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Abstract In this paper, we address the demanding task of developing intelligent systems equipped
with machine creativity that can perform design tasks automatically. The main challenge is how
to model human beings′ creativity mathematically and mimic such creativity computationally. We
propose a “synthesis reasoning model” as the underlying mechanism to simulate human beings′

creative thinking when they are handling design tasks. We present the theory of the synthesis
reasoning model, and the detailed procedure of designing an intelligent system based on the model.
We offer a case study of an intelligent Chinese calligraphy generation system which we have developed.
Based on implementation experiences of the calligraphy generation system as well as a few other
systems for solving real-world problems, we suggest a generic methodology for constructing intelligent
systems using the synthesis reasoning model.
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1 Introduction

What is creative thinking? What is the mechanism that underlines human beings′ creative thin-

king? How can one experiment with the purportedly biological creative thinking process through

a computational approach? These questions pose challenges for researchers in the fields of AI and

cognitive science. Researchers in intelligent CAD (ICAD) systems in particular have a strong interest

in these problems. This paper can be considered a step towards understanding human creative process

– we use a computer-based automatic reasoning system to mimic artistic creativity. Such a task for the

computer is highly demanding as the implemented system has to satisfy both the theoretical soundness

of machine intelligence and performance benchmarks.

There is a large body of existent work on simulating creative thinking for solving real-world

problems. In 1975, Simon[1] pointed out that design and creation is a class of problems based on

synthesis of existing ideas. Qian[2] argued that the synthesis process (using qualitative or quantitative

approaches) is an important aspect of brain activities. Hall[3] simulated analogous reasoning using

a computational approach. Kapur[4] explored the application of artificial intelligence in geometrical

reasoning. Pan[5∼10] has researched in modeling visual information for intelligent computer aided

design.

The structure of the paper is as follows. Section 2 briefly surveys the theory and concepts of

synthesis reasoning model. Section 3 to Section 5 describe how an intelligent Chinese calligraphy ge-

neration system is designed and developed; the system serves as an example of the steps and procedures

to develop a synthesis based intelligent system for solving some realistic problem. Section 3 presents

the main ideas behind the design of our Chinese calligraphy generation system. Section 4 describes

the knowledge representation used in our intelligent system for modeling Chinese characters, which is

hierarchical and parametric. Section 5 reveals more details on how we construct our intelligent system

using the general principle of synthesis reasoning. Section 6 gives the experimental results. Section

7 summarizes the work and proposes a generic methodology to design intelligent systems using the

synthesis reasoning model. Section 8 concludes the paper.
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2 Theory of synthesis reasoning model

The synthesis reasoning model[5], or simply synthesis reasoning, is a model we propose to simulate

human beings′ creative thinking activities when performing design tasks involving images of one kind

or another. In the following, we briefly survey the basic theory and concepts of the synthesis reasoning

model.

2.1 Theory of synthesis reasoning model

Synthesis reasoning is a generation oriented reasoning mechanism for simulating human creative

thinking. Concepts essential to synthesis reasoning include: synthesis reasoning source, reasoning source

intensity field, synthesis reasoning space, synthesis reasoning viewpoint and synthesis reasoning process.

It is an attempt to relax the constraints of traditional reasoning mechanisms in artificial intelligence

to solve problems by using a more flexible reasoning method. Because of the flexibility, synthesis

reasoning is particularly suitable for reasoning tasks on shape design as in intelligent computer aided

design system (ICAD system). Essentially, synthesis reasoning searches the feasible synthesis reasoning

space to identify satisfying viewpoints in the space. A core step to apply the synthesis reasoning model

therefore is to establish a synthesis reasoning space, usually by superimposing several input synthesis

reasoning sources.

2.2 Key concepts of synthesis reasoning model

In the following, we briefly overview some key concepts employed in the synthesis reasoning model.

Synthesis reasoning source: A synthesis reasoning source S is a structure of the form: S =

{P , m, F }. P is a collection of n components P = {P 1, P 2, · · · , P n}. m is a structure, which

describes how the above n components can be combined together into a reasoning source. And F is a

reasoning source intensity field.

Reasoning source intensity field: A reasoning source intensity field F describes the intensity

distribution of different reasoning sources during a synthesis reasoning process. F is composed of two

parts: F = {F P , F m}. F P is a collection of reasoning intensities, each of which is associated with one

component of the reasoning source, i.e., F P = {F P 1, · · · , F P n}. F m is a structure, which records how

multiple components can be combined together. The intensity field F can be classified into two broad

types: discrete intensity field where any reasoning intensity is either 0 or 1, and continuous intensity

field where intensity can be an arbitrary real number, possibly negative or bigger than 1. With a discrete

intensity field, a reasoning source will be either adopted (intensity=1) or ignored (intensity=0).

Synthesis reasoning space: The synthesis reasoning space SS is the result of superimposing mul-

tiple reasoning sources. Each position selected in a synthesis reasoning process is a potential synthesis

reasoning result, denoted as SS(x, y, z). A synthesis reasoning space, which is composed of m reasoning

sources, can thus be defined as

SS(x, y, z) =
m∑

j=1

n∑

i=1

(F P ij(x, y, z) · P ij , F mj ·mj)

Synthesis reasoning process: In general, we need to carry out two steps to set up a synthesis

reasoning model. First, we need to construct a synthesis reasoning space using multiple synthesis rea-

soning sources. And then we need to identify a certain viewpoint/viewpoints in the synthesis reasoning

space. There are two inputs to the synthesis reasoning model: one is the multiple reasoning sources

and another is requirements on synthesis reasoning process, if any. Specifically, a two-valued synthesis

reasoning process is a process that reasons simply by component replacement. For example, for a lan-

guage being the experiment target, the word selection and sentence touchup process by rhymists forms

a two-valued synthesis reasoning process. Two-valued synthesis reasoning is a degenerate case of the

more general and sophisticated continuous valued synthesis reasoning process.

2.3 Computational model of synthesis reasoning model

Definition. If there is a correspondence between T and B, then T is similar to B (in a broad

sense), which can be denoted as T ∼ B.

Let B1, · · · , BN be N pieces of synthesis reasoning source knowledge and T be the reasoning

result, where each of Bi and T is composed of M components (parts). We can then represent the

synthesis reasoning process and its result using the form:

{
Bi = {bij |j = 1, · · · , M}

T = {tj |j = 1, · · · , M}
(i = 1, · · · , N).
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If the synthesis reasoning process is of one source, i.e., N = 1, the reasoning equation is simplified

to be:







t1 = f1(b11)

...

tM = fM (b1M )

.

If there are multiple pieces of synthesis reasoning source knowledge, the reasoning process can be

defined mathematically as follows.

Let

A =








a11 · · · a1M

a21 · · · a2M

... · · ·
...

aN1 · · · aNM








N×M

=








⇀
a1
⇀
a2

...
⇀
aN








, B =








b11 · · · bN1

b12 · · · bN2

...
. . .

...

b1M · · · bNM








M×N

= (B1 B2 · · · BN )

where
⇀
a i is the similarity metric vector of T to the i-th reasoning source. Then the general form of

synthesis reasoning equation T = F (B1, B2, · · · , BN ) can be instantiated as (1)∼(3).







T = {t1, t2, · · · , tM} =

n∑

i=1

AiBi, where Ai =










ai1 0 · · · 0

0 ai2

. . .
...

...
. . .

. . . 0

0 · · · 0 aiM










M×M

(1)

n∑

i=1

Ai = IM×M (2)

{
aij ∈ {0F , 1F } ⊂ F

aij ∈ [0F , 1F ] ⊂ F
(3)

This equation can be expanded for ease of interpretation as







T = BA = (B1 B2 · · · BN )









a11 · · · a1M

a21 · · · a2M

...
. . .

...

aN1 · · · aNM









N×M
{

aij ∈ {0F , 1F } ⊂ F

aij ∈ [0F , 1F ] ⊂ F

In the above, (1) defines the degree of similarity between T and Bi. (2) guarantees that the scale

of T is synchronized with that of Bi. And (3) ensures that T is more or less similar to Bi (similarity

in a narrow sense).

If Bi, T ∈ V , ⊕ is closed in V , then (V,⊕) is an algebraic structure and an exchangeable group,

where Σ is the abbreviation of the continuous operator ⊕ that satisfies the following properties:







1) t1 ⊕ (t2 ⊕ t3) = (t1 ⊕ t2)⊕ t3

2) ∃0 ∈ V,∃x ∈ V ⇒ 0⊕ x = x⊕ 0 = x

3) ∀x ∈ V, ∃y ∈ V, s.t. x⊕ y = y ⊕ x = 0

4) ∀t1, t2 ∈ V, t1 ⊕ t2 = t2 ⊕ t1

Here, V is a vector space on field F , i.e., a) (V,⊕) is an exchangeable group;

b) ∀a, b ∈ F ⇒







(a⊕ b)x = ax⊕ bx

a(x⊕ y) = ax⊕ ay

(ab)x = a(bx)

1F x = x

. For simplicity, we will first study situations where there are only

two reasoning sources B1 and B2, each of which has only one component, i.e., the synthesis reasoning
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process when M = 1 and N = 2. Under this circumstance, the form is:







T = A1B1 ⊕A2B2

A1 ⊕A2 = IM

aij ∈ F ; i = 1, 2; j = 1, · · · , M

.

To verify such an equation satisfies the properties mentioned above, we assume B1 is unknown while

T and B2 are both known. Then, the synthesis reasoning process takes the form:






a−1
11 a11B1 = a−1

11 T − a21a
−1
11 B2

a11 ⊕ a21 = 1F

a11, a21 ∈ [0F , 1F ]

Letting k1 = a−1
11 , k2 = −a21a

−1
11 , we will then have







B1 = k1T ⊕ k2B2

a−1
11 a11 = 1F , 1F x = x

k1 ⊕ k2 = a−1
11 (1F ⊕ (−a21)) = a−1

11 (a11 ⊕ (a21 ⊕ (−a21))) = a−1
11 a11 = 1F

k1, k2 ∈ F (k2 < 0F )

Therefore, the synthesis reasoning process with two one-component reasoning sources is of the form:





T = a11B1 ⊕ a21B2

a11 ⊕ a21 = 1F

a11, a21 ∈ F

, which shows that the synthesis reasoning process we defined does satisfy all

the properties as described above.

To take a step further, suppose there are N reasoning sources, each of which has M components;

the synthesis reasoning process is then of the form:






T = A1B1 ⊕A2B2 ⊕ · · · ⊕ANBN =
N∑

i=1

AiBi (4)

N∑

i=1

Ai = IM (5)

aij ∈ F (6)

where Ai =












ai1 0 · · · · · · 0

0 ai2 0 · · ·
...

... 0
. . . 0

...
...

. . . 0
. . . 0

0 · · · · · · 0 aiM












M×M

.

In the above equations, aij is the coefficient of T
′s similarity metric matrix to the j-th component

of the i-th reasoning source. Ai is the similarity metric matrix of T to the i-th reasoning source. (4)

defines the similarity of Ai to each Bi. So T is analogically generated by all the B
′

is. (5) aligns the

scale of T with each Bi. (6) shows that the similarity meter can be either similar (positive) or dissimilar

(negative), i.e., similarity in a broad sense.

3 Building an intelligent calligraphy generation system using the synthesis reasoning

model

Chinese calligraphy is among the finest and most important Chinese art forms, and is an insepa-

rable part of Chinese history. It can convey not only what is explicitly in the written message but also

the emotions of the writer. The very delicate aesthetic effects achievable by Chinese calligraphy are

generally considered to be unique among all calligraphic arts.

The most common use of calligraphic art in the digital world is creating typographic or artistic

fonts for display or printing, for which Knuth has done some pioneering work[11]. In [12], the authors

gave a detailed analysis of the writing effects that hairy brushes can produce. For artistic rendering,

researchers have tried to model the brush used in calligraphy, such as [13] where the brush was modeled

as a collection of bristles which evolved over the course of the stroke.
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In this section and the two sections that follow, we present the design of an intelligent Chinese

calligraphy generation system, which can generate aesthetic novel Chinese calligraphic artwork fully

automatically based on a small number of input training samples. Our intelligent calligraphy generation

system is a typical synthesis reasoning model based intelligent system. For such an intelligent system,

how to devise an effective and complete knowledge representation according to the specific application

problem is one of the key issues during system construction time. Another equally important issue

is to devise suitable and efficient operators to instantiate the synthesis reasoning model as a concrete

computational model for real-world problem solving.

In terms of knowledge representation, our system adopts a hierarchical and structural represen-

tation for Chinese calligraphic artwork, in which each synthesis reasoning source (in our case, it is

one of the sample calligraphy pieces scanned from copybooks) is parameterized and represented in the

synthesis reasoning space. After that we devise a series of operators to define the knowledge operations

necessary for implementing the synthesis reasoning model. Finally, based on the constructed synthesis

reasoning space and the defined knowledge operators, a certain viewpoint in the reasoning space is

chosen, with which a new calligraphic artwork can be inferred.

To demonstrate the feasibility of the proposed methodology, we have implemented a prototype

system, which is able to generate brand new Chinese calligraphic artwork fully automatically when

given as input a small training set (typically below 10). To the best of our knowledge, there has not

been any published work on the same approach. A related research is Ramalho and Ganascia′s work[14]

on the simulation of creativity in jazz performance, in the sense that it is also an attempt to model

artistic activities using analogous reasoning.

4 Knowledge representation of intelligent Chinese calligraphy generation system

The earliest Chinese characters are pictographs, which project meanings through shapes and

images in an intuitive fashion. Over time, these characters gradually became symbols. It can be easily

observed that many basic features frequently occur in different Chinese characters. To take advantage

of this representation redundancy, we employ a hierarchical representation for Chinese characters. The

hierarchical approach extends also to the level of calligraphy artwork.

4.1 Representation of Chinese calligraphy

Like many intelligent systems, knowledge representation is one of the key decisions to be made

during system construction time. In this paper, we treat Chinese characters and calligraphic artwork

as images that are in a parametric form. Mathematically, the “image” of the calligraphic artwork C is

represented as the zonary image area covered by a series of ellipses. Denote this series C as composed

of num0 ellipses P 1, P 2, · · · , P num0 . Let F 0 = {1, 2, · · · , num0}, (xi, yi) be the center and ai, bi the

lengths of the ellipse P
′

is major and minor axes respectively. We can then define Chinese calligraphy

as:
Area , {(x, y) ∈ R2|∃i ∈ F 0,

(x− xi)
2

a2
i

+
(y − yi)

2

b2
i

6 1}

The above knowledge representation is inspired by the method in [11], in which a zonary area is

defined through an ellipse moving along a predefined curve.

4.2 Hierarchy of Chinese calligraphic artwork

Once all the input Chinese calligraphy data have been parameterized, they form a space, which is

the feasible space of synthesis reasoning. It can be easily observed that many local features frequently

recur in many different Chinese characters. To capitalize on this image information redundancy, we

introduce a hierarchical representation of Chinese calligraphy. We decompose a Chinese calligraphy

artwork into six levels: constructive ellipse level, primitive stroke level, compound stroke level, radi-

cal level, single-character level, and complete artwork level. Via this six-level framework, a Chinese

calligraphy artwork is represented parametrically. The parametric representations of the calligraphic

artwork at all levels altogether form the parameter space for the ensuing reasoning process to generate

aesthetically acceptable novel calligraphy artwork.

We now turn to the concept of equivalent relationship for the formal definition of hierarchical

representation of Chinese calligraphy. If R is the equivalent relationship defined over the field of

A = {a1, a2, · · · , an}, i.e., R is (1) self-reflective, (2) symmetrical, and (3) transitive; field A can be

divided into a collection of sub-sets A1, A2, · · · , Am under R, which satisfy the following properties: a)

if i 6= j, 1 6 i, j 6 m, then Ai∩Aj = Φ; b) ∀ai ∈ A,∃j, 1 6 j 6 m, s.t. ai ∈ Aj . Under the equivalent
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relationship R, if (ai, aj) ∈ R, 1 6 i, j 6 n, we say that ai is equivalent to aj , which is denoted as

ai
R
←→ aj .

To set up the hierarchy of calligraphy representation, we introduce four kinds of equivalent rela-

tionship, R1, R2, R3, R4:

R1: all the constructive ellipses that compose the same primitive strokes are equivalent to each

other;

R2: all the primitive strokes that compose the same compound strokes are equivalent to each

other;

R3: all the compound strokes that compose the same radical are equivalent to each other;

R4: all the radicals that compose the same Chinese character are equivalent to each other.

In our prototype system, we selected five typical and most frequently occurring primitive strokes

(horizontal strokes, vertical strokes, left slanting strokes, right slanting strokes, point strokes), 24 typical

and most frequently occurring compound strokes (Fig. 1(a)) and 36 radicals (Fig. 1(b)).

Fig. 1 (a) 24 implemented compound strokes Fig. 1 (b) 36 implemented radicals

Suppose the family of constructive ellipses C = {P t|t ∈ F0} is divided into num1 equivalent

classes (classes of primitive strokes) under the equivalent relationship R1, which is denoted as F 1 ,
{1, 2, · · · , num1}. These num1 primitive strokes are divided into num2 equivalent classes (classes of

compound strokes) under the equivalent relationship R2, which is denoted as F 2 , {1, 2, · · · , num2}.

These num2 compound strokes are divided into num3 equivalent classes (classes of radicals) under

the equivalent relationship R3, which is denoted as F 3 , {1, 2, · · · , num3}. These num3 radicals are

divided into num4 equivalent classes (classes of single characters) under the equivalent relationship R4,

which is denoted as F 4 , {1, 2, · · · , num4}. That is, in a certain Chinese calligraphic artwork C , there

are num1 primitive strokes P 1,i, i ∈ F 1. And C contains num2 compound strokes P 2,i, i ∈ F 2. Or

we can say that C has num3 radicals P 3,i, i ∈ F 3. Also we can say that C comprises num4 single

characters P 4,i, i ∈ F 4. Obviously, when we apply synthesis reasoning using the granularity of single

characters, num4 ≡ 1.

Now the hierarchical representation of Chinese calligraphic artwork can be formally stated as:






P k,1 =
{

P k−1,s|P k−1,s

Rk←→ P k−1,1, s ∈ Fk−1

}

P k,l =
{

P k−1,s|P k−1,s

Rk←→ P k−1,q , in which q =

min(t|P k−1,t 6∈
⋃l−1

i=1 P k,i t ∈ F k−1) s ∈ F k−1

}

, l ∈ F k/{1} k = 1, 2, 3, 4

P 0,l = P l, l ∈ F0

Denote the number of elements in the set M as |M |; then the following relationship holds within

the hierarchy of Chinese calligraphic artwork representation:






|F k|
∑

s=1

|P k,s| = |F k−1| = numk−1, k = 1, 2, 3, 4

|P 0,s| = 1, s = 1, · · · , |F 0|

The hierarchical representation describes how an artwork is composed from constructive ellipses

at the lowest level. Each higher level describes how to generate its level of representation from the
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information at one level down. It is essentially a tree-like knowledge representation. Fig. 2 shows the

hierarchical representation of the Chinese character “zhe”(
�

).

Fig. 2 Hierarchical representation of the character “zhe(�)”

At the 0-th level of the hierarchical representation, the artwork is viewed as a collection of ellipses,

denoted as P 0. These ellipses are called the “constructive ellipses” of the artwork. For each constructive

ellipse denoted as P 0,i, let (xi, yi) be the center and ai and bi the lengths of its major and minor axes

respectively. Then, the “image” of the artwork C will be rendered as the regions in the image space

that are covered by the collection of the constructive ellipses (please refer to Section 4.1 for the detailed

mathematic definition).

Lower-level elements will be promoted to the next upper level if they cannot be combined with

other elements at the same level. For example, the primitive stroke P 1,1 in Fig. 2 becomes the compound

stroke P 2,1 at the next upper level. Similarly, it is possible for a radical to degrade to a compound

stroke, and then to a primitive stroke. With this promotion and degradation arrangement, a uniform

six-level hierarchy can be obtained, which will be needed in the calligraphy generation phase.

4.3 Topological constructive information in the hierarchy of Chinese calligraphy repre-

sentation

We denote the s-th constructive element at the k-th level of Calligraphy as P k,s, and its corre-

sponding topological constructor as T k,s, where k = 1, 2, 3, 4, s ∈ Fk. T k,s contains the topological

relationship by which P k−1,1+l, P k−1,2+l, · · · , P k − 1, |P k,s| + l (l =

s−1∑

i=1

|P k,i|) compose P k,s.

We denote the bounding box of the image space that the element P k,s occupies as Ck,s =

[CXk,s CYk,s CHk,s CWk,s], k = 1, 2, 3, 4, s ∈ F k, in which CXk,s, CYk,s, CHk,s, CWk,s are the

x, y coordinates of the lower-left corner of the bounding box Ck,s and its height and width, respectively.

All the coordinates are in the world coordinate system. Then, we have

T k,s , (T CRk,s, T CSk,s) ,















T Rk,1+l

T Rk,2+l

...

T Rk, |P k,s| + l








, [T Sk,1+l T Sk,2+l · · · T Sk, |P k,s| + l]








in which l =
s−1∑

i=1

|P k,i|; s ∈ Fk; k = 1, 2, 3, 4. T CRk,s, T CSk,s are the scale and transition matrices
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respectively. The strict mathematical definition for the matrices T Rk,z, T Sk,z are as follows:







T Rk,z ,

[
RW k,z 0

0 RHk,z

]

,












CWk,s

CWk−1,z
0

0
CHk,s

CHk−1,z




 , (k = 2, 3, 4)

[
1 0

0 1

]

, (k = 1)

z = 1 + l, 2 + l, · · · , |P k,s|+ l

T Sk,z , [RXk,z RY k,z]
T ,







[

CXk−1,z −CXk,s

CWk,s

CYk−1,z − CYk,s

CHk,s

]T

, (k = 2, 3, 4)

[0 0]T, (k = 1)

If k > 1, P k,i must be composed of one or more constructive elements in one level down; we call

the latter sub-constructive elements. All the information needed for the composition of P k,i is stored

in T k,i, the topological constructor of P k,i.

With the topological constructors, we can set up a one to one mapping between pixels on different

levels of the hierarchical representation. That is, any pixel [xk,s yk,s]
T that belongs to the s-th

constructive element P k,s on the k-th level of the hierarchical representation is uniquely mapped to

the pixel [xl,t yl,t]
T which is the t-th constructive element P l,t on the l-th level of the hierarchical

representation. Here l > k, l, k = 0, 1, 2, 3, 4, and ∃mj ∈ F k+j (j = 1, 2, · · · , l − k − 1) s.t. P k,s ∈

P k+1,m1 ∈ · · · ∈ P k+(l−k−1),ml−k−1
∈ P l,t.

If we introduce the operator ∇b
m,n : ∇b

m,n

[
x

y

]

2×1

, T Rm+1,n

[
x

y

]

2×1

+ T Sm+1,n, then there

exists the relationship [xl,t yl,t]
T = ∇b

l−1,ml−k−1
(· · · (∇b

k+1,m1
(∇b

k,s[xk,s yk,s]
T))).

4.4 Parametric representation of calligraphic artwork

Denote the s-th constructive element in the k-th level of the hierarchy as P k,s, whose parametric

representation is Ek,s, k = 0, 1, · · · , 4, s ∈ F k. We now introduce a matrix operator ∇c
n, which can

produce an m×
n∑

l=1

dl dimensional matrix M = (ai,j)m ×
n∑

l=1

dl according to n m× dl (l = 1, 2, · · · , n)

dimensional matrices Ml = (al,i,j)m×dl
(l = 1, 2, · · · , n). That is, if ∇c

n(M1, M2, · · · , Mn) = M , then

we have

ai,j =







az+1,i,j −

z∑

t=1

dt in which

z∑

t=1

dt < j 6
z+1∑

t=1

dt, z = 1, 2, · · · , n− 1

a1,i,j , j 6 d1

, i = 1, 2, · · · , m

We further define a matrix operator ∇d
n: ∇d

n(A) , ∇c
n (A, A, · · · , A)

︸ ︷︷ ︸

n

.

Then the hierarchy of Chinese calligraphic artwork can be formally expressed as:

{
E0,i = [x′

i y′

i a′

i b′i]
T, i ∈ F0

Ek,s = ∇c
|P k,s|(∇

e
k−1,1+lEk−1,1+l,∇

e
k−1,2+lEk−1,2+l, · · · ,∇

e
k − 1, |P k,s| + lEk − 1, |P k,s| + l)

in which l =

s−1∑

i=1

|P k,i|, k = 1, 2, 3, 4, s ∈ Fk.

Here, the operator ∇e
n,m is defined as:

∇e
n,mEn,m ,∇c

2((∇
c
2(T Rn,m,02×2))

T, (∇c
2(02×2, T Rn,m))T)En,m+

∇d
col(En,m)((∇

c
2((T Sn,m)T, [0 0]))T)

where col(En,m) is the number of columns of the matrix En,m, and 02×2 is a 2 × 2 dimensional zero

matrix.
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In the above equation, each E0,i represents the area covered by a constructive ellipse,
(x− x′

i)
2

a′2
i

+

(y − y′

i)
2

b′2i
6 1. This ellipse is the normalized version of the original constructive ellipse,

(x− xi)
2

a2
i

+

(y − yi)
2

b2
i

6 1, against its bounding box. That is, assuming P 0,i ∈ P 1,j , i ∈ F 0, j ∈ F 1, we have:







x′

i

y′

i

a′

i

b′i







=











xi − CX1,j

CW1,j

yi −CY1,j

CH1,j
ai

CW1,j

bi

CH1,j











5 Synthesis reasoning and intelligent calligraphy generation

In this subsection, we reveal more details on how we construct our system based on the general

principle of calligraphic model generation as discussed above.

An element at a level higher than the zero-th level, say P k+1,1 for all k > 0, is composed of

Nk+1,l elements at the next lower level, from P k,l1 , P k,l2 , · · · , P k,lNk+1,1
. The corresponding shape

matrix Ek+1,1 is derived by concatenating the matrices Ek,l1 , Ek,l2 , · · · , Ek,lNk+1,1
column by column

in sequence. Since the parametric representation of a constructive ellipse is a 4× 1 dimensional matrix,

the proposed concatenation at the higher levels will produce matrices having exactly four rows. Each

row of the matrix formed is called a field of the element′s parametric representation. Different fields of

an element can be separately reasoned on.

The weight associated with the s-th field of the i-th source knowledge on the k-th level, i.e., the

i-th training example (P i
k,l), is denoted as ω

i
l,s. We call ω

i
l,s(s = 1, · · · , 4) the reasoning intensity of P

i
k,l

in the synthesis reasoning. Then the ordered set of analogous reasoning intensities, ω
i
l,s(s = 1, · · · , 4)

forms the “viewpoint sequence” of the current synthesis reasoning process: ω̄ = {ωi
l,s|i = 1, · · · , n; s =

1, · · · , 4}. It is so called as different orders of presenting the training examples will yield different

calligraphy results.

In the synthesis reasoning process for novel calligraphic artwork generation, we assume there

are n components of k-th level synthesis source knowledge P k,l1 , P k,l2 , · · · , P k,ln taking part in the

reasoning process. And each synthesis source knowledge consists of m components, where ∀i 6= j; i, j =

1, 2, · · · , n⇒ li, lj ∈ F k and li 6= lj . We can therefore use an m× 1 dimensional partitioned matrix to

represent a single synthesis reasoning source, and use m ×

n∑

i=1

li dimensional partitioned matrices to

represent all the activated sources in the current synthesis reasoning. If we apply synthesis reasoning

at the level of single characters, then m ≡ 4. Denote the t-th property of the source knowledge as

P k,li,t. It associates an intensity of ωk,li,t in the synthesis reasoning process, and there exists the

relationship that

n∑

i=1

ωk,li,t = 1(t = 1, 2, · · · , m). In our intelligent calligraphy generation system, this

reasoning intensity can be adjusted through a graphical user interface. Denote the new knowledge

generated from the synthesis reasoning process as P k,r, and its matrix form parametric representation

as Ek,r. Applying the principle of synthesis reasoning process requires that all the source knowledge in

the reasoning should possess equal dimensions. That is, if we apply synthesis reasoning onto the source

knowledge P k,s and P k,t, their respective matrix form parametric representation (Ek,s)m1×n1 and

(Ek,t)m2×n2 must satisfy the relationship of n1 = n2. The equalization requirement is a soft constraint

of the synthesis reasoning process (please refer to the discussion in Section 7.1). If it is violated, we can

introduce the source knowledge equalization operator ∇e
t to relax this soft constraint. This is similar to

the mapping issue in analogous reasoning. In the following, we will introduce several symbols to define

∇e
t in a strict mathematical way.

We first denote en,i , [σ(i,1) σ(i,2) · · · σ(i,n)]
T, in which σ(i,j) =

{
1, i = j

0, i 6= j
.
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We can also derive a discrete curve composed of the centers of all the covering ellipses for each

constructive element used in our intelligent calligraphy generation system, which is expressed by P k,ls

and parametrically represented by Ek,ls . Thus a discrete curve derivation method can be stated as:

Ck,ls = (∇c
2((e

T
4,1 × Ek,ls)

T, (eT
4,2 × Ek,ls)

T))T =

[
x1 x2 · · · xco

y1 y2 · · · yco

]

, co = col(Ek,ls)

And then, the concept of key columns of a matrix can be introduced and defined. If the curve

Ck,ls has v + 1 key points, whose coordinates are Ck,lseco,u0 , Ck,lseco,u1 , · · · , Ck,lseco,uv , then the key

columns of Ek,ls can be identified as Ek,lseco,u0 , Ek,lseco,u1 , · · · , Ek,lseco,uv . As for the extraction of

key points for a given planar curve Ck,ls, we adopt the algorithm introduced in [15]. More delicate key

point extraction algorithms are available in [16∼18], but they might incur heavier computational costs.

Assume that we have identified v+1 key columns from the matrix form parametric representation

Ek,ls of a synthesis reasoning source P k,ls , which are the u0-th, u1-th, · · ·, uv-th columns of the matrix.

Here 1 = u0 < u1 < · · · < uv = col(Ek,ls), s = 1, 2, · · · , n. We can then define the volume equalization

operator for synthesis reasoning source ∇e
t as:

(∇e
t (Ek,ls))et,i , Ek,lsecol(Ek,ls

), θ, i = 1, 2, · · · , t

in which θ =

[

uj +
uj+1 − uj

[ t× (j + 1)

v

]

−
[ t× j

v

]

(

i −

[

t× j
v

])]

;

[

t× j
v

]

< i 6
[
t× (j + 1)

v

]

; j ∈

{0, 1, · · · , v − 1}; s = 1, 2, · · · , n and [ ] is an integer truncation operator. Specifically, if each col-

umn of the matrix Ek,ls is considered a key column, we can use a much simpler form of mapping to

define the operator ∇e
t as: (∇e

t (Ek,ls))et,i , Ek,lse
col(Ek,ls

), [
i×col(Ek,ls

)

t
]
, in which i = 1, 2, · · · , t and [

] is an integer truncation function.

Based on the definition of ∇e
t , we can further define a synthesis reasoning source knowledge

superimposing operator as ∇f
n:

∇f
n(M1, M2, · · · , Mn) , ∇c

n(∇e
h(M1),∇

e
h(M2), · · · ,∇

e
h(Mn)), h = max{col(Mi)|i = 1, 2, · · · , n}

With the operator ∇f
n, we can derive the matrix form representation of the superimposed synthesis

reasoning sources as: Ek , ∇f
n(Ek,l1 , Ek,l2 , · · · , Ek,ln). With this operator, we can further calculate

the feature matrix of all the synthesis reasoning source knowledge as:

Sk , Ek −∇
c
n(∇e

hEk,nor), h = max{col(Ek,li)|i = 1, 2, · · · , n}

In the above equation, Ek,nor is the matrix form representation of the standard source knowledge

P k,nor at the k-th level of the knowledge representation. In our system, we assume that the shape of

a constructive element written in the font style “Kai” (GB2312) as used in recent versions of Microsoft

Word is the standard shape of an element P k,nor.

According to the user input intensities for different synthesis reasoning sources ωk,li,t, we can then

compute the synthesis reasoning viewpoint matrix:

Wk,t , (∇c
n(ωk,l1,t × Ih×h, ωk,l2,t × Ih×h, · · · , ωk,ln,t × Ih×h))T

in which h = max{col(Ek,li)|i = 1, 2, · · · , n} and Ih×h is an h× h dimensional unit matrix.

We can now generate the synthesis reasoning feature result Sk,r through the synthesis reasoning

process as described by the following form:

Sk,r = (∇c
m((Sk ⊗Wk,1)

T
em,1, (Sk ⊗Wk,2)

T
em,2, · · · , (Sk ⊗Wk,m)Tem,m))T

In the above equation, ⊗ is a synthesis reasoning simulation operator. If the synthesis reasoning

process models human beings′ creative thinking as a linear process, then Ek ⊗Wk , Ek •Wk, where •

is an ordinary matrix multiplication operator. If the synthesis reasoning process models human beings′

creative thinking as a z-order polygonal, then ⊗ is defined as:

Ap×q ⊗Bq×r = Cp×r ⇒ ci,j = z

√
√
√
√

q
∑

k=1

(ai,k bk,j)
z, i = 1, 2, · · · , p; j = 1, 2, · · · , r
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We can also model creative thinking as a geometrical averaging process, as indicated by the

following equation:

ci,j = q

√
√
√
√

q
∏

k=1

(ai,k bk,j), i = 1, 2, · · · , p; j = 1, 2, · · · , r

Generally speaking, we can overload the synthesis reasoning simulator ⊗ to realize the simulation

over different kinds of creative thinking using the synthesis reasoning model.

Finally, by adding back the shape of Ek,nor, the standard constructive element associated with

the reasoning result P k,nor in the synthesis reasoning process, we obtain the parametric representation

Ek,r of P k,r: Ek,r = Sk,r ⊕ ∇
e
hEk,nor, where Ek,nor is the matrix-form parametric representation of

the shape of P k,nor.

If all the reasoning intensities in the current synthesis reasoning are within the range of [0,1],

that is, 0 6 ωk,li,t 6 1 (t = 1, 2, · · · , m; i = 1, 2, · · · , n), the synthesis reasoning process is essentially

an interpolation process. Otherwise, it is an extrapolation process. From a psychological point of

view, if ∃ωk,p,q < 0, the current synthesis reasoning process employs backward thinking of the brain.

If ∃ωk,p,q > 1, the current synthesis reasoning process employs forward exaggerative thinking of the

brain. Meanwhile, if n > 3, then the current synthesis reasoning based creative thinking simulation

mimics combined thinking activity.

Note that the synthesis reasoning process can be applied not only to the matrix representations of

all the reasoning sources by evaluating a series of matrix operations simulating the reasoning, but also

to the topological constructors of all the reasoning sources. Let T k,l1 , T k,l2 , · · · , T k,ln correspond to the

field intensities ωk,l1 , ωk,l2 , · · · , ωk,ln , respectively, where
n∑

i=1

ωk,li = 1. Then the synthesis reasoning

result is: T k,r =
n⊕

i=1

(T k,li × ωk,li), in which ⊕ is a synthesis reasoning simulation operator. Similarly,

we can overload the definition of operator ⊕ to realize different innovative thinking activities simulated

by our system. Some simple synthesis reasoning simulation operators for topological constructors are:

arithmetic mean, T k,r = 1
n

n∑

i=1

(T k,li × ωk,li); geometric mean, T k,r = n

√
√
√
√

n∏

i=1

(T k,li × ωk,li); harmonic

mean, 1
T k,r

= 1
n

n∑

i=1

(
1

T k,li × ωk,li

)

, etc.

The suggested synthesis reasoning process is essentially either an interpolation or an extrapolation

process. That is, ωi is the interpolation or extrapolation weight for P
i
k,l with the constraint that

n∑

i=1

ωi = 1. In our intelligent calligraphy generation system, all the analogous reasoning intensities can

be manually adjusted by the user through a graphical interface.

6 Experiment result

Given limited space, we can only show a few samples of the results here. Fig. 3(b) shows the results

from the synthesis reasoning model being applied to a single character using six training examples,

Fig. 3(a), as the reasoning source. The results demonstrate that our approach can yield different new

styles after having digested some existing styles.

Fig. 3 (a) Six input sources for synthesis reasoning at the single character level



506 ACTA AUTOMATICA SINICA Vol. 31

Fig. 3 (b) The results generated by the synthesis reasoning process at the single character level

Similarly, for couples of Chinese calligraphic artwork, we can also apply synthesis reasoning process

to achieve novel calligraphy. Fig. 4(a) gives the reasoning source and Fig. 4(b) lists some selected

reasoning results. Note the consistency in style among characters within the same newly generated

calligraphic piece. The experiment presented by Fig. 4 shows that not only can synthesis reasoning

process generate calligraphic artworks in different new styles, but also can it generate results with

consistently styled characters within the same new style when necessary. In our case, the characters in

one Chinese calligraphic couple are all in one style.

To verify that the system was indeed able to generate quality outputs, we invited a group of

judges consisting of six amateur calligraphists with at least more than two years′ writing experience

and four professional calligraphists including a professor in calligraphy in an art school. They cast votes

on the calligraphic artwork generated by the system. If an artwork received more than seven votes, it

was considered a new acceptable calligraphic artwork. The result is that they considered most of our

generated calligraphy to be acceptable.

Fig. 4 (a) The learned samples
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Fig. 4 (b) Selected computer generated results of Chinese calligraphic couples

7 Discussions

After designing and developing the intelligent Chinese calligraphy generation system, we find there

are constraint satisfaction requirements arising from the synthesis reasoning model. We also generalize

the experiences gained from the system development to propose a generic methodology for designing

synthesis reasoning based intelligent CAD systems for solving real world problems.

7.1 Constraints of synthesis reasoning

The rigid constraint of synthesis reasoning is that all the activated reasoning sources in one syn-

thesis reasoning process must be homogeneous, i.e., their matrix form knowledge representations must

have the same number of rows. This means that each of the reasoning source knowledge components

has the same number of properties to be reasoned about. Such a constraint must be satisfied during

any synthesis reasoning process.

There are also several soft constraints in synthesis reasoning process. 1) All the source knowledge

components taking part in the synthesis reasoning process must be of the same syntax. That is, if we are

reasoning about two primitive strokes P 1,s and P 1,t, we should make sure that they are both horizontal

strokes (or vertical strokes, or left slating strokes, etc.). 2) All the source knowledge components must

have the same capacity. That is, if we are reasoning about P k,s and P k,t, it should be guaranteed that

their respective matrix representations (Ek,s)m1×n1 and (Ek,t)m2×n2 satisfy the relationship n1 = n2.

This can be interpreted as that the precondition of composing a synthesis reasoning space is that all the

reasoning sources must have the same number of components. 3) All the source knowledge components

for a synthesis reasoning process must be at the same level. That is, if we are reasoning about P m,s

and P n,t, m = n must be true. Otherwise, the semantics would be different for different contributing

reasoning sources.

To solve real world problems, we can relax the soft constraints of synthesis reasoning to make
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the reasoning process more widely applicable. For source knowledge components that are of different

dimensions, we can define and then apply a source knowledge equalization operator ∇e
t to convert them

to be of the same dimension. For source knowledge components that are not homogeneous or at different

levels in the hierarchy, we can also carry out synthesis reasoning by ignoring all the soft constraints.

This corresponds to the simulation of the thinking process of a calligraphist while creating an artwork

of running style, a style which is the freest of all styles. With all these relaxations on the synthesis

reasoning process, the number of novel calligraphic artwork thus generated is vastly increased. But

note that at the same time, the ratio of generating aesthetically attractive novel calligraphy decreases.

It is obvious that too strict a set of constraints can limit the system′s overall creativity, while too loose

a set of constraints could harm the overall acceptability of the results.

The constraints of the synthesis reasoning process can be relaxed in order to allow for results with

new styles that cannot be easily imagined. From a computational psychology′s perspective, relaxing or

ignoring the constraints in our analogous reasoning process corresponds to the creative brain activity

of a calligraphist performing cursive and running style writing.

7.2 Generic methodology to develop synthesis reasoning based intelligent systems

The synthesis reasoning model we have proposed is capable of solving a class of shape reasoning

problems. We have successfully applied the model to resolve many real world design problems. The

automatic Chinese calligraphy generation system introduced in previous sections is one of these systems.

Other successful problem solving systems developed based on synthesis reasoning model include an

intelligent advertisement design system[5], an intelligent decoration design system[6], and an intelligent

chair design system[8]. Although each of these systems has its own problem solving semantics and

background knowledge, the synthesis reasoning approaches they employed are very similar. Based on

the practices and experiences we accumulated through designing and developing those systems, we

propose a generic methodology for developing a synthesis reasoning based intelligent system for solving

any particular type of design problem in real world, as follows.

1) According to the specific application domain, choose the synthesis reasoning sources and its

properties. By superimposing all the synthesis reasoning sources together, we can construct the syn-

thesis reasoning space.

2) Introduce a hierarchy of knowledge representation by picking a suitable granularity of knowledge

for the different levels in the hierarchy so that the reusability of the reasoning sources and the reasoning

results, as well as the reasoning efficiency, can all be improved.

3) Derive the operators to convert between knowledge representations at different levels in the

hierarchy.

4) Based on the work done in steps (1)∼(3), a full parametric and hierarchical knowledge repre-

sentation of the complete synthesis reasoning space can be derived.

5) According to the semantics of the specific application problem to be solved, construct operators

to instantiate the synthesis reasoning model as a concrete computable algorithmic framework, based on

which the overall system architecture can be deduced. These operators include the synthesis reasoning

source superimposing operator, the reasoning source equalization operator, the synthesis reasoning

evaluation operator, etc.

8 Conclusions

Our thesis has been that with the formal method of reasoning based on knowledge synthesis, one

can design intelligent systems having machine creativity that can solve real-world shape design problems.

A Chinese calligraphy generation system is presented as a case study to show the system construction

procedures. Our paper also proposes a generic methodology to design and develop synthesis reasoning

based intelligent CAD systems for specific applications in different domains.
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