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Abstract 
  

In this paper we present a neural network-based  
model of the acquisition of choice behaviors. We 
employ a multi-layer perceptron, trained using back-
propagation with a modified desired-output vector, to 
model behavior in concurrent-schedule, variable-
interval, reinforcing learning situations. We show that 
our model can be used to describe and predict steady-
state behavior and learning patterns at the molar level.  

 
 
1. Introduction 
 

Operant conditioning trains voluntary behavior 
under the expectation of reinforcement; reinforcement 
occurs only if the operant response occurs [1]. When 
reinforcement ceases or becomes independent of 
response, responses become less frequent. This is also 
known as the assignment of credit, and understanding 
the mechanism by which this occurs is known as the 
“assignment of credit problem” [2].   In this paper, we 
develop a computational model of the assignment of 
credit using a neural network-based approach.  

General principles of learning have been well 
established through experimental evidence, and a 
number of mathematical models have been developed 
to try to explain the process by which the assignment 
of credit occurs [3][4][5]. The models generally 
postulate that the better predicted a reinforcer is, the 
less efficient that reinforcer is at altering behavior. 
This concept is also the guiding philosophy for the 
back-propagation algorithm on the multi-layer 
perceptron. In this paper we exploit these similarities 
and suggest a neural network-based model of learning 
that employs the back-propagation algorithm under an 
operant conditioning paradigm. We do not, however, 
purport to model how reinforcement learning is 
carried out at the neuronal level in the brain. 
 

2. Motivation 
 

We sought to investigate whether the outputs of a 
simple multilayer perceptron trained using a modified 
back-propagation algorithm could model the decisions 
made by a laboratory subject trained using a variable-
interval, concurrent schedule paradigm. The model 
presented was developed as a simulation of a 
concurrent-schedule laboratory setup used by Banna 
and Newland to obtain an understanding of choice 
acquisition in rats [6][7].   

In concurrent schedule learning, two choices, for 
example two levers, are available to the subject. A 
response on each manipulandum (for example, a lever 
press) is reinforced with a pre-determined probability. 
This probability is determined by a variable interval 
(VI) schedule of reinforcement. On a VI-30 schedule 
on the left lever, for example, the first response on the 
left lever to occur at least X seconds after the trial 
begins – where X is a uniformly distributed random 
variable with a mean value of 30 seconds – is 
reinforced with a sucrose pellet.  The other lever, 
meanwhile uses a distinct schedule of reinforcement 
which may also be VI-30 or which may have some a 
different expected time of reinforcement, for example 
90 seconds.  The procedure described is known as the 
two-key procedure. Concurrent schedules can be 
arranged to be dependent or independent of each other. 
Under a dependent schedule, a simulation of which is 
presented in this paper, when one reinforcer becomes 
active (on), the timer for the other schedule is put on 
hold until the first reinforcer is actually delivered [6]. 
Under this particular experimental setup, subjects are 
trained in a single session on a number of different 
learning-schedules. 

Changeover delays are used in concurrent schedule 
designs to avoid reinforcing a steady alternation 
between manipulanda. A changeover delay is a forced 
delay that occurs when the subject switches from one 
reinforcement schedule to the other. That is, for z 
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seconds after the switch, there is no chance of 
reinforcement [6][7]. 

 

3. System design 
 

A multi-layer perceptron trained on a modified 
back-propagation algorithm was used to model the 
acquisition of choice. The code was adapted from a 
simple back-propagation algorithm provided by [8]. 
Back-propagation is usually associated with the 
learning-with-a-teacher paradigm, in which a set of 
expected outcomes is compared to the neural 
network’s output, and the network’s weights are 
adjusted according to the calculated error. Put 
otherwise, in traditional back-propagation learning, 
the entirety of information about the environment is 
available to the network [9]. Models of the acquisition 
of choice in a two-key procedure, however, should 
reflect the fact that the subject only has minimal 
information about the environment available. Thus we 
modified the back-propagation algorithm to reflect the 
lack of available information about the environment. 
We were not interested in a particular set of 
convergent weights for our model but instead on the 
model’s outputs throughout the entirety of the learning 
process.  

We let each neuron’s activation function be tanh(x).  
There were n steps in the learning process (n chances 
for weight updates). We let x(i) denoted an input to 
network at time step i and  y(i) denote an output of the 
network at time step i. We let d(i) denote the “desired-
output” at time step i. The concept, and re-definition 
of, desired-output is discussed below. The error term 
represented the difference between y(i) and d(i). The 
training occurred sequentially (the network will be 
updated after the presentation of each pair (x(i), d(i)). 
The seed input was a 0; each subsequent x(i) equaled 
y(i-1). 

 
3.1 Decisions as Expectations 

 
Conditioning models are often built upon a 

hypothesis that the learning process involves the 
generation of expectations about future events. This 
hypothesis is well summarized by Gallistel in his book 
The Organization of Learning: “When confronted 
with a choice between alternatives that have different 
expected rates for the occurrence of some to-be-
anticipated outcome, animals, humans, and otherwise, 
proportion their choices in accord with the relative 
expected rates” [10]. 

We assume that decisions are made on the basis of 
expectations of reinforcement. From this assumption, 
we construct the following notation. We let 

expectation of reinforcement on lever 1 be given on a 
scale of [0,1], where 1 indicates 100% confidence in 
reinforcement. Expectation of reinforcement on lever 
2 is given on a scale of [-1, 0], where -1 indicates 
100% confidence in reinforcement.  If, at time step i, 
the expected reinforcement on lever 1 is 0.6, then this 
can be interpreted as 60% confidence that there will 
be reinforcement on lever 1. In this case, we say that if 
lever 1 is pressed, a reward is expected. If, however, 
the expected reinforcement on lever 1 is 0.2, then this 
indicates that it is considered more likely for there not 
to be reinforcement on either lever than for there to be 
reinforcement on one of the levers. In this case, we 
say a reward is not expected. We work under the 
reasonable assumption that with no expected reward, a 
subject would prefer not to exert the energy to press a 
lever and thus neither lever should be chosen. When a 
reward is expected, the subject will press the lever 
from which it expects a reward.  

So we designed the output of our neural network to 
be in the form of the subject’s expectation of 
reinforcement.  An output y(i) equals 1 was associated 
with 100% confidence in choosing lever 1, while an 
output y(i) equals -1 was associated with 100% 
confidence in choosing lever 2. If the absolute value 
of y(i)  was less than or equal to 0.5, then this 
indicated that no reinforcement was expected, so the 
simulated subject did not “press a lever” at time-step i. 

 
3.2 Memory 

 
At any time step, a subject’s memory, which is 

denoted here as Mi, informs its estimation of the state 
of the environment. Experimental data suggests that a 
feasible model for weighing these past experiences 
involves the use of the leaky integrator, which was 
introduced by Bush and Mosteller in 1955 [11]. The 
leaky integrator is a linear operator commonly used in 
dynamic models of short-term memory in operant 
conditioning [2]:  

 
1 (1 ) ( 1)i iM wM w C i−= + − −  

C is a vector of values C(i), each of which represents 
knowledge of some characteristic of the state of the 
environment precisely, and only, at time-step i. A 
small constant w places higher weight on new 
experiences, while a large constant places higher 
weight on old experiences. 
  

3.3 Design and Adaptation of the Desired-
Output Vector 

  
Traditional training by back-propagation ultimately 

hinges on a comparison of the neural network’s output 
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at each time step with a predetermined desired output 
for that time step. However, the desired output in the 
experimental paradigm being modeled is generally 
probabilistic in nature and at specific times even 
requires modification in response to the neuron’s 
output. That is to say, in our model the d(i) that 
existed at time t equals 1, was often  very different 
from the d(i) that existed at time t equals i.  

We defined the length of a session as the number of 
time steps (for example, seconds) in the learning 
process.   A single activation on lever j lasted until the 
subject pressed lever j. We let d(i) = 1 correspond to a 
time-step for which lever 1’s reinforcement was 
activated. Similarly, we let each d(i) = -1 correspond 
to a time-step when lever 2’s reinforcement was 
activated. Initially, (100/x) percent of the entries in d 
had a value of 1 and (100/y) percent of the entries in d 
had a value of -1. The rest of the entries in d were 
temporarily filled with 0’s. The schedules are referred 
to here as VI-x, VI-y, where x and y represent the 
expected number of seconds until the reinforcer for 
lever 1 or lever 2, respectively, is activated. 

Below we list and justify the rules used for creating 
and updating the desired-output vector during training. 
The vector was updated in the order that the rules are 
listed; a single d(i) value was often changed more than 
once. We were careful to consider ways that d(i) must 
be changed so that the simulated subject did not 
receive more information about the environment than 
a laboratory subject would receive.   

 
 If y(i) > 0.5 and d(i) = 1, then d(i+1) = 1.  If y(i) 

< -0.5 and d(i) = -1, then d(i+1) = -1.  If lever i 
was pressed and reinforcement was received, 
then the decision to press lever i was 
strengthened by the reinforcer. Because 
reinforcement was received, assigning the value 
d(i) = 1 did not give the simulated subject 
information about the environment that it should 
not have had. If the expected reinforcement was 
1, then the subject’s expectations were met and 
the reinforcer had no impact on future behavior.   

 If y(i)  ≤  0.5 AND d(i) = 1, d was lengthened  by 
inserting into d an element  d(i+1) with value 1. 
If y(i) ≥ -0.5 AND d(i) = -1, d was lengthened by 
inserting into d an element  d(i+1) with value -1. 
If a lever’s reinforcer was activated but no lever 
was pressed, then the reinforcer remained 
activated. New entries for d were added in order 
to simulate the dependent schedule.  The value of 
this new d(i) was changed again in a subsequent 
step.  

 If y(i) > 0.5 AND d(i) was neither -1 nor 1, then 
d(i+k) = y(i+k).  If y(i) < -0.5 AND d(i) was 
neither -1 nor 1, then d(i+k) = y(i+k). In this 

situation, the subject pressed no lever and 
therefore received no new information about the 
environment. That is, no weights in the neural 
network were updated.  

 If  y(i) > 0.5, but  d(i) did not equal 1, then  d(i) 
= wMi-1+(1-w)C(i-1), where C(i-1) was given 
by the  number of reinforcements on lever 2 at 
time i-1.  If  y(i) < -0.5 but  d(i) was  not -1, d(i) 
= wMi-1+(1-w)C(i-1) where C(i-1) was given by 
the  number of reinforcements on leve1 at time i-
1.  If the simulated subject pressed lever i but 
received no response, the simulated subject next 
chose between lever j and not pressing a lever. 
This choice was made based on its memory 
(determined by the leaky integrator) of lever j’s 
reinforcement schedule.   

 If |y(i)| ≤ 0.5, set d(i) = y(i).  Nothing was 
learned in this time-step.  

 If y(i) > 0.5, then at the occurrence of the first k 
for which y(i+k) < -0.5, new entries d(i+k) and 
d(i+k+1) were inserted into d such that the 
values of d(i+k) = d(i+k+1) = 0. If y(i) < -0.5, 
then at the occurrence of the first k for which 
y(i+k) > 0.5, new entries d(i+k) and d(i+k+1) 
were inserted into d such that d(i+k) = d(i+k+1) 
= 0. This represented a changeover delay of 2 
time steps (or seconds). We chose a replacement 
value of 0 in order to compensate for the lack of 
time information conveyed by the back-
propagation algorithm. That is, we investigated if 
setting the new values to zero could adjust for 
the fact that back-propagation algorithm makes 
the association between switching levers and the 
lack of reinforcement essentially impossible to 
make.  

 
4 Results and analysis 
  

The figures that follow illustrate simulations using a 
neural net with one input node, two hidden layers of 
two nodes each, one output node, a training rate of 0.3, 
and a momentum of 0.3. A large momentum term was 
found to produce stays as long as 1,000 seconds on the 
rich lever under some conditions. Each time-step 
represented one second. 

 We designed our sessions to model those used by 
Banna and Newland in [6] and [7]. Banna and 
Newland conducted sessions that lasted 120 minutes 
each. During the first 30 minutes, which we refer to as 
Stage 1, two VI-30 schedules were run; this yielded an 
expectation of 2 reinforcers per minute. For the next 
90 minutes, which we refer to as Stage 2, the original 
schedules were replaced with new schedules. These 
schedules featured a “rich” lever and a “lean” lever. In 
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each session, the ratio of the expected number of 
reinforcements on the lean lever to the expected 
number of reinforcements on the rich lever was either 
1, 1/4, 1/8, 1/16, or 1/32.  In both Stage 1 and Stage 2 
the expected number of reinforcers per minute was 
held constant at 2.   

Experimentally, steady-state behavior in concurrent 
scheduling is described by the generalized matching 
relation [12]: 

 
.    

 
where B1/B2 represents the ratio of responses on lever 
1 to responses on lever 2 and R1/R2 represents the 
ratio of reinforcers on lever 1 to reinforcers on lever 2. 
We tracked the learning rate as calculated at each 
time-step. We show our results in Figure 1. Each data 
point represents the cumulative values measured at 
each time-step over a 3-stage experiment. The slope of 
the line is 0.6827 and the intercept is -0.0066. The 
intercept of -0.0066 indicates no bias for either lever 
and the coefficient of 0.6827 suggests underfitting of 
the general matching equation. This is consistent with 
results of [6] and [7]. In these works, the average 
slope value for a single rat’s behavior in one session 
was 0.63. Similar results were found when we 
modeled the other VI schedules. These results suggest 
that in the model, just as in the laboratory, the general 
learning – or “success” – trend, measured in terms of 
the ratio of number of responses to number of 
reinforcers, is consistent no matter the reinforcement 
schedule.  However, the percent of time spent not 
responding on a lever is higher in our simulation than 
in [6] and [7].  

A better understanding of the response pattern can 
be acquired by studying Figure 2, which shows 
responses throughout an entire session. The horizontal 
lines indicate the lever-press cutoffs of 0.5 and -0.5. 
The data points on the extremes of each of these 
horizontal lines indicate lever presses. As is expected 
from a back-propagation algorithm, output values 
change gradually. We see a consistent swapping of 
levers during the baseline, when the levers’ schedules 
are identical; following the switch to a 32:1 
reinforcement schedule, however, we see that lever 
presses are highly concentrated on the rich lever. 
Responses on the lean lever are not concentrated 
together: even when the lean lever is chosen, the 
simulated subject quickly changes back to the rich 
lever.   

We also analyzed the more specific behavior of the 

neural network within each steady state.  We first 
analyzed the number of “responses per visit” on each 
lever during different stages of the simulation. We 
defined a visit as follows: a visit on lever i ends when 
lever j is pressed for the first time following the 
pressing of lever i; a visit does not end if there is no 
lever press during a time step. This first choice of 
lever j represents the beginning of a visit on lever j. 
During stage 1, the range of durations of the visits and 
the distribution of durations were comparable in our 
model and the laboratory results, although the absolute 
number of visits was much higher in the laboratory 
results. For stage 2 trials, there were not a sufficient 
number of lever presses, particularly on the lean lever, 
to determine if the distributions of responses per visit 
were similar. 

 
Figure 1. Response ratios calculated at 

each time step in one simulated experiment. 
The vertical lines represent the transition 

between a 1:1 schedule ratio and a 32:1 ratio, 
and the transition between a 32:1 ratio and a 

16:1 ratio, respectively. 
 
Finally, a 2-multi-layer perceptron system was also 

implemented. In this design, each multi-layer 
perceptron corresponded to one of the levers. The 
output of each perceptron corresponded to the 
expectation of a reinforcer on the lever it represented. 
The simulated subject chose the lever represented by 
the perceptron whose output had the largest absolute 
value. If neither perceptron outputted a value greater 
than 0.5 then no lever was chosen. The rules 
implemented were nearly identical to those described 
earlier for the single multi-layer perceptron system. 
Only the “winning” perceptron, if there was a 
perceptron with output of magnitude greater than 0.5, 
was updated at each time-step.  The results were not 
consistent nor did they resemble experimental results. 
This design was not pursued further. 
 
 

1 1

2 2

log log logB Rc a
B R

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
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5. Conclusion 
  

The consistent applicability of the generalized 
matching equation to the simulation data lends 
credence to the use of a modified back-propagation 
algorithm on a single multi-layer perceptron to 
produce molar models of behavior. This is remarkable 
in light of the simplicity of the model.  We plan to 
further investigate the molecular behavior of our 
simulated subjects within each state as well as during 
transitions between the states and to compare the 
results of these simulations to laboratory experiments, 
such as those in [6] and [7].   
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Figure 2. Simulation Responses. 
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