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Abstract
In a serverless cluster of PCs or workstations, the

cluster must allow remote file accesses or parallel I/O
directly performed over disks distributed to all client
nodes. We introduce a new distributed disk array, called
the RAID-x, for use in serverless clusters. The RAID-x
architecture is based on an orthogonal striping and
mirroring (OSM) scheme, which exploits full-bandwidth
and protects the system from all single disk failures.

The performance of the RAID-x is experimentally
proven superior to RAID-1 and NFS in the Linux cluster
environment. We propose a new striped checkpointing
scheme, leveraging on striped parallelism and pipelined
writing of successive disk stripes. This RAID-x
architecture greatly enhances the throughput, reliability,
and availability of scalable clusters. It appeals especially
to I/O-centric cluster applications.

Keywords: Scalable computing, RAID architectures,
parallel I/O, Linux clusters, disk mirroring, single
system image, checkpointing, staggered writing, and
fault tolerance

1.  Introduction

Many redundant arrays of inexpensive disks (RAID) [6]
use independent disks under the control of a single or
multiple controllers. The TickerTAIP [3] pioneered the
Parallel RAID architecture for supporting parallel disk I/O
with multiple controllers. Still, these parallel disk arrays
are implemented as a centralized I/O subsystem. These
RAID subsystems are often attached to a storage server or
used as network-attached disks [10].

For this reason, we consider the classic disk arrays as a
centralized RAID. In contrast, this paper deals only with
distributed RAID architectures. This concept was
investigated by Stonebraker and Schloss [25]. The actual
prototyping of distributed RAIDs did not start until the
Petal [17] and the Tertiary Disk project [26].

A distributed RAID is constructed out of dispersed
disks, which are physically attached to different computer
hosts through the network connections. The Petal was built
with a chained declustering [12]. The Tertiary Disk was
built with a RAID-5 architecture using software support by
the serverless xFS file system [2].

The architecture and performance of a new distributed
RAID architecture, namely the RAID-x, are reported here.
The level x is yet to be rectified with an appropriate code
assignment by the RAID Advisory Board [22]. Our RAID-
x differs from existing distributed RAID architectures in
many aspects.

First, the RAID-x is built with a new disk mirroring
technique, called orthogonal striping and mirroring
(OSM). The small write problem associated with RAID-5
is completely eliminated in this OSM approach. Second,
we use cooperative disks instead of independent disks.

To enable true cooperation among dispersed disks, we
have developed cooperative disk drivers (CDD) at the
kernel level. Data consistency is maintained inside the
CDD, instead of using a central network file system.
Therefore, unmodified file system interface is available to
users. Third, the RAID-x was specially designed over
distributed disks for I/O-centric cluster computing.

The rest of the paper is organized as follows: Section 2
describes the Trojans cluster architecture and also presents
an overview of distributed RAID architectures. Our
RAID-x approach is compared with the architectural
designs in Berkeley Tertiary Disks running the xFS,
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Digital Petal system and Princeton TickerTAIP parallel
RAID system. Section 3 introduces the OSM scheme and
the RAID-x architecture. We also compare RAID-x with
RAID-1 for designing distributed disk arrays. Section 4
describes the architecture of the cooperative disk drivers
and data consistency checking mechanisms.

Section 5 presents the benchmark performance results
obtained on the Trojans cluster. Section 6 explains the
striped staggering checkpointing scheme we developed on
top of RAID-x. Section 7 gives out the preliminary
experimental results on striped checkpointing overhead
and the analysis of reliability issue of proposed
checkpointing scheme. Section 8 summaries the
contributions and identifies extended research work.

2.  USC Trojans Cluster Architecture

The prototype Trojans cluster was built with 16
Pentium PCs (Pentium II 400MHz) running the Linux
operating system (Redhat Linux 6.0 with kernel 2.2.5).
These PC nodes are connected by a 100 Mbps Fast
Ethernet switch.

At present, each node is attached with a 10-GB disk.
With 16 nodes, the total capacity of the disk array is 160
GB. All 16 disks form a single I/O space. Figure 1a shows
the front view of the prototype Trojans cluster. This
cluster is connected to Internet over fiber links.

As illustrated in Fig.1b, we subdivide the cluster nodes
into three functional classes. The entry partition is for the
user to access the cluster through Internet/Intranet. Nodes
in the service partition provide the services requested by
users. The database partition supports database or
information accesses operations. Nodes in the three
partitions can be dynamically reconfigured to suit special
application demands.

To build a distributed RAID with a SIOS, our research
objectives are identified in three aspects: (i) A single
address space for all data blocks in the cluster. This means
that the users can utilize all disk storage in a cluster
without knowing the physical locations of the data blocks
referenced or of the files used. (ii) High scalability,
availability, and compatibility with current cluster
architectures and applications must be maintained. (iii)
Remote disk I/O operations should have performance at
least comparable to that of local disk I/O operations.

Previous approaches to achieve SIOS were attempted at
the user level, file-system level, and device-driver level.
The user-level approach has the lowest cost and higher

portability across different platforms. The Parallel Virtual
File System (PVFS) [18] and the Remote I/O project [9]
are two examples. However, this approach does introduce
two problems: First, users still have to use specific APIs
and identifiers to exploit full functionality of the packages.
Second, using system calls to perform network and file I/O
are too expensive to meet real-time or cluster computing
requirements.

(a) A front-view of the Trojans Cluster

(b) I/O-centric cluster architecture

Fig. 1.  Trojans cluster built at USC Internet and
Cluster Computing Laboratory
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Distributed file systems provide another approach to
achieving SIOS to the users. Users can access remote data
as if it is accessed locally. The serverless xFS system
developed at Berkeley [2] and the Solaris MC project are
good examples. However, this approach has its own
shortcomings.

Changing the file system does not guarantee high
compatibility with current applications. This will
discourage the deployment of the distributed file systems
in clusters. What we want to achieve is a SIOS with an
unmodified file system to achieve high portability with a
low cost/performance ratio.

Device-driver level designs provide SIOS not only to
the users, but also to the file system. We choose this
approach, because it solves most of the above problems
and shortcomings. Digital Petal project [17] uses user
level device driver design to enable remote I/O access.

All physically distributed disks can be viewed as a
collection of virtual disks. Each virtual disk can be
accessed as if it is a local disk. Petal developed a
distributed file system, called Frangipani [27]. In Petal, the
actual data transfer is handled at the user level.

We have developed Cooperative Device Drivers
(CDD). These drivers work cooperatively at the kernel
level. Data consistency is maintained by the CDD.
Unmodified file system is used to achieve high portability
and compatibility.

The development of the RAID-x architecture was
inspired by previous projects. The pioneering RAID work
at Berkeley [2][6][8] and at CMU [10], the TickerTAIP
project [3], the Tertiary Disk project [25], chained
declustering [12], and Petal project [17] all have

influenced our design philosophy.

Our RAID-x design appeals especially to serverless
clusters. The major innovation in our design lies in the
cooperation of distributed disks in a serverless cluster
environment. The cooperation is established at the Linux
kernel level, rather in the user space.

Petal and Tertiary Disk achieve the SIOS at the levels
of user level device drivers and xFS file system,
respectively. The Digital Petal virtual disks was built in
1996, the Berkeley Tertiary Disk project was reported in
1998, the Princeton TickerTAIP parallel RAID was
designed at 1993, and our RAID-x built at USC Trojans
project in 1999.

The entries in Table 1 distinguish the four parallel and
distributed RAID architectures in four aspects. All four
I/O subsystems support SIOS, however by quite different
mechanisms. All four parallel and distributed RAIDs
support parallel disk I/O at the block level.

The first distinction among the four distributed RAIDs
lies in their architectures. The Petal virtual disk array uses
chained declustering, Tertiary Disk applies the RAID-5,
TickerTAIP uses parallel disk array controllers within
single RAID server to implement parallel RAID-5, and we
use the new RAID-x architecture.

Our major contributions lie in the creation of the OSM
and CDD mechanisms. The enabling mechanisms for
SIOS are also quite different among the four architectures.
TickerTAIP achieves SIOS by event-driven simulation
among all the worker nodes. We realize the SIOS with
cooperative device driver at the Linux kernel level.

Table 1    Parallel and Distributed RAID Projects at USC, Princeton, Digital and Berkeley

System
Attributes

USC Trojans
RAID-x

Princeton
TickerTAIP [3]

Digital
Petal [17]

Berkeley Tertiary
Disk [26]

RAID
Architecture
Environment

Orthogonal striping
and mirroring over
The RAID-x in a
Linux cluster

RAID-5 with
multiple
controllers in a
single server

Chained
declustering in
an Unix cluster

RAID-5 built with
a Solaris PC cluster

Enabling
Mechanism for
SIOS

Cooperative device
drivers in Linux
kernels

Single server
implements the
SIOS directly

Petal device
drivers at user
level

xFS storage servers
at file system level

Data Consistency
Checking

Locks at device
driver level

Sequencing of
user requests

Supported by
Frangipani
file system

Locks in the xFS
file system

Communication
Mechanism

TCP/IP
Sockets

Not Available UDP/IP
Sockets

RPC at
user level



Even both Petal and RAID-x choose the device driver
approach, their implementations are very different under
UNIX user level and Linux kernel level. Petal does
provide a global name space for logical disks in the
cluster. We want to extend the global name space to each
data block in the cluster.

The four RAID architectures differ in their handling of
the data consistency problem in establishing a distributed
file management system. We implemented the lock
mechanisms within the device drivers. Our performance
results are generated in Linux cluster environment.

For inter-node communications, we use the TCP/IP
sockets. Regardless of their differences, we believe that
hardware and software experiences learned from
distributed RAID projects will be complementary to each
other in many aspects.

For parallel writes, the RAID-x has lower access times
than RAID-1. These claims are based on benchmark
results to be presented in section 5. To sum up, the RAID-
x scheme demonstrates scalable I/O bandwidth with much
reduced latency in a cluster environment.

Using the CDDs, a cluster can be built serverless and
offers remote disk access directly at the kernel level.
Parallel I/O is made possible on any subset of local disks,
because all distributed disks form a SIOS. No heavy cross-
space system calls are needed to perform remote file
accesses.

3.   Orthogonal Striping and Mirroring

Over the years, many techniques have been developed
to overcome the small-write problem [6][22], such as
parity logging [24], floating parity and data [20], parity
striping [7], disk caching disk [13], log-structured disk
subsystem [19] and chained declustering [12]. The concept
of OSM started with our earlier work [16].

In this paper, we present the design details of RAID-x
and prove its effectiveness through experimentation.
Figure 2 shows the architecture of RAID-x (Fig.2b) along
with RAID-1 (Fig.2a) architectures. The original data
blocks are denoted as Di in the unshaded boxes. The
corresponding image blocks are distinguished with primes,
such as Di’ in the shaded boxes. The RAID-x completely
avoids the small write problem.

As shown in Fig.2b, data blocks in RAID-x are striped
across the disks on the top half of the disk array. Low
latency and high bandwidth of RAID-0 are preserved in
RAID-x architecture. The image blocks of other data

blocks in the same stripe are clustered in the same disk
vertically. All image blocks occupy the lower half of the
disk array. On a RAID-x, the images are copied and
updated at the background, thus saving the overhead time.

Consider the top stripe of data blocks D0, D1, D2, and
D3 in Fig.2b. Their image blocks D0’, D1’, and D2’ are
stored in Disk 3, while the image block D3’ in disk 2. The
rule is that no data block and its image should be mapped
in the same disk. Full bandwidth is achievable in parallel
disk I/O across the same stripe.

For large write, the data blocks are written in parallel to
all disks simultaneously. The image blocks are gathered as
a long block written into the same disk with a reduced
latency. In case of the small write of a single block, the
writing is directed to the data block, while the image block
is postponed to write to the disk until all the clustered
image blocks are ready.

(a)  Duplicated striping in RAID-1

(b)  Orthogonal striping and
mirroring in RAID-x

Fig. 2    The mirroring schemes in
RAID-1 and RAID-x
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mirror-mapping-function. The data-mapping-function is a
one-to-one function which maps a logical RAID block
address A to a physical disk address (DiskNo, StripeNo).
Mirror-mapping-function maps the corresponding image
block of a logical block address to a physical disk address.
The A, DiskNo, and StripeNo count from 0.

We define n as the number of disks in the array, k as
the number of blocks per disk, and A as the logical RAID
block address. Table 2 gives out the data-mapping
function and mirror-mapping function for RAID-1 and
RAID-x. The notation mod stands for arithmetic modulo
operation. Table 2 also lists the expected peak
performance of two RAID architectures.

The maximum bandwidth of a disk array reflects the
ideal case of parallel accesses of all useful data blocks. B
stands for the bandwidth per disk. In the best case, a full
bandwidth of nB can be delivered by RAID-x. The RAID-
1 can only deliver half of the full bandwidth. The parallel
read or parallel write time of a file of m blocks depends on
the read or write latencies (R and W) per block, the array
size n, and the file size m.

The entries given in Table 2 are expected peak
performance of parallel disk I/O operations, excluding all
software overhead or network delays. In case of large
reads, mR/n latency is expected to perform m/n reads
simultaneously for RAID-x, while RAID-1 needs to
double the latency. For small read of a single block, both
require R time to finish the read.

For parallel writes, as in RAID-x, the image blocks are
clustered in one disk, written to the disk at the same time.
That is, m/n(n-1) image blocks are written together to each
disk. Therefore, the large write latency is reduced to mW/n
+ m/n(n-1).

For small writes, our RAID-x takes only W time to
write the data block. The writing of the image blocks will

be done later when all the stripe images are clustered at
the same disk. This clustered writing can be done at the
background, overlapping with the regular data writes.

Table 2 also shows the maximum number of disk
failures that each disk array can tolerate. The RAID-x can
tolerate single-disk failures, RAID-1 is more robust than
RAID-x. The experimental results in section 6 will verify
the accuracy of the expected performance.

Figure 3 illustrates an example of the two-dimensional
RAID-x architecture with 3 disks attached to each node.
The maximum number of disks attached to each SCSI
controller is determined by the SCSI controller used. For
Wide/Fast SCSI-II, 15 disks can be connected to one
single SCSI controller.

In order to implement SIOS, addresses of all the data
blocks are linearly continuous among all the member
disks. Only the disks with same position corresponding to
each node belong to one stripe group. All the disks within
stripe group can be accessed in parallel.

Different stripe groups are independent. As all the disks
within one node are connected through SCSI bus, different
stripe group can be accessed in pipeline. The overlap
degree for the different stripe group is depends on the
property of SCSI bus used.

The Trojans cluster is presently being upgraded to 4
disks per node. Using 20 GB SCSI disks, the next RAID-x
array will have 1.28 TB on 64 disks. In the future, the
Trojans cluster will scale to hundreds of PC nodes or
more, using next generation of microprocessors and
Gigabit switched connections.

Using the Fast Ethernet, the aggregate I/O bandwidth is
at most 12.5 MB/s. As reported in section 5, we have
achieved 9.7 MB/s bandwidth for large parallel reads. This
represents 78% efficiency in the cluster utilization.

Table 2  Architectural Characteristics of RAID-1 and RAID-x

Performance Indicators RAID-1 RAID-x

DiskNo. A mod n/2 A mod nData Block
mapping StripeNo. (2A/n) mod k (2 A/n) mod k

DiskNo. n/2 + A mod n/2 (-(A/(n – 1)) mod k/2 – 1) mod nMirror-mapping
function StripeNo. (2A/n) mod k k/2 + (A/(n – 1) n) (n – 1) + A mod (n – 1)

Max. Bandwidth Read/Write nB / 2 n B
Large Read 2mR / n mR / n
Small Read R R
Large Write 2mW / n mW / n + m / n(n-1)

Estimates
of Parallel
Read/Write
Time Small Write W ≈ W
Max. Fault Coverage n/2 disk failures Single disk failure



Figure 3.   Distributed RAID-x architecture, shown with a 4 x 3 configuration

(P: processor, M: memory, CDD: cooperative disk drivers. All shaded blocks
 are mirrored images of the corresponding unshaded data blocks)

With a 128-node cluster and 8 disks per node, the disk
array could be enlarged to have a total capacity exceeding
20 TB, suitable for any large-scale, database or
multimedia applications. With an enlarged array of 128
disks, the cluster must be upgraded to a Gigabit switched
connection. Based on the growing I/O bandwidth, the
Trojans cluster and its RAID-x architecture show a very
promising future in term of scalability and availability.

4.  Cooperative Disk Drivers

The Single I/O space (SIOS) is crucial to building
scalable cluster of computers. A loosely coupled cluster
use distributed disks driven by different hosts

independently. The independent disk drivers handle
distinct I/O address spaces. Without the SIOS, remote disk
I/O must be done by a sequence of time-consuming
system calls through a centralized file server (such as the
use of NFS) across the cluster network.

On the other hand, the CDDs work together to establish
the SIOS across all physically distributed disks. Once the
SIOS is established, all disks are used collectively as a
single global virtual disk shown in Fig.4a.

Each node perceives the illusion that it has several
physical disks attached locally. Figure 4b shows the
internal design of a CDD. Each CDD is essentially made
from three working modules. The storage manager
receives and processes the I/O requests from remote client
modules. The client module redirects local I/O requests to
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remote disk managers.

The consistency module is responsible for maintaining
data consistency among distributed disks. A CDD can be
configured to run as a storage manager or as a client, or
both at the same time. There are three possible states of
each disk: (1) a manager to coordinate use of local disk
storage by remote nodes, (2) a client accessing remote
disks through remote disk managers, and (3) both of the
above functions.

Figure 4  Single I/O space in RAID-x built
at Linux kernel level.

The Petal virtual disk array uses chained declustering,
Tertiary Disk applies the RAID-5, and we use the new
RAID-x architecture. The major innovations in RAID-x
architecture lie in the creation of the orthogonal striping
and mirroring in mapping the data blocks and their images
on the distributed disks.

The OSM scheme outperforms the chained declustering
scheme mainly in parallel write operations. The RAID-x
scheme demonstrates scalable I/O bandwidth with much
reduced latency in a cluster environment. Both Petal and
Tertiary Disk achieve the SIOS at the user level. We
achieved the SIOS at the Linux kernel level. Using the
CDDs, the cluster can be built serverless and offers remote
disk access directly at the kernel level.

Parallel I/O is made possible on any subset of local
disks, because all distributed disks form SIOS. No heavy
cross-space system calls are needed to perform remote file
access. A device masquerading technique is adopted here.
Multiple CDDs run cooperatively to redirect I/O requests
to remote disks.

Data consistency problems arise when multiple cluster
nodes have cached copies of the same set of data blocks.
The xFS approach and the Frangipani approach maintain
the data consistency at the file system level. In our design,
data consistency checking is maintained at the disk driver
level.

Our approach simplifies the design and implementation
of distributed file management services. Data consistency
is maintained by all CDDs with higher speed and
efficiency at the data block level. We introduced a special
lock-group table for developing distributed file
management services.

Each record in this table corresponds to a group of data
blocks that have been granted to a specific CDD client
with write permissions. The write locks in each record are
granted and released atomically. This lock-group table is
replicated among the data consistency modules in the
CDDs. Which guarantee that file management operations
are performed atomically.

5.   Benchmark Performance Results

To test the cooperative operations among the CDDs
residing on individual PCs, we use all 16 PCs as I/O
storage servers. We use the same hardware platform to
compare the relative performance of two disk array
architectures: RAID-1 and RAID-x, all supported by
CDDs. The NFS is used as a baseline for comparison
purposes. Presently, Linux kernel version 2.2.5 supports
the RAID-0, RAID-1, and RAID-5 configurations.

We implemented the RAID-x based on the RAID-0
implementation supported in the Linux kernel. This poses
no difficulty in mapping the data blocks onto the top half
of each disk. The mapping of the image blocks in the
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RAID-x configuration is done by a special address
translation subroutine residing in each CDD. To study the
maximum I/O bandwidth of the disk array, the caches in
the storage servers are bypassed by issuing a special sync
command in the Linux kernel.

For reads or writes, the file size chosen was 10MB.
Each block (stripe unit) in the disk is 4 KB. This means
that a 10-MB file is striped uniformly across all 16 disks
in consecutive stripe groups. We have performed three
benchmark experiments.

The first two experiments measure the parallel I/O
performance in terms of the throughput or the aggregate
I/O bandwidth. The first experiment tests the throughput
of RAID-x, RAID-1 and the NFS against the number of
client requests. The second test checks the bandwidth
against the disk array size for RAID-1 and RAID-x.

The distributed file system is evaluated in the third
experiment using the standard Andrew Benchmark [11]
consisting of a sequence of basic file system testing
programs. There are five phases in the Andrew
benchmark.

The first phase recursively creates subdirectories. The
second phase measures the data transfer capabilities by
copying files. The third phase recursively examines the
status of directories and the associated files. The fourth
phase scans the contents of each file. The final phase
compiles the files and links them together.

5.1.  Bandwidth Results and Analysis

Figure 5 shows the performance of RAID-x, RAID-1
and NFS architectures. The results on parallel read are
given in Fig. 5a. In this test, each client reads a 10MB-
long file from all the disks. Therefore, the test is truly
focused on the parallel I/O capability of the disk array. All
the files are set to be uncached and each client only reads
its own private file. All read operations are performed
simultaneously, with the help of an MPI_Barrier() call.

The NFS throughput is limited at 2.6 MB/s regardless
of the number of clients, due to the fact that sequential I/O
is performed by the NFS on a central server. As the
request number increases, the NFS becoming the
bottleneck shows a declining performance. RAID-x
architectures scale up to a bandwidth of 9.7 MB/s for 16
clients. RAID-1 lags behind with a show of 6.33 MB/s for
16 clients.

Fig. 5b shows the write bandwidths of the RAID-x,
RAID-1 and NFS subsystems. In this test, each client
writes a 10MB-long file to the cache and issues a special
sync() call to flush the data blocks to the disks. All write

operations among the clients are also synchronized in
these experiments.

The NFS scales in performance up to 4 requests. As the
requests exceed 4, the NFS bandwidth drops to a low
2.77MB/s. For writes of a large file, RAID-x achieves the
better scalability with a 9.02MB/s for 16 clients. RAID-1
saturates early to a 5.95MB/s, due to the fact that only half
of the disks are used for data storage.

(a)  Parallel read

(c) Parallel write

Fig. 5   Aggregate I/O bandwidth of RAID-x,
RAID-1 and NFS with increasing clients

5.2. Raw I/O Performance of RAID-x

Raw I/O performance is plotted in Fig.6 against the
disk array size. The results are shown for two RAID
architectures. Again, all caches are bypassed in the
experiments and the number of client processes is fixed at
16. The read ranking differs from the write ranking
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sharply in these plots.

For parallel reads (Fig. 6a), the data size has very little
effects on the relative standings of two RAIDs. It is
important to note that the read bandwidth of RAID-x
approaches 9.7 MB/s, about 78% of 12.5 MB/s, the limit
of a 100 Mbps Fast Ethernet. The difference is attributed
mainly to the CDD protocol and TCP/IP overheads
incurred.

(a)  Parallel read

(b) Parallel write

Fig. 6  Aggregate I/O bandwidth of RAID-x and
RAID-1 with increasing disk numbers

For parallel writes, the large write bandwidths of
RAID-x and RAID-1are 9.02MB/s and 5.72MB/s,
respectively. Table 3 shows the improvement factor of 16
clients over 1 client in using the 16-node Trojans cluster.
Comparing with Berkeley xFS results, our 1-client
bandwidth is quite high due to well-exploited parallelism
in 16-way striping across the disk array.

For this reason, the improvement factor is lower than
that achieved by the xFS system. Again, the RAID-x
demonstrated the highest improvement factor among the

three distributed RAID architectures and the NFS.

5.3. Andrew Benchmark Results

Andrew benchmark tests the performance of a network
file system. In this experiment, the Andrew benchmark
was executed on four I/O subsystems with respect to
increasing number of client requests up to 32. The
performance is indicated by the elapsed time in executing
Andrew benchmark on the target I/O subsystem. Figure 7
shows the benchmark results for RAID-x and NFS.

(a)  NFS performance

(b) RAID-x performance

Fig. 7   Elapsed time to execute the Andrew
benchmark on the Trojans cluster

These tests demonstrate how the underlying storage
structures can affect the performance of the file system
being supported. Each local file system on the I/O nodes
mounts the “virtual” storage device provided by the CDD.
The number of I/O nodes is fixed at 16. Each client only
executes its own private copy of Andrew benchmark. We
use the Linux ext2 local file system to keep the operations
on metadata atomic.
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Table 3  Achievable I/O Bandwidth and Improvement Factor on Trojans Cluster

NFS RAID-xI/O
Operations 1 Client 16 Clients Improve 1 Client 16 Clients Improve
Large Read 2.58 MB/s 2.3 MB/s 0.89 3.36 MB/s 9.65 MB/s 2.87
Large Write 2.11 MB/s 2.77 MB/s 1.31 3.12 MB/s 9.02 MB/s 2.89
Small Write 2.47 MB/s 2.81 MB/s 1.34 3.22 MB/s 9.13 MB/s 2.84

Figure 7a shows the benchmark result of NFS, while
Figures 7b shows the results of RAID-x. It is obvious that
the elapsed time in using NFS increases sharply with the
number of clients, while the RAID-x scheme can sustain
the same workload. For 16 clients, the elapsed times for
RAID-x and NFS are 6.8 and 33 seconds, respectively.

For 32 clients, these numbers increase to 7.41 and 75.5,
respectively. From Fig. 7a, NFS shows a worsening
performance especially in reading the files, scanning
directories, and copying files operations. The RAID-x
architectures, in contrast, do not share this weakness.

6.  Striped and Staggered Checkpointing

The parallel I/O characteristic of distributed RAID-x
architecture can be applied to achieve fast checkpointing
in the cluster system. Striped checkpointing method is
storing checkpointing file over distributed RAID-x
system. To alleviate the network contention, the staggered
writing skill is combined to striped checkpointing.

Simultaneous writing of multiple processes in
coordinated checkpointing may cause a network
contention and I/O bottleneck problem to a central stable
storage. As suggested by Vaidya [28], staggered writing of
the checkpoints taken by different nodes reduces the above
contentions. The time lag between staggered
checkpointers can alleviate the bottleneck problem
associated with the central stable storage.

The basic concept of staggered checkpointing allows
only one process to store the checkpoint at a time. A token
is passed around to determine the timing. When a node
receives the token, the node starts to store the checkpoint.
After finishing checkpointing, the node passes the token to
the next node.

Our work on coordinated checkpointing was inspired
by the previous works by Cao [4] and associates, Chandy
and Lamport [5], and Vaidya [28]. In our scheme, several
nodes within the cluster form a striped group. Only the

nodes within the same striped group checkpoint
simultaneously and each of the groups checkpoints in a
staggered way.

Figure 8 shows the concept of striped staggering in
coordinated checkpointing on the RAID-x disk array. The
drawing shows a 12-disk RAID-x array configured as a 2-
dimensional structure, i.e. a 4 x 3 configuration. Each
stripe corresponds to the degree of parallelism (DOP) in
concurrent accesses of four disks in the 4 x 3 disk array.
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Process11

Stripe0
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C S

C: Checkpointing overhead

S: Synchronization overhead

Fig. 8.  Striped checkpointing with staggering
on a distributed RAID-x

Successive stripes are accessed in a staggered manner
from different stripes on successive 4-disk groups, as
demonstrated in Fig.3. Staggering implies pipelined
accesses of the disk array. We first proposed the idea of
striped checkpointing in [23]. There exists trade-off
between stripe parallelism and staggering depth.

For example, the layout in Fig.8 can be reconfigured



from 4 x 3 to a 6 x 2 configuration, if needed. Higher DOP
leads to higher aggregate disk bandwidth. Higher
staggering degree can cope better the network contention
problem. The staggered writing way can reduce the
average checkpointing overhead. However, in the case of
blocking algorithm, the staggered writing method also
introduces the synchronization time.

Although blocking algorithm is the simpler than non-
blocking algorithm to achieve coordinated checkpointing
in parallel processing, it suffers from large amount of
overhead. Every node should be blocked during the
checkpointing procedure. The basic idea is to shut down
all processes temporary to define consistent state. After all
the processes are blocked and all the messages are clearly
delivered, the global checkpoints are stored. In the
staggered writing case, the blocked time increases
according to the number of node.

7.   Overhead and Reliability Analysis

Figure 9 shows the advantage of striped staggering on
distributed disk array, as compared with staggering in
Vaidya scheme [28] on a centralized disk and the
conventional approach using the NFS server. These
preliminary results were measured on the small prototype
Trojans cluster.

Our striped checkpointing scheme has the lowest
overhead, especially when the checkpoint files becomes
very large. Through continued experiments on the
enlarged 64-disk RAID-x cluster, we will reveal more
experimental results on the checkpointing overhead and
rollback recovery latency.
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writing on distributed RAIDs

Table 4 summarizes three checkpointing schemes we
have compared in this paper. Their advantages and
shortcomings are identified. Suitable applications for each
checkpointing scheme are also elaborated.

Using the OSM, each striped checkpointing file has its
mirrored image in its local disk. For each node, transit
failure can be recovered from its mirrored image in local
disk. Permanent failure of a disk can be recovered from
the striped checkpointing among the distributed disks.

The I/O performance in a degraded mode of OSM is
the same as the RAID-0 performance in a normal mode.
The striped checkpointing can be read in parallel from
RAID-x. The checkpointing recovery latency can be
shortened greatly.

Table 4  Summary of Three Coordinated Checkpointing Schemes

Checkpointing Scheme Advantages Shortcomings Suitable applications

Simultaneous writing to
a central storage
(The NFS scheme)

Simple,
no inconsistent state

Has network and I/O
contentions, NFS is single
point of failure

Small size of checkpoint,
small number of nodes,
low I/O operation

Staggered writing to a
central storage
(Vaidya scheme)

Eliminate the network and I/O
contention

Network bandwidth is
wasted, NFS is a single
point of failure

Small size of checkpointers,
small number of nodes,
low I/O operations

Striped staggering
checkpointing on any
distributed RAID
(Our scheme)

Eliminate network and I/O
contentions, low checkpoint
overhead, fully utilize network
bandwidth, tolerate multiple
failures among stripe groups

Can not tolerate more
node failures within
each stripe group

Large size of checkpointers,
large number of nodes,
low communication,
I/O intensive applications



According to the mirror mapping of the OSM, the
proposed RAID-x architecture can recover from any single
disk failure in each stripe group. The total number of disk
failure depends on the number of stripe groups to be
accessed. For the 4 x 3 configuration in Fig.3, three disk
failures in three stripe groups can be tolerated. An indepth
analysis of the reliability of the proposed checkpointing
RAID-x architecture is given in [23].

8.  Conclusions

The development of the new RAID-x architecture was
inspired by several research projects. The xFS and the
Tertiary Disk projects at Berkeley [26], and the Petal
project at Compaq Digital [17], all have influenced our
design philosophy. The main difference between our
approach and these projects is that we use the orthogonal
striping and mirroring (OSM) to preserve both parallel
disk accesses and staggered (pipelined) checkpointing of
successive stripes.

We built data consistency checking in the device driver
level. The CDDs work cooperatively to perform data
transferring and consistency checking. With the support of
CDDs, the design of a distributed file system can be
focused on the concurrent file access policies and the
related performance issues. In this case, the complexity of
the distributed file system can be greatly reduced Our
SIOS disk array separates the I/O subsystem into a
distributed file system and a set of distributed CDDs.

All SSI services are provided by the CDDs while the
file system modification is reduced to a minimum.
Furthermore, some desired SSI services for cluster
computing can be built on top of the SIOS. In this aspect,
the SIOS is a very powerful middleware infrastructure to
achieve single-system image. Benchmark performance
results show that our distributed RAID can achieve
scalability, performance, and availability in cluster
computing.

The RAID-x outperforms the RAID-1 in the Linux
cluster environment. For parallel reads with 16 active
clients, the RAID-x achieved 9.7 MB/s throughput, 1.5
and 3.7 times higher than using RAID-1 and NFS,
respectively. Running the Andrew benchmark, RAID-x
results in a 17% cut in elapsed time, compared with that
experienced on a RAID-1. The achieved throughput
corresponds to 78% of the peak bandwidth deliverable by
the Fast Ethernet. Scalable I/O bandwidth makes the
RAID-x especially appealing to I/O-centric cluster
applications.

The OSM mechanisms can be built not only on Linux
PC clusters, but also on any Unix workstation clusters.
These architectural features differ from the user-level
designs in Berkeley Tertiary Disk and Digital Petal virtual
disks. The new mechanisms support not only single I/O
space, but also distributed shared memory, checkpointing,
and distributed file management at the kernel level without
using cross-space system calls.

The prototype RAID-x has the following open issues
yet to be solved in future R/D efforts. These extended
works are among the tasks planned in the next phase of
our Trojans cluster project.

(1). We expect even higher performance as we continue
improving the CDD protocol. The current hand shaking
protocol could be improved with prefetching techniques.
The TCP/IP used in our prototype is known for its high
overhead. Plan is underway to port the whole cluster
system with a low-latency protocol, expecting to further
reduce the communication overhead.

(2). We plan to design a distributed file system with I/O
load balancing capabilities along with an enlarged
distributed disk array onto our Trojans cluster in the
future. In addition to consider the RAID-1, RAID-5, and
RAID-x configurations, we will also consider other
configurations, such as RAID-10 and chained
declustering.

(3). Our PC nodes in the Trojans cluster act as clients
as well as storage servers at the same time. These dual
roles affect the performance of the I/O nodes. We believe
that the I/O performance can be further improved with an
enlarged cluster size.

(4). We plan to develop a suite of middleware with
striped staggering checkpointing to support process
migration. Based on future Trojans cluster configuration,
more detailed analysis of the DOP and depth of staggering
will be conducted.

(5). New message logging algorithms for non-blocking
striped checkpointing will be developed to reduce
checkpointing overhead furthermore. We also plan to
design an application dependent checkpointing scheme to
elaborate the efficiency of striped checkpointing.

Lots of interesting research work can be generated out
of a very large disk array in real-life applications. Potential
applications are encouraged in biological sequence
analysis, collaborative engineering design, clusters or
grids for E-commerce, specialized digital libraries, and
distributed multimedia processing.
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