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Abstract

We propose a generic pigment model suitable for digital painting in a wide range of genres including traditional

Chinese painting and water-based painting. The model embodies a simulation of the pigment-water solution and

its interaction with the brush and the paper at the level of pigment particles; such a level of detail is needed for

achieving highly intricate effects by the artist. The simulation covers pigment diffusion and sorption processes at

the paper surface, and aspects of pigment particle deposition on the paper. We follow rules and formulations from

quantitative studies of adsorption and diffusion processes in surface chemistry and the textile industry. The result

is a pigment model that spans a continuum from the very wet to the very dry brush stroke effects. We also propose

a new pigment mixing method based on machine learning techniques to emulate pigment mixing in real life as

well as to support the creation of new artificial pigments. To experiment with the proposed model, we embedded

the model in a sophisticated digital brush system. The combined system exhibits interactive speed on a modest PC

platform. http://www.cs.hku.hk/∼songhua/pigment provides supplementary materials for this paper.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Graphics Utilities]: Paint systems; I.3.5 [Com-

putational Geometry and Object Modeling]: Physically based modeling

1. Introduction

A pigment model is a vitally important component of a dig-

ital painting system. Traditional pigment models are mostly

built on fluid dynamics or its variations, which assume that

pigment behavior is largely due to the autonomous flow of

the pigment-water solution (PWS). One can simulate such a

model based on the self-motion of water and pigment parti-

cles. Two representative pieces of work in this category are

the watercolor model in [CAS∗97] and the ink dispersion

model in [CT05]. The former is based on the shallow wa-

ter model, and the latter on the modified lattice Boltzmann

equation. Both consider the PWS’s flow being subjected to

external forces, resulting in very high-quality “wet brush”

effects. For highly viscous pigment solutions, the model pro-

posed in [BWL04], which traces pigment advection through

3D incompressible Stokes equations, can produce highly im-

pressive web brush effects. We find however that these exis-

† Contact him at songhua.xu AT yale.edu.

tent models and other similar ones have only limited ability

to emulate the “dry brush stroke” which is extremely impor-

tant in both Western and Oriental painting. In this paper we

propose a new physically based pigment model which tries

to capture faithfully the behavior of the PWS over the con-

tinuum of a very wet to a very dry state of a brush.

1.1. Main ideas

Our new pigment behavior model can support both dry and

wet painting effects or anything in between. One should note

that pigment behavior consists of much more than just the

spontaneous flow of the solution. Our physically based sim-

ulation deals also with the adsorption and desorption pro-

cesses of the PWS as well as its diffusion process against the

leaky brush hair and the paper fibers†. This deviates from

† For simplicity, we do not differentiate between adsorption and

desorption since one is the reverse process of the other, and refer to

either of them as sorption process.
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proc MainLoop():

for each time step do:

1. Transfer PWS between contacting brush and paper

regions or palette region (Sec. 3)

2. Diffuse PWS on the paper surface (Sec. 4)

3. Simulate water evaporation (Sec. 5)

4. Absorb PWS into paper fibers (Sec. 6)

5. Render current painting simulation result (Sec. 7)

end for

end proc

Figure 1: Steps of pigment behavior simulation.

traditional flow-based approaches [CAS∗97, CT04, CT05]

which focus mainly on the PWS’s advection process. Our

design makes use of relevant results in surface chemistry en-

gineering [AG97, McC01] and the textile and petrochemi-

cal industries [McG74, Rut84]. According to surface chem-

istry, unlike liquids, solid phase solutions cannot easily ex-

pand their surface area to reduce free energy on the surface.

Therefore, due to the high surface tension, solid phase ma-

terials have a strong adsorption or desorption tendency with

any contacting external objects. So when the PWS touches

the paper surface, adsorption takes place, and for any flow

that does happen, the adsorption process is more significant

than the flowing/advection process. The variation in adsorp-

tion ability across different areas of the paper caused by the

non-uniform distribution of the paper fibers is an important

contributor to the character of the resultant painting. In a nut-

shell, our approach is sorption and diffusion based, which of-

fers a closer resemblance to the true physical state of a real

brush than traditional flow based models over the continuum

of wet to dry brush strokes.

To achieve greater realism, we carefully consider the cou-

pling force and mutual influence between different materials

both within the PWS and between the PWS and the paper

fibers at various stages of the simulation.

To achieve fast execution, we try to take advantage of

known analytic solutions applicable to our formulation. We

are thus able to avoid much discrete numerical simulation.

Unlike many others who model the paper as a number of lay-

ers, e.g., [BWL04], we classify all the particles in the PWS

as being in either the mobile state or the immobile state—

that is, only two layers (denoted by superscripts mo and im

respectively). Thus, depending on the relative concentrations

of pigment particles in the fixed and mobile states respec-

tively, a continuum from very wet to very dry layers can be

concisely represented, as opposed to a fixed number of lay-

ers, during algorithm design time.

1.2. Pigment model and the brush

Going hand in hand with the pigment behavior simulation

is the brush model. Strassmann [Str86] pioneered the re-

search on e-brush. A number of follow-up models were later

proposed—e.g., Wong and Ip’s model for Chinese callig-

raphy writing [WI00], Baxter et al.’s model for oil paint-

ing [BSLM01], and Xu et al.’s model [XLTP03] and Chu

and Tai’s model [CT04] for Oriental painting. Despite these

efforts, the existent work offers only a loose coupling be-

tween the brush model and the pigment model. In both

[BSLM01, Bax04] and [CT04]’s pigment models, the brush

is used as a tool to deposit pigments onto the paper. Other

models are also quite simplistic on this particular issue. We

believe that the interaction between the pigment model and

the brush is highly intricate, and the intricacies should be

carefully considered in order to meet the demand for high

expressiveness.

We adopt the brush model in [XLTP03] which is physi-

cally based. In that model, the geometry representation for

a brush tip bundle is created through the general sweeping

operation in CAD by sweeping a variable ellipse along the

trajectory of the brush. The brush dynamics are simulated

through a two-staged process. In the first stage, the skeleton

of the brush tip bundle is deformed according to both the ex-

ternal forces exerted onto it and its collision with the canvas;

in the second stage, the brush surface deforms following the

deformation of the skeleton. The split of the brush head is

supported at the geometry model level and is caused by an

estimated internal tension force distribution inside the brush

tip bundle. This pressure term is very useful when integrat-

ing the brush model with our pigment model as our proposed

pigment behavior simulation needs to carefully consider the

pressure at the contact point between the brush and the pa-

per. Furthermore, having explicitly the geometry of the split

brush bundle (rather than some image-based shortcut) makes

physically-based simulation of the pigment behaviors on a

split brush head possible and not too tricky to implement.

1.3. Organization of the paper

Sec. 2 discusses related work. Sec. 3 explains the PWS trans-

fer between the brush and the paper surface. Sec. 4 discusses

PWS diffusion on the paper surface. Sec. 5 explains how

evaporation is handled. Sec. 6 covers how the PWS is de-

posited on the paper fibers. The rendering process is pre-

sented in Sec. 7 which also presents a novel method for pig-

ment mixing. We present the experimental results in Sec. 8.

Sec. 9 concludes the paper.

2. Previous Work

Pham [Pha91] was the first to generate brush strokes hav-

ing different shading, scratchiness and spreading effects; it

was done via a variable offset approximation of B-splines.

Cockshott et al. [CPE92] suggested a “wet and sticky” model

for simulating textured shiny paint using bump mapping

and illumination models. Both methods are not physically

based—they produce various paintbrush effects without nec-

essarily following the laws of physics. On the other end,
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Guo and Kunii [GK91] proposed a diffuse paint behavior

model based on analysis of the paper structure which pro-

duces singularities in intensity for the diffuse ink paint-

ing process. Since then, appearance centric and physically

based methods represent two parallel threads in the devel-

opment of paint brush effects by the computer. Kunii et

al. [KNH95, KNV01] suggested a phenomenological model

for simulating the “initial zone–black border–gray zone” dis-

tribution of intensities in diffuse ink painting. Their simu-

lation is based on highly simplified diffusion equations de-

rived from observations of the real painting process. Such a

simplification was needed because of the limited computing

power available then. As a result, only blurry images can be

generated, which lack any flow pattern. What is interesting is

that their method falls between purely physically based and

purely appearance centric methods, which is still a useful

reference today when designing efficient and quality simu-

lation models.

Benefitting from the abundance of computing power, re-

cent research favored more physically based simulation fol-

lowing first-principle physics laws. On this track, Small

[Sma91] pioneered computer simulation of watercolor paint-

ing. Curtis et al. [CAS∗97] then significantly advanced

the watercolor simulation technique using a shallow-water

based model; their method relies on solving numerically

shallow-water equations, which is too slow for interactive

painting even with powerful PC. Beside watercolor, orien-

tal ink based painting simulation also attracted much re-

search endeavors. Lee’s [Lee01] was the first paper where

an ink model was used together with a brush model [Lee97,

Lee99] to mimic realistic black ink diffusion effects. Their

extended algorithm can produce very impressive effects

[GK03] and can also be used for calligraphy [Guo95]. Zhang

et al. [ZST∗99] proposed a simple cellular automaton-based

model for capturing black ink painting behavior in Sui-

bokuga painting, which they successfully applied to render

painter-style 3D trees. Yu et al. [YLLC03] expanded this ap-

proach to support more Oriental painting styles using a lo-

cal equilibrium model. Lin and Shih [LS04] simulated Chi-

nese color ink painting based on phenomenological rules for

the ink diffusion process which they obtained by observa-

tion. Their painting can be carried out on any simple de-

vice such as a tablet PC. Other than watercolor and Oriental

ink painting, oil painting simulation is another active field.

A representative work is that by Baxter et al. which pro-

duced impasto effects for oil or acrylic painting [BWL04].

Other types of painting being were simulated include Dave

et al.’s [RMN03] who studied the problem of wax crayon

painting and obtained some very interesting results. But de-

spite all that has been done in the field, support for the dry

brush stroke effect yet remains very limited.

Along another line, Laerhoven et al. proposed a dis-

tributed paper model where the paper is divided into a grid

of subpapers for concurrent evaluation through remote par-

allel processes [LLR04, LR05]. In their model, a procedural

texture creation technique based on the cellular texture ba-

sis function suggested in [Wor96] was employed to enhance

the realism of painting. They also introduced textured tissues

to remove pigments and water as a novel interactive device

for the artist [BLR06]. In general, we feel applying paral-

lel computing techniques in first principle physically-based

simulation for producing realistic paint effects is a promis-

ing area for more future work. On the other aspect, it is also

interesting to notice that Xu et al. proposed a single stroke

appearance model for capturing stroke texture in Chinese

paintings using a parametric approach [XXK∗06].

Comparison with Chu and Tai’s work [CT04, CT05]

Chu and Tai proposed an ink dispersion model [CT05]

for painting on absorbent paper based on modified Lattice

Boltzmann Equations (LBE). The model can produce real-

istic wet Oriental paintings. LBE however is not well suited

for simulating dry brush effects or brush effects arising from

a rich variation of pigments and water concentration, due

to the theoretical limit in simulation capability of LBE. To

support dry brush painting, they had to use an image based

method [CT04] which might not produce the most accurate

results in response to the user’s inputs. Finally, because there

are separate mechanisms for dry brush strokes and wet brush

strokes, frequent switching between the two models is nec-

essary during painting, and generation of some in-between

effects becomes difficult.

3. Pigment Sorption between the Brush and the Paper

Surface

When the brush touches the paper, transfer of the PWS takes

place, the direction of which depends on the pigment con-

centration on either side, i.e., the brush surface in contact and

the paper. This is a sorption process between the two me-

dia. We choose the Dubinin-Radushkevich isotherm equa-

tion [Mis69] to model the process because it considers the

influence of pressure:

∆ρ = ρe
−(

κGT

βE0
ln

Pmax
P

)2

, (1)

where ρ is the pigment concentration in the source media;

∆ρ is the pigment concentration to be sorbed in the process;

κG is the gas constant, i.e., 8.314 J/(mol ·K); T is the tem-

perature, which is set to 300K, a typical room temperature; β
is the affinity coefficient characterizing the polarizability of

the adsorbate; E0 is the adsorption characteristic energy of

the adsorbent, which is mainly affected by the pore density

in the adsorbent and assumed to be proportional to the paper

fiber density η; Pmax is a pressure response coefficient for the

pigment; and P is the local contacting pressure between the

brush and the paper. ln Pmax

P is a term reflecting the impact

of brush pressure on the PWS sorption process. Note that

the equation describes an equilibrium state. Because such a

sorption process usually happens in a flash, for efficiency,

we adopt this equation but applied to it a simple scaling (to
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be explained at the end of this section), rather than to work

out a series of intermediate results over some fine time steps.

Put (1) into the context of our simulation, we have:





∆ρ
mo,t
x,y (i) = γt

x,y(i)ρ
bru,t
x,y (i)e

−(
κGT

β(i)E0
ln

Pmax
Pt

x,y
)2

if ρ
bru,t
x,y (i) > ρ

mo,t
x,y (i);

∆ρ
bru,t
x,y (i) = γt

x,y(i)ρ
mo,t
x,y (i)e

−(
κGT

β(i)E0
ln

Pmax
Pt

x,y
)2

otherwise.

(2)

Here Pt
x,y is the contacting pressure between the brush and

the paper surface at the location of the paper site (x,y) at time

t; ρ
mo,t
x,y (i) is the concentration of the i-th pigment which is in

mobile state at site (x,y) of the paper at time t and ρ
bru,t
x,y (i)

is the i-th pigment concentration on the brush surface which

contacts the paper site (x,y) at time t. γt
x,y(i) is a randomized

term which is defined as:





Prob[γt
x,y(i) = 1]

= min(1,κbru|ρ
bru,t
x,y (i)−ρ

mo,t
x,y (i)|ηx,y)

Prob[γt
x,y(i) = 0]

= 1−min(1,κbru|ρ
bru,t
x,y (i)−ρ

mo,t
x,y (i)|ηx,y)

, (3)

in which ηx,y is the local paper fiber density and κbru is a

scaling coefficient to produce a suitable match between the

magnitude of |ρbru,t
x,y (i)− ρ

mo,t
x,y (i)| and ηx,y. The reason for

introducing a randomization term in the above equation is

that such an equation is used to describe the macro behavior

of the sorption process; however, here we are doing per pixel

location particle behavior simulation in a micro scale; thus

adding some random deviation would make the simulation

resemble more the real situation.

We also employ the following equation suggested in

[Tie94] for the conservation of the pigment mass in the sorp-

tion process:

|vbru,t
x,y |∆ρbru,t

x,y (i)+ηx,y∆ρmo,t
x,y (i) = 0, (4)

where v
bru,t
x,y denotes the local velocity of the brush tip when

in contact with the paper site (x,y) at time t; this is an in-

put from the hosting e-brush system for the pigment model.

Recall ηx,y is the paper fiber density at the site (x,y).

To prevent oscillation during the simulated sorption pro-

cess, we derive the limit on the amount of pigment transfer-

able in the process:

|∆ρbru,t
x,y (i)|+ |∆ρmo,t

x,y (i)| = |ρbru,t
x,y (i)−ρmo,t

x,y (i)|. (5)

Without loss of generality, we assume ρ
bru,t
x,y (i) > ρ

mo,t
x,y (i).

Solving the pair of equations (4) and (5) gives the up-

per bound for ∆ρ
mo,t
x,y (i):

|ρbru,t
x,y (i)−ρmo,t

x,y (i)|
ηx,y/|vt

x,y|+1
. Incorporating this

bound, we can modify (2) to be

∆̃ρmo,t
x,y (i) = min(∆ρmo,t

x,y (i),
|ρbru,t

x,y (i)−ρ
mo,t
x,y (i)|

ηx,y/|vt
x,y|+1

). (6)

We also consider the mutual influence between multiple pig-

ments in the sorption process, i.e.:

˜̃
∆ρ

mo,t
x,y (i)κmutual ∆̃ρ

mo,t
x,y (i)+(1−κmutual)

∑
ξ
j=1, j 6=i ∆̃ρmo,t

x,y ( j)

ξ−1
.(7)

Here κmutual is a correlation coefficient depicting the mu-

tual influence between the sorptions of different pigments

in the PWS, and ξ is the number of pigment species, in-

cluding water and glue. Once
˜̃
∆ρ

mo,t
x,y (i) is known, we can

also update ρ
bru,t+∆t
x,y (i) with the relationship revealed by (4),

i.e.: ρ
bru,t+∆t
x,y (i) = ρ

bru,t
x,y (i)−

ηx,y

|vt
x,y|

˜̃
∆ρ

mo,t
x,y (i). For the case of

ρ
bru,t
x,y (i) < ρ

mo,t
x,y (i), a similar treatment is applied. The only

difference is that we derive ∆̃ρ
bru,t
x,y (i),

˜̃
∆ρ

bru,t
x,y (i) instead of

∆̃ρ
mo,t
x,y (i),

˜̃
∆ρ

mo,t
x,y (i) through a variant of (6) and (7).

Finally, we apply a simplifying treatment to scale the

amount of sorbed concentration
˜̃
∆ρ to account for the sorp-

tion time. We model the sorption speed, vsorption(t), as an

exponentially decreasing variable, which is true of most nat-

ural sorption processes; i.e., vsorption(t) = κve−t where κv

is a sorption speed parameter. We also denote the period of

time needed to reach the equilibrium state as χ. That is, it is

assumed
χ

t=0 vsorption(t) dt =
˜̃
∆ρ, from which we can get the

relationship
˜̃̃
∆ρ(t) = min( 1−e−t

1−e−χ ,1)
˜̃
∆ρ. Since our simulation

time step is ∆t, substituting the corresponding variables into

the equation, we have ρ
mo,t+∆t
x,y = ρ

mo,t
x,y +

˜̃̃
∆ρ

mo,t
x,y (i) where

˜̃̃
∆ρ

mo,t
x,y (i) = min( 1−e−∆t

1−e−χ ,1)
˜̃
∆ρ

mo,t
x,y (i).

4. Pigment Diffusion on the Paper Surface

To simulate pigment behavior on the surface of a porous pa-

per, we assume a diffusion process. We choose the following

advection diffusion equation [SW04] since it considers pig-

ment advection in the midst of diffusion, and is thus capable

of supporting both dry and wet brushing.

∂ρ

∂t
= κd∇

2ρ−v ·∇ρ, (8)

where ρ is the pigment concentration in the adsorbate so-

lution, κd is the diffusion coefficient, and v is the external

advection field in which the diffusion takes place.

We also notice in the diffusion process, multiple pigments

compete with one another, which is the so-called “cross

diffusion phenomenon” in surface chemistry. The Lotla-

Volterra competition model [YLP05] is a standard mathe-

matical treatment for the cross diffusion process with two

participating diffusing substances in a 1D domain. In our

problem, however, the paper is modeled as a 2D plane. We

extend their model to the 2D domain with multiple compet-
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ing pigments:

∂ρ(i)

∂t
= κs,i∇

2ρ(i)+
ξ

∑
j 6=i

κc,i, j∇
2ρ( j) (i = 0, · · · ,n),

(9)

where ρ(i) is the concentration of the i-th pigment, κs,i ≥ 0

is the self-diffusivity of the i-th pigment, κc,i, j is the cross-

diffusivities between the i-th and the j-th pigment species,

and n is the number of pigment species participating in the

process. In our design, the 0-th pigment is water and the 1-st

pigment is glue.

In our context, ρ actually refers to ρ
mo,t
x,y (i). Combining

the advection diffusion equation (8) with the above extended

cross-diffusion equation (9) gives the final form of the equa-

tion to be used in our simulation:

∂ρmo,t
x,y (i)

∂t
= κd,i,x,y∇

2ρ
mo,t
x,y (i)+∑

ξ
j 6=i

κc,i, j∇
2ρ

mo,t
x,y ( j)

−vt
x,y ·∇ρ

mo,t
x,y (i) (i = 0, · · · ,n)

, (10)

where κd,i,x,y is the diffusion coefficients at paper position

(x,y) for the i-th pigment, vt
x,y denotes the velocity field im-

posed by the external conditions, which in here is estimated

to be half of the velocity of brush movement, as suggested

by [BWL04]. Notice that, since κs,i and κd,i,x,y are acting on

the term ∇2ρ in (8) and (9) respectively, for simplicity, we

absorb κs,i into κd,i,x,y during the above combined operation.

Once
∂ρmo,t

x,y (i)

∂t
is known, ρ

mo,t+∆t
x,y (i) can be trivially updated

as ρ
mo,t+∆t
x,y (i) = ρ

mo,t
x,y (i)+

∂ρmo,t
x,y (i)

∂t
∆t.

5. Evaporation

We consider evaporation at the brush tip and on the paper

surface. For simplicity and efficiency concerns, we only deal

with the water (the 0-th pigment) evaporation process.

5.1. At the brush tip bundle

We adopt the diffusion based evaporation equation sug-

gested in [Cra75] which considers both evaporation and the

propagation of the evaporation results to the surroundings:

−κe

∂ρ
bru,t
r,θ,z (0)

∂r
= εbru

(
ρequi(0)−ρ

bru,t
r,θ,z (0)

)
, (11)

where ρequi(0) is the current water concentration in the at-

mosphere, i.e., the equilibrium vapor pressure; and ρ
bru,t
r,θ,z (0)

is the actual water concentration; κe is an evaporation co-

efficient; εbru is a user adjustable scaling constant. Fortu-

nately, [New31] gave the analytic solution for (11), which

is:

ρbru,t+∆t
r,θ,z (0)−ρbru,t

r,θ,z (0)

ρequi(0)−ρbru,t
r,θ,z (0)

= 1−∑
∞
n=1

2LJ0(rβn/εbru)
(β2

n+L2)J0(βn)
e−β2

nκet/ε2
bru ,

(12)

where βn’s are the roots of βJ1(β)− LJ0(β) = 0 and L =
εbru/κe. Again, for speed, we store the pre-computed βn’s

for a range of equations in the above form in a table.

5.2. On the paper surface

We employ a slightly different diffusion based evaporation

equation (13) to handle evaporation on the paper surface

since pigment concentrations at different depths of the pa-

per differ insignificantly; we ignore these differences in our

simulation.

−κe
∂ρ

mo,t
x,y (0)

∂t
= εpaper

(
ρequi(0)−ρmo,t

x,y (0)
)
, (13)

where εpaper is a user adjustable scaling constant. Note that

as mentioned earlier, unlike in [BWL04] where the paper

is modelled as a number of layers, we only classify all the

particles in the PWS as either in a mobile state or an immo-

bile state. According to this equation, at the end of each time

step, we update ρ
mo,t
x,y (0) numerically.

6. Pigment Deposition on the Paper Fibers

During the process of pigment diffusion, pigment parti-

cles whose velocity is relatively low tend to be captured

by and thus fixed to those paper fibers having a high sur-

face free energy [Mas96]. In chemical engineering, this is

the phenomenon of a typical adsorption process [Rut84,

Suz90]. Similar to the process described by the Dubinin-

Radushkevich isotherm equation (1), the intermediate ad-

sorption process progresses towards the equilibrium state

rather rapidly [Tie94]. Thus, we model the above rapid

adsorption process via the Langmuir isotherm equation

[Lan08], an equation to describe the equilibrium state of a

system:

∆ρ(i) =
κl,i ρ(i)

1+∑
ξ
j=1 κl, j ρ( j)

, (14)

where ξ is the number of participating species of adsorbates;

ρ(i) and ∆ρ(i) are the concentration of the i-th adsorbate in

the solution phase and that of the adsorbed adsorbent phase

respectively; κl,i is the Langmuir constant for the i-th ad-

sorbate. As pointed out in [Yan03], κl,i can be estimated

as: κl,i ,
κbehavior,iκ

paper

behavior

2πρ(i)T
√

ηx,y
eκt/T where κt is a thermodynamics

coefficient, ηx,y is the local density of the paper fiber, and

κ
paper
behavior

, κbehavior,i are the adsorption behavior coefficients

of the paper and the i-th pigment respectively. κ
paper
behavior

is de-

termined by the smoothness of the paper surface, the size and

distribution of the micro-scale pores formed by neighbor-

ing paper fibers; κbehavior,i is affected by the adsorption abil-

ity of the i-th pigment, e.g., its material polarity. Since the

factor 1
2πT eκt/T remains constant, we absorb the term into

κ
paper
behavior

, giving the simplified form of κl,i ,
κbehavior,iκ

paper

behavior

ρ(i)
√

ηx,y
.

Because the deposition process is caused by the random

walk of diffusing substance particles [Cra75,Rut84], we fur-

ther modulate κl,i with a random walk coefficient κranwk,

which is a random number from a user adjustable random

distribution.
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Similar to the treatment where we employ the Dubinin-

Radushkevich equation in Sec. 3, we perform the same sim-

plifying scaling conversion to derive the intermediate results

of the sorption process. Substituting the corresponding vari-

ables in our context into (14), we have the final form of the

equation for our simulation:

∆ρ
im,t
x,y (i) =

min( 1−e∆t

1−e−χ ,1)

κranwkκbehavior,iκ
paper
behavior

ρ
im,t
x,y (i)

√
ηx,y

ρmo,t
x,y (i)

1+∑
ξ
j=1

( κranwkκbehavior, jκ
paper
behavior

ρ
im,t
x,y ( j)

√
ηx,y

ρmo,t
x,y ( j)

)
, (15)

where ρ
im,t
x,y (i) is the concentration of the portion of the i-th

pigment in an immobile state at paper site (x,y) at time t;

and χ is the time span to arrive at the equilibrium state.

To ensure the conservation of pigment mass during the

deposition process, we additionally employ a mass transfer

conservation formula [Tie94]:

|vt
x,y|∆ρmo,t

x,y (i)+ηx,y∆ρim,t
x,y (i) = 0, (16)

according to which we can update ρ
mo,t+∆t
x,y (i) as

ρ
mo,t+∆t
x,y (i) = ρ

mo,t
x,y (i)−

ηx,y

|vt
x,y|

∆ρ
im,t
x,y (i).

7. Rendering the Simulation Results

The result of the simulation is a collection of pigment con-

centrations: ρ
im,t
x,y (i) and ρ

mo,t
x,y (i) (i = 1, · · · ,ξ) for each pa-

per site (x,y). To render the painting, we need to solve two

problems: 1) To derive the overall appearance of the mo-

bile layer and that of the fixture (immobile) layer, each con-

taining a number of pigment constituents; 2) to superimpose

these two layers on top of the background paper layer. To ad-

dress the first problem and to achieve high fidelity, we pro-

pose a new machine learning approach for pigment mixing,

which will be detailed shortly; the second problem is solved

via the Kubelka-Munk model (KM model) [Kub48] with in-

spiration from [DH96, CAS∗97].

Among the popular models for pigment mixing, such as

average mixing, additive or subtractive mixing, and the KM

model, the KM model is the most favored one as suggested

by Haase and Meyer [HM92]. However, even with the KM

model, there are well known limitations. Although there

are better models such as the three channel model [PE73],

simulation of pigment mixing behaviors still fails to agree

completely with the real behaviors. Baxter et al. reported

in [BWL04] that using 101 samples, each corresponding to

a wavelength, pigment mixing through the KM model could

still markedly deviate from from reality. We propose a novel

kernel method assisted neural network approach for pigment

mixing.

7.1. Acquisition of training samples

In the preprocessing stage, we collect a number of pig-

ment mixing samples for training our pigment mixing pre-

diction network. We rely on both physically-based mea-

surement and interactive user input to collect training sam-

ples. In the physical measurement method, we use the

desktop reflective spectrophotometer X-RiteColorr Digital

Swatchbookr [XRi06] to measure the reflectance of pig-

ments. We measure the reflectance of both pure pigments be-

fore mixing and that of the resultant pigment mixture for the

training samples. For each measurement, we put the sample

against a background material whose reflectance is known.

We measure the overall reflectance of the two superimposing

layers. For robustness, we carry out five measurements for

five different background materials and use a least squared

approach to determine the optimal R and T . According to the

KM model, once R is known, we can compute K
S as

(1−R)2

2R

[Kub48]. Inspired by [DH96], we then assume a value for S,

namely 1, so that K is also known.

7.2. Kernel functions

Kernel methods are popular in machine learning because

they can increase the learnability of many models [CS02]. To

enhance the learning ability of our pigment mixing predic-

tion network, we employ three kernel functions: ψ1, which

is based on the KM model, and ψ2 and ψ3, which are based

on average mixing.

With the KM model and the K and S coefficients known

for each pigment constituent, the overall pigment mixture’s

coefficients, Kmix and Smix, are computed as the weighted av-

erage of each pigment component’s K and S coefficients us-

ing the pigment’s relative concentration as the weight. With

Kmix and Smix, the overall reflectance Rmix and transmittance

Tmix of the layer can be computed [Kub48, DH96, CAS∗97].

Rmix and Tmix will be used as the input to our neural network

and also for superimposing the layers.

For the kernel function of average mixing, the overall

appearance of a pigment mixture can be simply derived

through weighted average.We also conduct interpolation in

the HSV color space since it captures some non-linear re-

lationship between colors and could give us a very differ-

ent prediction on pigment mixing than operations in a linear

space; the prediction could serve as a good clue for our neu-

ral network.

In this work, we always use a particular yellow-white light

source, which is widely used in Oriental art exhibitions and

many museums. Under this condition, we perform the above

pigment mixing in the color space, and given the predicted

color after pigment mixing, we can inversely compute the re-

flectance Rmix of the overall pigment mixture. Unfortunately,

we do not have a handy way to estimate Tmix for these two

average mixing methods. As can be seen in the subpart of

Fig. 2 that is dedicated to illustrate the working of kernel

functions, i.e. ψ1,ψ2,ψ3, only the first kernel function gives

an intermediate estimated T value to help the learning pro-

cess of the neural network.
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7.3. Neural network for pigment mixing prediction

Our neural network takes as input the concentrations of

the two pigment components to be mixed, ρ1,ρ2, their ab-

sorption and scattering coefficients, K1,K2,S1,S2, as well

as their reflectances and transmittances R1,R2,T1,T2, whose

estimations have been discussed in Sec. 7.2. Strictly speak-

ing, these quantities are all wavelength dependent. For

simplicity, we only consider three typical wavelengths—

those of pure red, green and blue light. Thus, each of

K1,K2,S1,S2,R1,R2,T1,T2 is a vector carrying three scalar

components. For each pair of pigments to be mixed, we des-

ignate a dedicated neural network for pigment mixing pre-

diction. This is because some pigments made from different

chemical compounds may carry the same color yet behave

differently during pigment mixing. This also enables the user

to freely customize a pigment which may not be present in

the physical world. We feed the outputs of the three kernel

functions, ψ1, ψ2, ψ3, as the additional inputs to the neural

network. The output of the neural network is the reflectance

of the pigment mixture Rmix
o ,T mix

o . In the prediction network,

we introduce two hidden layers with full connections to all

the intermediate, input and output nodes.

The schema of our neural network approach for pigment

mixing prediction is shown in Fig. 2. We use the resilient

back propagation technique [Hay01] to train our multi-layer

neural network at the preprocessing stage. Each neuron in

the network takes a linear function as its associated trans-

fer function. The performance function used when training

the network is the mean square error measure. The total sam-

ple space contains 1377 two-component pigment mixture in-

stances over every pair of the 18 kinds of pure pigments, and

each pair has three different concentrations. We then make

the neural network go through 350000 iterations for training,

which takes about 4.5 hours to complete on a desktop com-

puter (Pentium IV with 3.0 GHz CPU). During each run, the

neural network converges very rapidly in the first 50000 iter-

ations. We use a fixed learning rate throughout the learning

process. We expect when employing a new mechanism in

the future that supports an adaptive learning rate, the total

number of learning iterations could be significantly reduced.

Finishing the whole 10 runs of the early stopping training

process takes about two days.

Our neural network based approach can capture the possi-

ble chemical reactions, the mutual influences between pig-

ments and other factors not considered in the KM model

or the average mixing method. This approach also supports

users to create novel pigments. The assistance from kernel

functions largely improves the learning capability of our pig-

ment mixing prediction network and at the same time en-

sures the robustness of our learning method—in the worst

case where the training data are very sparse or ill posed, our

approach can still perform at least as well as the KM model

or the averaging mixing.

Figure 2: Pigment mixing prediction neural network.

8. Experiment Results

We implemented our method using Microsoft Visual C++

6.0 and with the support of Microsoft Direct3D V9.0 on

a PC with a Pentium 4 3.0 GHz processor, 1 GB main

memory and an NVidia GeForce 6600 GT graphics card.

The paintbrush system came from our previous e-brush re-

search project [XTLP02, XLTP03, XTLP04]. With our cur-

rent prototype system implementation, to paint a stroke cov-

ering 10000 pixels, the overall system responds at an aver-

age rate of 8 frames per second. We also employ GPU hard-

ware to perform general purpose computations to accelerate

the equation solving process [HBSL03, KW03], particularly

when evaluating the equation (10). This is done in a way

similar to that suggested in [PF05] (Part IV: General-purpose

computation on GPUs: A Primer, Sec. 31.5, pp. 505–508).

Fig. 3 gives some pigment mixing results using our pro-

posed boosted neural network approach. Fig. 4–Fig. 10

show some stroke effects produced by our new pigment

model. More results are available in our project website

http://www.cs.hku.hk/∼songhua/pigment.

9. Conclusion

In this paper, we introduce a novel pigment model based

on careful treatment of many minute physical factors, which

can achieve the best attainable effects for Oriental and water-

based painting. Experiment results have verified the success

of the design and its implementation. Future work includes

further acceleration of our current algorithm, providing a

more friendly graphical user interface, and extending our al-

gorithm to other forms of painting such as oil painting and

wax painting.
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Figure 3: Pigment mixing using our neural network. The first and second rows are the two source pigments before mixing. The

third row is the pigment mixing results sampled from real world experiment. The fourth row is the prediction of the pigment

mixing behavior using our proposed neural network, but without employing the kernel functions. The fifth row is the prediction

using our proposed neural network with the kernel functions.

Figure 4: Different wet stroke in colors.
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