
String Algorihtms III
Suffix Array

Introduction

Suppose S is a string of length n. A suffix of S is of the form
S [i , n], for 1 ≤ i ≤ n, and we denote the suffix S [i , n] as Si .
Observe that there are n unique suffixes of S .

We are interested in sorting the suffixes in terms of the
lexicographic order. In particular, we are focusing on suffix arrays.

Suffix array is an integer array SA of length n, such that SA[i] = j
iff Sj is of rank i when sorting Si ’s in increasing lexicographic
order. For example, S = aabba, then the sorted suffixes are a,
aabba, abba, ba, bba, and therefore SA[1] = 5, SA[2] = 1,
SA[3] = 2, SA[4] = 4, SA[5] = 3.

Construction

The naive approach that sorts the n suffixes directly will take
O(n2 log n) time, which is inefficient. Fortunately, there are simple
and efficient algorithms for construting suffix arrays.

In paper [MM93], the suffix array was first introduced, and a
O(n log n) algorithm is presented. This time complexity is already
sufficient enough for most ACM/ICPC problems. We will briefly
introduce the O(n log n) algorithm.

A simple linear time algorithm is presented in [KS03], and this is
one of the most popular algorithm used practically. Please study
the paper by yourself. (There is also a ready to use C language
implementation in the appendix of the paper).

Height Array

We usually do not use suffix array itself alone. Instead, based on
the suffix array, we can construct other structures that are even
more powerful.

The height array is one of the most important one. For example,
with the height array, one can compute the longest common prefix
(LCP) of any two suffixes efficiently.

Height Array, LCP

The height array H of S is an integer array of length n, such that
H[i] = j iff the length of the LCP between SA[i] and SA[i − 1] is j
for i > 1, and H[i] = 0 for i = 1. (We abuse the notation of SA[i]
to denote SSA[i].)

Suppose 1 ≤ i < j ≤ n, and we would like to compute the length
of the LCP of SA[i] and SA[j]. Since SA[i], SA[i + 1], . . . ,SA[j] are
sorted lexicographically, any common prefix of SA[i] and SA[j] is a
prefix of SA[k] for i ≤ k ≤ j . Therefore,
LCP(SA[i], SA[j]) = mini+1≤k≤j{H[k]}.

LCP Using Height Array

The computation of mini+1≤k≤j{H[k]} can be seen as finding the
minimum in a continuous range of H. This can be efficiently done
by O(n log n) preprocessing, and then compute mini+1≤k≤j{H[k]}
in O(1) time (using ST algorithm).

Therefore, to compute the LCP of Si and Sj , we first compute
i ′ = SA−1[i] and j ′ = SA−1[j]. Note that given SA, we can
compute SA−1 in linear time. Then the LCP is
mini ′+1≤k≤j ′{H[k]}, which can be computed efficiently by using
RMQ algorithms.

Longest Repeating Substring

We look at another problem that height array can be applied. A
substring S ′ of S is reapeating, if S ′ appears at least twice in S .
The two occurences can partially overlap, but cannot totally. Our
goal is to calculate the length of the longest repeating substring.

With the help of the height array, this problem turns to be easy.
We just find i such that H[i] is maximized, and such H[i] is the
answer.

Longest Common Substring

We generalize the longest repeating substring problem to two
strings. That is, we would like to calculate the longest common
substring between two strings S and T .

Suppose |S | = n and |T | = m. To apply suffix array, we build a
new string P = S0T , where 0 is a character that is less than any
character in the alphabet. We calculate the suffix array and the
height array for P. Note that the suffixes of P are of the form
S [i , n]T , and T [j ,m].

We explain why we add an 0 between S and T . Recall that the
desired property of height array is for i ∈ [1, n], j ∈ [n + 1,m + n],
we have LCP(Si ,Tj) = mini ′+1≤k≤j ′{H[k]} where
i ′ = SA−1[i], j ′ = SA−1[j]. It is easy to check that adding an 0 can
guarantee this property1.

The algorithm is simple. Define max = 0. We scan for i = 1 to
m + n − 1. If SA−1[i] ∈ [1, n] and SA−1[i + 1] ∈ [n + 1,m + n], or
if SA−1[i] ∈ [n + 1,m + n] and SA−1[i + 1] ∈ [1, n], and if
H[i + 1] > max, we update max = H[i + 1].

1Without adding 0, the counter example is S = a and T = aa, i = 1 and
j = 2

Longest Palindrome Substring

Another related problem is to find the longest palindrome substring
of S . We do not cover the whole detail, but sketch the main steps.

The basic idea is to accelarate the following naive approach. We
handle the longest odd length and even length palindrome
substring separately. Since they are similar, we only look at the
longest odd length palindrome. For each i , we find the longest odd
length palindrome centered at i .

Fix some i , to find the longest odd length palindrome centered at
i , we find the LCP of the suffix Si , and suffix S ′i , where S ′i is suffx
in the reverse of S that starts at the corresponding character of
S [i]. To calculate LCP efficiently, we build P = S0S ′, and apply
suffix array techniques on P, where S ′ is the reverse of S .

Non-overlapping Longest Repeating Substring

We consider the generalized longest repeating substring problem,
by putting the restriction that the substrings cannot overlap.

Observe that we can binary search the answer. That is, if length l
is feasible (by feasible, we mean there exists non-overlapping
repeating substrings), then so is l ′ < l .

The problem then reduces to check whether there exists
non-overlapping repeating substring of length l . Since
LCP(SA[i],SA[j]) = mini+1≤k≤j{H[k]}, we consider each of the
maximal continuous intervals [p, q] such that H[k] ≥ l for
p ≤ k ≤ q. If l is feasible, then there exists k1, k2 and an interval,
such that |SA−1[k1]− SA−1[k + 2]| ≥ l . This can be checked in
linear time, and we conclude that the checking process only
requires linear time.

Key Substrings

Please find the statement at
http://acm.timus.ru/problem.aspx?space=1&num=1713.

Denote the i-th keyword by Ki , and its length by ni . We start by
concatenating the keywrods together and calculate the suffix array
as well as the height array.
Our approach is for each keyword Ki , for each 1 ≤ j ≤ ni , we
calculate the minimum prefix of Ki [j , ni] such that it is not a
substring of other keywords. To do so, we calculate the maximum
prefix of Ki [j , ni] such that it is a substring of some other keywords.

Suppose Ki [j , ni] ranks j ′. For some t, we define [pt , qt] to be the
maximal continuous interval such that pt ≤ j ′ ≤ qt and H[k] ≥ t
for all k ∈ [pt , qt]. We find the smallest t such that at least one
suffix of each keyword presents in the interval [pt , qt] (the interval
is in terms of the index of the sorted suffixes).

http://acm.timus.ru/problem.aspx?space=1&num=1713

Count the Number of (Different) Substrings

Another application is to counter the number of different
substrings of a given string S .

Consider the suffixes in the order given by the suffix array, i.e.,
SA[1], SA[2], . . . ,SA[n]. Define ci to be the number of substrings
that start at SA[i], and do not equal to any substrings that start at
SA[j] for 1 ≤ j < i . Observe that

∑n
i=1 ci is what we want.

Calculating ci

It remains to calculate ci .

Note that there are |SA[i]| different substrings that starts at SA[i].
Since any prefix of SA[i] that is of length at most H[i] is also a
prefix of SA[i − 1], we cannot count them in ci . On the other
hand, substrings starting at SA[i] of length larger than H[i] are not
counted in c1, . . . , ci−1. Therefore, ci = |SA[i]| − H[i].

Hence,
∑n

i=1 ci =
∑n

i=1 |SA[i]| −
∑n

i=1H[i] =
(n
2

)
−
∑n

i=1H[i].

Construct the Height Array

We turn to construct the height array. The desired result is that
given the suffix array, we can construct the height array in linear
time. The algorithm is as follows.

Construct the Height Array

Let h = 0
for i = 1→ n do

if SA−1[i] = 1 then
H[SA−1[i]] = 0

end
else

while S [SA[SA−1[i]− 1] + h] = S [i + h] do
h = h + 1

end

H[SA−1[i]] = h
if h > 0 then

h = h − 1
end

end

end
Algorithm 1: Construct Height Array

Analysis

The time complexity is linear. To see it, we analyze the number of
iterations in the while loop. Observe that this number is equal to
the number of h = h + 1 operations. Since h ≤ n, and h = 0
initially, and in each for loop, h decreases at most one, we conclude
that h = h + 1 operation can only perform at most 2n times.

We turn to the correctness. Observe that we are constructing the
height array in the increasing order of the length of the suffixes.
Since h = 0 initially, we get the correct answer for the first i that
SA−1[i] > 1. Suppose the for loop just finishes i = k and the H
value is still correct. We look at i = k + 1, and assume
SA−1[k + 1] 6= 1.

The key observation is that H[SA−1[k]]− 1 ≤ H[SA−1[k + 1]]. To
see why it holds, we suppose the LCP between Sk and
SSA[SA−1[k]−1] is T , where |T | = H[SA−1[k]]. Then,

T [2,H[SA−1[k]]] is a prefix of Sk+1. Moreover,
T [2,H[SA−1[k]] 6= Sk+1. Therefore, H[k + 1] ≥ H[k]− 1, and it is
safe to set h = h − 1 in the last line of the for loop.

O(n log n) Suffix Array Construction

We introduce a O(n log n) suffix array construction algorithm. We
use radix sort as a subroutine. For any string S and T , notation
S <t T denotes that S [1,min{t, |S |}] < T [1,min{t, |T |}].
Similarly we define =t and ≤t .

The algorithm is as follows. Initially, we sort the suffixes according
to the first character of the suffixes. That is, we sort them wrt <1.
It is possible that there are many suffixes are equal wrt =1, but
they will be uniquely sorted wrt <n.

After the initialization, we do the following. For t = 0→ blog nc,
we sort the suffixes wrt <2t+1 , by using the information of the
ordering wrt <2t . We will elaborate more about this step.

Suppose the ordering wrt <2t is calculated. We group the suffixes
under =2t (two suffixes are in the same group, if they are equal wrt
=2t). Note that the grouping actually forms a partition. Also note
that the relative order between groups wrt <2t+1 is already
calculated, it remains to calculate the ordering wrt <2t+1 inside
each group.

Fix group G . If |G | = 1, then no more work should be done.
Otherwise, |G | ≥ 2. In this case, every element in G is of length at
least 2t since otherwise they cannot be equal to each other.

Since elements in G are suffixes of S , the suffixes of the elements
are also the suffixes of S . Motivated by this observation, for each
S ′ ∈ G , we consider its suffix starting at S ′[2t + 1], and define G ′

to be the set of those suffixes. Observe that the ordering of strings
in G ′ wrt <2t is already calculated, and we can then use a radix
sort to sort strings in G ′ wrt the ordering defined by <2t .

In the end of the whole algorithm, we get the ordering wrt <2dlog ne ,
which is exactly the ordering defined by the suffix array.

Implementation Notes

When implement the algorithm, we append a 0 to the original
string S , where 0 is some character that is smaller than any
character in the original alphabet set.

An important property of appending 0 is that no suffix is a prefix
of another suffix. This can tackle the special cases in the
algorithm. For example, when defining G ′, string S ′ may be of
length exactly 2t , and the suffix starting at S ′[2t + 1] may not be
well defined. If we have 0 appended, this case can never happen.

References

Juha Kärkkäinen and Peter Sanders.
Simple linear work suffix array construction.
In Automata, Languages and Programming, pages 943–955.
Springer, 2003.

Udi Manber and Gene Myers.
Suffix arrays: a new method for on-line string searches.
siam Journal on Computing, 22(5):935–948, 1993.

