
07 9 6年 月 日 Provinci HKU 2007 1

ACM Programming Contests

Coach: Dr. Joe K.W. Chong

Courtesy: Louis Siu
Kayman Lui
Alpha Lam
Francis Fok
Dr. Isaac To

Website: http://www.cs.hku.hk/~provinci

07 9 6年 月 日 Provinci HKU 2007 2

Introduction

● The ACM collegiate programming
contests are the major programming
challenge for the university students.

● The ultimate World Finals competition is
held around April every year.

● To earn the ticket to this glory battlefield,
we need to excel in the Regional
competitions.
– To be held in late October and November.

07 9 6年 月 日 Provinci HKU 2007 3

Team competition

● Each team, consisting of 3 students,
works out a number of questions using a
single computer.
– Well, this needs some coordination among

the members.

● Each university can send at most 3 teams
to each regional contest.
– Each team can join at most 2 regionals.

● The exact competition format will be
introduced in due course.

07 9 6年 月 日 Provinci HKU 2007 4

Our schedule ...

● We’ll have a team formation test by the
end of September.

● The test is individual.
– You’ve to work hard on your own first :-)

● Depending on your results, we’ll select
about 10 to 12 students to enter the
regional contest(s).
– Special training for the competition will be

held after the team formation test.

07 9 6年 月 日 Provinci HKU 2007 5

Training sessions before test
● To prepare the team formation test, you

can join the training sessions this month.
– These training sessions are optional and you

can join the test directly.

● Topics to be covered:
– STL
– Dynamic programming
– Graph algorithms
– Combinatorics
– Problems require specific math concepts

07 9 6年 月 日 Provinci HKU 2007 6

Practice make perfect

● An archive of problems can be found in
the site
– http://acm.uva.es/p

● It also has an on-line judge to test your
submitted program.
– Simply register and apply for an account.

● This archive site will be a major source of
training questions.

07 9 6年 月 日 Provinci HKU 2007 7

Tips for the competition

● In the competition, you’re asked to write
a number of programs.

● Only program correctness counts, subject
to some time limits (usually 10 sec).
– You can submit as many times as you want

to the judge.

● Teams solving more problems win.
– Tie break on smaller number of submissions.

● Not our concern at the moment ...

07 9 6年 月 日 Provinci HKU 2007 8

Programming languages

● In the competition, you can write the
programs in C,C++, Java

● We’ll focus on C++ for the sake of
efficient and convenient.

● One of the goodies of C++ is the
Standard Template Library (STL).
– Many useful data structures and algorithms

have been implemented.
– Their implementations are always optimal.

07 9 6年 月 日 Provinci HKU 2007 9

Efficiency

● The implementation of STL algorithm
satisfies not only the requirement, but
also efficiency.

● The searching, sorting, etc., algorithm are
implemented in optimal time complexity.
– O(log n) for binary search, O(n log n) for

sorting, etc.

● The set and map are implemented using
red-black tree.

07 9 6年 月 日 Provinci HKU 2007 10

 Getting inputs ...

● Let’s see problem 483.
– http://acm.uva.es/p/v4/483.html

● This is a typical question that requires a
program to read a number of lines, and
then to process each line.

● A common framework for this in C++:
string line;
while (getline(cin, line)){
 // .. to process a line
}

07 9 6年 月 日 Provinci HKU 2007 11

For each words ...

● For each line, we need to reverse every
word separated by white space.
– Tokenizing the input stream

● If the number of white space between
words need not preserved in the output,
string stream is a good solution.

istringstream ins(line);
string word;
while (ins >> word){
 // reverse word
}

07 9 6年 月 日 Provinci HKU 2007 12

To reverse something ...

● The last part is to reverse a word.
● You may instantly thinking about a loop

to do this.

● Let’s try the STL reverse() function.

for (size_t i = 0; i < words.size(); ++i)
 cout << words[words.size() ­ i ­ 1];

reverse(word.begin(), word.end());
cout << word;

07 9 6年 月 日 Provinci HKU 2007 13

Algorithm & Iterator

● One of the simple algorithms in STL.
– See http://www.sgi.com/tech/stl

● This function, as well as other STL
algorithms, takes two iterators as
arguments.
– Imagine that iterator is class-version pointer.
– word.begin() is pointing at the first position;
– word.end() points to the “pass-the-end”

http://www.sgi.com/tech/stl

07 9 6年 月 日 Provinci HKU 2007 14

Container & iterator

● In C++, you can consider that any object
that stores a sequence of (homogeneous)
data is a container.
– Array, strings, vector, set, ...

● To traverse a container, you can use the
subscript operator or iterator.

● Accessing a container in terms of iterator
allows the generic design of many STL
algorithms.

07 9 6年 月 日 Provinci HKU 2007 15

Examples

● To reverse the elements of a vector.
● To sort the characters of a string
● To find the maximum ...

reverse(myvec.begin(), myvec.end());
sort(word.begin(), word.end();

int a[] = { 2, 9, 5, 3, 4, 0 };
sort(a, a + sizeof(a)/sizeof(a[0]);

vector<int>::iterator p;
p = max(myvec.begin(), myvec.end());

07 9 6年 月 日 Provinci HKU 2007 16

About iterators ...

● Due to the operator overloading of C++,
we can access the object “pointed” by an
iterator using the dereference operator.
– e.g., cout << *p << endl;

● Note that iterator is usually associated
with a particular container type. Its type
is closely tied with the container.

vector<int>::iterator p;
string::iterator q;
map<string, string>::iterator r;

07 9 6年 月 日 Provinci HKU 2007 17

Typedef ...

● To save some typing headache, you can
use typedef to create a type alias:

● You can also define type alias for iterator
type:

typedef vector<int> MyCont;
MyCont::iterator q;
typedef map<string, string> Dict;
Dict::iterator r;

typedef vector<int> MyCont;
typedef MyCont::iterator MyCont_it;
MyCont_it p;

07 9 6年 月 日 Provinci HKU 2007 18

The set container

● See problem 353.
– http://acm.uva.es/p/v3/353.html

● In this question, you’re asked to find, for
a given string, the number of unique
substrings that is palindrome. e.g.,
– “boy” has 3 palindrome substring
– “adam” has 5 ...
– “tot” has 3 ...

07 9 6年 月 日 Provinci HKU 2007 19

The STL way ...

● How to test if a string is a palindrome?
– Please make good use of STL :-)

● To count the number of UNIQUE
palindrome substrings,
– Enumerate all possible substring

● For each substring, check if it’s a palindrome.
● If yes, insert into a set.

– Print the size of the set.

● Correct?

07 9 6年 月 日 Provinci HKU 2007 20

map

● See problem 401.
● This question extends the palindrome

problem a bit.
– Some characters have mirrored version; e.g.,

‘A’ and ‘A’, ‘E’ and ‘3’, ‘L’ and ‘J’, etc.
– Some characters do not have mirrored

image; e.g., ‘B’, ‘C’, ‘P’, ‘Q’, etc.

● Then we can defined mirrored string:
– ‘3AIAE’, ‘2A3MEAS’

07 9 6年 月 日 Provinci HKU 2007 21

● To check if a string is a mirror,
– For each character in the string, replace it

with its mirrored version.
– Check if the reversed of this string equals the

original string.

● In doing the replacement, we need to find
the corresponding mirrored version of a
character.
– This can be done by storing the

correspondence in a map container.

07 9 6年 月 日 Provinci HKU 2007 22

Map usage

// declaration
map<char, char> mtbl;

// associate key­value pairs
mtbl[‘A’] = ‘A’;
mtbl[‘B’] = ‘ ‘; // no mirror
...
mtbl[‘E’] = ‘3’;
....
string s = “3AIAE”;
string ms;
for (size_t i = 0; i < s.length(); ++i)
 ms += mtbl[s[i]];

07 9 6年 月 日 Provinci HKU 2007 23

Caveats

● The map is good for “database”-like
container such as mapping a string to
another string; e.g.,
– u.no => name
– Key => value

map<string, int> db;
db[‘one’] = 1;
db[‘two’] = 2;
...

07 9 6年 月 日 Provinci HKU 2007 24

Find before use?
● A common problem is to check if a given

key is mapped to certain value.
– If (db[key] == value){ ... } // dangerous
– The testing work only if the key has been

inserted into the map before.

● If you’re not sure, check the existence of
the key first; e.g.,
map<string, int>::iterator p = db.find(key);
if (p != db.end()){
 // ...
}

07 9 6年 月 日 Provinci HKU 2007 25

Vector or array?

● Array is good for holding initial values.
– The size must be fixed at compile time.

● Vector is more flexible.
– New elements can be added (at the end)

using push_back().
– Use pop_back() to remove the last one.

● Sometimes we may use both :-)
– Initialize an array and then copy into a vector

or other container.

07 9 6年 月 日 Provinci HKU 2007 26

Exercises

● Starters: Problems 642, 10107, 10282.
● Main course: For Problems 10098 & 291,

try the next_permutation() from STL.
● Dessert: Problem 195

– Print all the permutation of a string in
alphabetically ascending order.

– An upper case letter goes before the
corresponding lower case letter.

07 9 6年 月 日 Provinci HKU 2007 27

Comparator for sort()

● The sort() function by default compares
two elements using the operator<().

● We can change the default comparison by
plugging in different comparator.
– In the simplest case, a comparator is just a

boolean function.

bool myless(char a, char b){
 char la = tolower(a), lb = tolower(b);
 return la < lb || la == lb && a < b;
}
sort(mystr.begin(), mystr.end(), myless);

07 9 6年 月 日 Provinci HKU 2007 28

Summary

● Get familiar with the STL library.
– Data structure: vector, map, set are of

particular useful.
– Algorithms: sort(), bsearch(), find(), count(),

max(), min(), save many coding time.
● Behavior of algorithms can be changed by plugging

functional object (e.g., comparator in sort()).

– Iterators are the interface between data
structures and algorithms.

07 9 6年 月 日 Provinci HKU 2007 29

References

● “Effective STL” by Scott Meyers, Addison-
Wesley.

● “Accelerated C++: practical
programming by example” by A. Koenig,
B. Moo, Addison Wesley.

● “The C++ programming language” by B.
Stroustrup.

