prefix of S is in
K efficiently.

However, in the string matching problem, we are asked to test the
existence of substrings of S in K, which cannot be efficiently done
using Trie.

Extending Trie

We shall extend Trie to support the desired function.

Suppose T is the Trie constructed by adding all strings in K. For
any state g of T, we define the string corresponding to the path
from the start state (root) to g to be s(q). Let S C, T denote
string S is a prefix of string T, and S Cs T denotes string S is a
suffix of string T.

Fail Transition

We define a function f that takes a state and returns another
state, such that

f(q) = arg MaXq/q:s(q')Css(q {| ()}, forq# qo
NULL, for g = qq

That is, f(q) is the state ¢’ has longest s(q’) such that s(q’) is a
suffix of s(q). We call the transition defined by f to be fail
transitions.

Accept State

We futher extend the accept states.

If g is an accept state in the Trie, then it is still an accept state.
Otherwise, if 3¢’ that is an accept state and can be reached by
following the fail transition from g, then g is an accept state.

We note that this is well defined, since whether g is an accept
state depends only on the the state g’ that is with smaller height
in T (so this is not a circular definition).

Matching Using AC Automata

Before we talk about the construction of fail transition, we first
show that if we are given an AC automata, how we do the string
matching efficiently.

As we shall see, the mathcing proceudre is different from a
traditional automata matching, since it may use the fail transition
in some cases.

Define g = qo.
for c€ S do
if (g, c) # NULL then
‘ q=194(q,c).
end
else
while g # qp do
if (g, c) # NULL then
‘ q = 0(q, c), break the loop.
end
else
| q=1(q).
end
/* Report a match if g is an accept state.

*/

end
end

end
Algorithm 1: Matching

Matching: Correctness

We first show the correctness of the algorithm. That is, if and only
if the algorithm reports a match, the string S has a substring in K.

By the definition of accept states, we know that if a state g is an
accept state, then there exists ¢’ that is origianlly an accept state
in the Trie such that s(q') €5 s(q). This implies the “if" part.

The other direction is that if a string S contains a string in K then
it will be accepted. Define the state corresponding to S[1, /] to be
q(). We can prove by induction on i that

q\) = arg MaXq.s(q)e,s[1,115(q)|}. The detail is omitted.

Matching: Time Complexity

Claim
The algorithm runs in O(|S|) time.

Proof.

It is sufficient to bound the number of transitions made. Define
the transitions made using the transition in the original Trie as
normal transition, and others fail transition.

Define « as the number of normal transitions, and 3 as the
number of fail transitions. We shall upper bound o + 3. We
observe that if one normal transition is taken, then exactly one
character in S is consumed. Therefore, a = |§|.

On the other hand, each fail transition will decrease the height of
the state in the tree. However, the matching starts at the start
state that is of height 0, and to increase the height by 1, we must
take a normal transtion. Therefore, 5 < a. In conclusion,

a+ B <2a<2|S]|. O

Constructing the Fail Transition

Now we turn to the construction of the fail transitions. We
describe a procedure that takes a Trie, and returns a function f
that denotes the fail transitions.

Constructing the Fail Transition

Let @ be the sequence of states organized in the BFS order.
Let f(go) = NULL.

for g € Q do
for c € ¥ and §(q, c) # NULL do
Let ¢’ = f(q).

while True do
if ¢ = NULL then
‘ Set f(0(g,c)) = qo, and break the loop.
end
if 6(¢',c) # NULL then
‘ Set f(d(q,c)) = 4(¢, c), and break the loop.
end
Let ¢’ = f(q').

end
end

end
Algorithm 2: Fail Transition Construction

Explanation

The algorithm calculates f(d(q, ¢)), for all g and ¢ such that
5(q,) # NULL.

Fix g and c. The algorithm follows the fail transitions starting
from g. If it finds some ¢’ such that 6(¢’, ¢) # NULL, then it sets
f(0(q,c)) :=d(q’, c). Or eventually, g’ becomes NULL, then the
fail transition for (g, c) has to be qo.

The reason that we construct the fail transition in BFS order is to
ensure the correctness.

Analysis

The correctness can be shown by induction on the iteration of the
algorithm. We omit the proof.

We turn to the analysis of the time complexity. We consider each
P; that is inserted in Trie. Suppose |P;| = | and we denote the

I + 1 nodes on the path of the tree as ug, u1, ..., u;. We consider
the calculation of their fail transitions. For a state g, we define the
height of g to be h(g). Then we observe that

B(F(ui41)) < A(F(ur)) + 1.

This implies that the total number of "while” iterations for
calculating the fail transitions for all ug, u1, ..., u;'s is at most /.
Therefore, we conclude that the total running time is O(| T|).

Marking the Accept States

We have finished describing the construction of the transition
function. It remains to calculate the new accept states.

The accept states can be calculated by its recursive definition. In
particular, we may evaluate the accept states during the BFS
procedure, and apply the rule for the state g

» If g is an accept state in Trie, then q is still an accept state.

» If f(q) is an accept state, then g is an accept state.

Application: Counting lllegal Words

Problem statement is at
http://acm.timus.ru/problem.aspx?space=1&num=1158.

In general, if we have an automata that recognizes the language of
illegal words, then we can use an automata DP to count the
number of illegal words.

However, the AC automata on the patterns is not an automata
recognizes the language we desire. The matching procedure makes
use of the fail transition for acceleration, instead of using the
pre-built transition function.

Therefore, what we need to do is to remove the fail transition, and
encode the behaviour of fail transition into the transition function
0. Note that this proceudre may take quadratic time, but is
sufficient to solve the problem.

Question: what if the length is large, say 1092, but we need the
answer mod 109 + 77

http://acm.timus.ru/problem.aspx?space=1&num=1158

Application: Bit Mask

The problem is at

http://acm.hdu.edu.cn/showproblem. php?pid=4057.

We are given a set of n pettern DNAs, and each one has a value
(can be negative). For a DNA string S, the value of S is the sum
of the value of the pettern DNAs that have appeared at least once
in S (overlapping is allowed). Note that the multiple appearances
only counts once.

Given an integer / (/ < 100), our goal is to calculate the maximum
value of DNA of length /.

http://acm.hdu.edu.cn/showproblem.php?pid=4057

Application: Bit Mask

We apply the automata DP technique.

We let f[q][S][/] denote the maximum value of the string of length
I, with patterns S appear, and when input to the automata the
state is gq. Here S is a n dimensional binary vector, indicating the
appearance of the patterns. We note that we first convert the AC
automata to a normal automata.

The recursion is left as exercise.

Application: Monkey at The Keyboard?

We have a keyboard of 26 lower case letters. A monkey types at
the keyboard uniformly at random (each time it will press 1 key
only). We are given a string S (|S| < 30000), and we let the
monkey stop typing exactly when we see the first occurence of S.
We are to calculate the expected length of string the monkey must
type until stop.

'http://acm.timus.ru/problem.aspx?space=1&num=1677

http://acm.timus.ru/problem.aspx?space=1&num=1677

Monkey at The Keyboard

We still use the DP technique, and we build the AC automata on
the single string S.2

Note that the Trie now is a chain. We label the states
corresponding to S; as g;. Let f[q] denote the expected length until
stop from state q. Then, f[q;] = 5¢(1 + f[qgi+1]) + 32 f[fail(gi)].

Although this is an linear equation system, we can still discover an
ordering to solve it efficiently. This is left as exercise.

2Now the AC automata has exactly the same structure as/in the KMP.

Application: Fail Graph

Problem statement:
http://acm.hdu.edu.cn/showproblem.php?pid=4117.

We use W; to denote the /-th word, and v; to denote its score.
The naive approach is a dynamic programming. Let f[i] denote the
maximum score among the first i words such that W; must be
selected. Then f[i] = max;,j<; w; is a substring of W; {f[]} + vi, and
the final answer is max;{f[i]}.

http://acm.hdu.edu.cn/showproblem.php?pid=4117

Application: Fail Graph

We can use AC automata and Segment Tree for acceleration. We
first observe the following fact.

Fact

Suppose q is an accept state in Trie, and the corresponding string
is S. Denote L(q) to be the accept state set of the strings that
contains S as a substring. Then for all ¢’ € L, q' will reach q by
following the fail transition.

Moreover, we have the following.

Fact

Removing the Trie edges in AC automata, we get a DAG which
only has fail transition edges. If we interpret each fail transition
(u, v) as an undirected edge and define v to be the parent of u,
then we get a tree rooted at qo. We call this rooted tree fail graph.

Fail Graph

Combining the two facts together, we know that the strings that
has some string S as a substring corresponds to the accept states
in the subtree rooted at the accept state of S, where the subtrees
are defined in terms of the fail graph.

Therefore, for some word W;, the words that has W; as its
substring can be organized in a subtree of the fail graph. To
accelerate the dynamic programming, it is sufficient to have a data
structure for some node weighted tree that supports:

» Update(q, v). Define the subtree rooted at g to be T,. This
operation requires for each ¢’ € T, v(q') = max{v(q’), v},
where v(q) denotes the node weight.

» Query(q). Return the weight of node q.

This can be done by using Segment Tree on the DFS sequence of
the tree.

