
A Neural Network-based Approach to Modeling the Allocation of Behaviors in
Concurrent Schedule, Variable Interval Learning

Erica J. Newland, Songhua Xu and Willard L. Miranker
Department of Computer Science, Yale University, New Haven, CT 06520-8285, USA

erica.newland@aya.yale.edu, songhua.xu@yale.edu, miranker@cs.yale.edu

Abstract

In this paper we present a neural network-based
model of the acquisition of choice behaviors. We
employ a multi-layer perceptron, trained using back-
propagation with a modified desired-output vector, to
model behavior in concurrent-schedule, variable-
interval, reinforcing learning situations. We show that
our model can be used to describe and predict steady-
state behavior and learning patterns at the molar level.

1. Introduction

Operant conditioning trains voluntary behavior
under the expectation of reinforcement; reinforcement
occurs only if the operant response occurs [1]. When
reinforcement ceases or becomes independent of
response, responses become less frequent. This is also
known as the assignment of credit, and understanding
the mechanism by which this occurs is known as the
“assignment of credit problem” [2]. In this paper, we
develop a computational model of the assignment of
credit using a neural network-based approach.

General principles of learning have been well
established through experimental evidence, and a
number of mathematical models have been developed
to try to explain the process by which the assignment
of credit occurs [3][4][5]. The models generally
postulate that the better predicted a reinforcer is, the
less efficient that reinforcer is at altering behavior.
This concept is also the guiding philosophy for the
back-propagation algorithm on the multi-layer
perceptron. In this paper we exploit these similarities
and suggest a neural network-based model of learning
that employs the back-propagation algorithm under an
operant conditioning paradigm. We do not, however,
purport to model how reinforcement learning is
carried out at the neuronal level in the brain.

2. Motivation

We sought to investigate whether the outputs of a
simple multilayer perceptron trained using a modified
back-propagation algorithm could model the decisions
made by a laboratory subject trained using a variable-
interval, concurrent schedule paradigm. The model
presented was developed as a simulation of a
concurrent-schedule laboratory setup used by Banna
and Newland to obtain an understanding of choice
acquisition in rats [6][7].

In concurrent schedule learning, two choices, for
example two levers, are available to the subject. A
response on each manipulandum (for example, a lever
press) is reinforced with a pre-determined probability.
This probability is determined by a variable interval
(VI) schedule of reinforcement. On a VI-30 schedule
on the left lever, for example, the first response on the
left lever to occur at least X seconds after the trial
begins – where X is a uniformly distributed random
variable with a mean value of 30 seconds – is
reinforced with a sucrose pellet. The other lever,
meanwhile uses a distinct schedule of reinforcement
which may also be VI-30 or which may have some a
different expected time of reinforcement, for example
90 seconds. The procedure described is known as the
two-key procedure. Concurrent schedules can be
arranged to be dependent or independent of each other.
Under a dependent schedule, a simulation of which is
presented in this paper, when one reinforcer becomes
active (on), the timer for the other schedule is put on
hold until the first reinforcer is actually delivered [6].
Under this particular experimental setup, subjects are
trained in a single session on a number of different
learning-schedules.

Changeover delays are used in concurrent schedule
designs to avoid reinforcing a steady alternation
between manipulanda. A changeover delay is a forced
delay that occurs when the subject switches from one
reinforcement schedule to the other. That is, for z

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI

245

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI

245

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ICNC.2008.762

245

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 05:27 from IEEE Xplore. Restrictions apply.

seconds after the switch, there is no chance of
reinforcement [6][7].

3. System design

A multi-layer perceptron trained on a modified
back-propagation algorithm was used to model the
acquisition of choice. The code was adapted from a
simple back-propagation algorithm provided by [8].
Back-propagation is usually associated with the
learning-with-a-teacher paradigm, in which a set of
expected outcomes is compared to the neural
network’s output, and the network’s weights are
adjusted according to the calculated error. Put
otherwise, in traditional back-propagation learning,
the entirety of information about the environment is
available to the network [9]. Models of the acquisition
of choice in a two-key procedure, however, should
reflect the fact that the subject only has minimal
information about the environment available. Thus we
modified the back-propagation algorithm to reflect the
lack of available information about the environment.
We were not interested in a particular set of
convergent weights for our model but instead on the
model’s outputs throughout the entirety of the learning
process.

We let each neuron’s activation function be tanh(x).
There were n steps in the learning process (n chances
for weight updates). We let x(i) denoted an input to
network at time step i and y(i) denote an output of the
network at time step i. We let d(i) denote the “desired-
output” at time step i. The concept, and re-definition
of, desired-output is discussed below. The error term
represented the difference between y(i) and d(i). The
training occurred sequentially (the network will be
updated after the presentation of each pair (x(i), d(i)).
The seed input was a 0; each subsequent x(i) equaled
y(i-1).

3.1 Decisions as Expectations

Conditioning models are often built upon a

hypothesis that the learning process involves the
generation of expectations about future events. This
hypothesis is well summarized by Gallistel in his book
The Organization of Learning: “When confronted
with a choice between alternatives that have different
expected rates for the occurrence of some to-be-
anticipated outcome, animals, humans, and otherwise,
proportion their choices in accord with the relative
expected rates” [10].

We assume that decisions are made on the basis of
expectations of reinforcement. From this assumption,
we construct the following notation. We let

expectation of reinforcement on lever 1 be given on a
scale of [0,1], where 1 indicates 100% confidence in
reinforcement. Expectation of reinforcement on lever
2 is given on a scale of [-1, 0], where -1 indicates
100% confidence in reinforcement. If, at time step i,
the expected reinforcement on lever 1 is 0.6, then this
can be interpreted as 60% confidence that there will
be reinforcement on lever 1. In this case, we say that if
lever 1 is pressed, a reward is expected. If, however,
the expected reinforcement on lever 1 is 0.2, then this
indicates that it is considered more likely for there not
to be reinforcement on either lever than for there to be
reinforcement on one of the levers. In this case, we
say a reward is not expected. We work under the
reasonable assumption that with no expected reward, a
subject would prefer not to exert the energy to press a
lever and thus neither lever should be chosen. When a
reward is expected, the subject will press the lever
from which it expects a reward.

So we designed the output of our neural network to
be in the form of the subject’s expectation of
reinforcement. An output y(i) equals 1 was associated
with 100% confidence in choosing lever 1, while an
output y(i) equals -1 was associated with 100%
confidence in choosing lever 2. If the absolute value
of y(i) was less than or equal to 0.5, then this
indicated that no reinforcement was expected, so the
simulated subject did not “press a lever” at time-step i.

3.2 Memory

At any time step, a subject’s memory, which is

denoted here as Mi, informs its estimation of the state
of the environment. Experimental data suggests that a
feasible model for weighing these past experiences
involves the use of the leaky integrator, which was
introduced by Bush and Mosteller in 1955 [11]. The
leaky integrator is a linear operator commonly used in
dynamic models of short-term memory in operant
conditioning [2]:

1 (1) (1)i iM wM w C i−= + − −

C is a vector of values C(i), each of which represents
knowledge of some characteristic of the state of the
environment precisely, and only, at time-step i. A
small constant w places higher weight on new
experiences, while a large constant places higher
weight on old experiences.

3.3 Design and Adaptation of the Desired-
Output Vector

Traditional training by back-propagation ultimately

hinges on a comparison of the neural network’s output

246246246

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 05:27 from IEEE Xplore. Restrictions apply.

at each time step with a predetermined desired output
for that time step. However, the desired output in the
experimental paradigm being modeled is generally
probabilistic in nature and at specific times even
requires modification in response to the neuron’s
output. That is to say, in our model the d(i) that
existed at time t equals 1, was often very different
from the d(i) that existed at time t equals i.

We defined the length of a session as the number of
time steps (for example, seconds) in the learning
process. A single activation on lever j lasted until the
subject pressed lever j. We let d(i) = 1 correspond to a
time-step for which lever 1’s reinforcement was
activated. Similarly, we let each d(i) = -1 correspond
to a time-step when lever 2’s reinforcement was
activated. Initially, (100/x) percent of the entries in d
had a value of 1 and (100/y) percent of the entries in d
had a value of -1. The rest of the entries in d were
temporarily filled with 0’s. The schedules are referred
to here as VI-x, VI-y, where x and y represent the
expected number of seconds until the reinforcer for
lever 1 or lever 2, respectively, is activated.

Below we list and justify the rules used for creating
and updating the desired-output vector during training.
The vector was updated in the order that the rules are
listed; a single d(i) value was often changed more than
once. We were careful to consider ways that d(i) must
be changed so that the simulated subject did not
receive more information about the environment than
a laboratory subject would receive.

 If y(i) > 0.5 and d(i) = 1, then d(i+1) = 1. If y(i)

< -0.5 and d(i) = -1, then d(i+1) = -1. If lever i
was pressed and reinforcement was received,
then the decision to press lever i was
strengthened by the reinforcer. Because
reinforcement was received, assigning the value
d(i) = 1 did not give the simulated subject
information about the environment that it should
not have had. If the expected reinforcement was
1, then the subject’s expectations were met and
the reinforcer had no impact on future behavior.

 If y(i) ≤ 0.5 AND d(i) = 1, d was lengthened by
inserting into d an element d(i+1) with value 1.
If y(i) ≥ -0.5 AND d(i) = -1, d was lengthened by
inserting into d an element d(i+1) with value -1.
If a lever’s reinforcer was activated but no lever
was pressed, then the reinforcer remained
activated. New entries for d were added in order
to simulate the dependent schedule. The value of
this new d(i) was changed again in a subsequent
step.

 If y(i) > 0.5 AND d(i) was neither -1 nor 1, then
d(i+k) = y(i+k). If y(i) < -0.5 AND d(i) was
neither -1 nor 1, then d(i+k) = y(i+k). In this

situation, the subject pressed no lever and
therefore received no new information about the
environment. That is, no weights in the neural
network were updated.

 If y(i) > 0.5, but d(i) did not equal 1, then d(i)
= wMi-1+(1-w)C(i-1), where C(i-1) was given
by the number of reinforcements on lever 2 at
time i-1. If y(i) < -0.5 but d(i) was not -1, d(i)
= wMi-1+(1-w)C(i-1) where C(i-1) was given by
the number of reinforcements on leve1 at time i-
1. If the simulated subject pressed lever i but
received no response, the simulated subject next
chose between lever j and not pressing a lever.
This choice was made based on its memory
(determined by the leaky integrator) of lever j’s
reinforcement schedule.

 If |y(i)| ≤ 0.5, set d(i) = y(i). Nothing was
learned in this time-step.

 If y(i) > 0.5, then at the occurrence of the first k
for which y(i+k) < -0.5, new entries d(i+k) and
d(i+k+1) were inserted into d such that the
values of d(i+k) = d(i+k+1) = 0. If y(i) < -0.5,
then at the occurrence of the first k for which
y(i+k) > 0.5, new entries d(i+k) and d(i+k+1)
were inserted into d such that d(i+k) = d(i+k+1)
= 0. This represented a changeover delay of 2
time steps (or seconds). We chose a replacement
value of 0 in order to compensate for the lack of
time information conveyed by the back-
propagation algorithm. That is, we investigated if
setting the new values to zero could adjust for
the fact that back-propagation algorithm makes
the association between switching levers and the
lack of reinforcement essentially impossible to
make.

4 Results and analysis

The figures that follow illustrate simulations using a
neural net with one input node, two hidden layers of
two nodes each, one output node, a training rate of 0.3,
and a momentum of 0.3. A large momentum term was
found to produce stays as long as 1,000 seconds on the
rich lever under some conditions. Each time-step
represented one second.

 We designed our sessions to model those used by
Banna and Newland in [6] and [7]. Banna and
Newland conducted sessions that lasted 120 minutes
each. During the first 30 minutes, which we refer to as
Stage 1, two VI-30 schedules were run; this yielded an
expectation of 2 reinforcers per minute. For the next
90 minutes, which we refer to as Stage 2, the original
schedules were replaced with new schedules. These
schedules featured a “rich” lever and a “lean” lever. In

247247247

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 05:27 from IEEE Xplore. Restrictions apply.

each session, the ratio of the expected number of
reinforcements on the lean lever to the expected
number of reinforcements on the rich lever was either
1, 1/4, 1/8, 1/16, or 1/32. In both Stage 1 and Stage 2
the expected number of reinforcers per minute was
held constant at 2.

Experimentally, steady-state behavior in concurrent
scheduling is described by the generalized matching
relation [12]:

.

where B1/B2 represents the ratio of responses on lever
1 to responses on lever 2 and R1/R2 represents the
ratio of reinforcers on lever 1 to reinforcers on lever 2.
We tracked the learning rate as calculated at each
time-step. We show our results in Figure 1. Each data
point represents the cumulative values measured at
each time-step over a 3-stage experiment. The slope of
the line is 0.6827 and the intercept is -0.0066. The
intercept of -0.0066 indicates no bias for either lever
and the coefficient of 0.6827 suggests underfitting of
the general matching equation. This is consistent with
results of [6] and [7]. In these works, the average
slope value for a single rat’s behavior in one session
was 0.63. Similar results were found when we
modeled the other VI schedules. These results suggest
that in the model, just as in the laboratory, the general
learning – or “success” – trend, measured in terms of
the ratio of number of responses to number of
reinforcers, is consistent no matter the reinforcement
schedule. However, the percent of time spent not
responding on a lever is higher in our simulation than
in [6] and [7].

A better understanding of the response pattern can
be acquired by studying Figure 2, which shows
responses throughout an entire session. The horizontal
lines indicate the lever-press cutoffs of 0.5 and -0.5.
The data points on the extremes of each of these
horizontal lines indicate lever presses. As is expected
from a back-propagation algorithm, output values
change gradually. We see a consistent swapping of
levers during the baseline, when the levers’ schedules
are identical; following the switch to a 32:1
reinforcement schedule, however, we see that lever
presses are highly concentrated on the rich lever.
Responses on the lean lever are not concentrated
together: even when the lean lever is chosen, the
simulated subject quickly changes back to the rich
lever.

We also analyzed the more specific behavior of the

neural network within each steady state. We first
analyzed the number of “responses per visit” on each
lever during different stages of the simulation. We
defined a visit as follows: a visit on lever i ends when
lever j is pressed for the first time following the
pressing of lever i; a visit does not end if there is no
lever press during a time step. This first choice of
lever j represents the beginning of a visit on lever j.
During stage 1, the range of durations of the visits and
the distribution of durations were comparable in our
model and the laboratory results, although the absolute
number of visits was much higher in the laboratory
results. For stage 2 trials, there were not a sufficient
number of lever presses, particularly on the lean lever,
to determine if the distributions of responses per visit
were similar.

Figure 1. Response ratios calculated at

each time step in one simulated experiment.
The vertical lines represent the transition

between a 1:1 schedule ratio and a 32:1 ratio,
and the transition between a 32:1 ratio and a

16:1 ratio, respectively.

Finally, a 2-multi-layer perceptron system was also

implemented. In this design, each multi-layer
perceptron corresponded to one of the levers. The
output of each perceptron corresponded to the
expectation of a reinforcer on the lever it represented.
The simulated subject chose the lever represented by
the perceptron whose output had the largest absolute
value. If neither perceptron outputted a value greater
than 0.5 then no lever was chosen. The rules
implemented were nearly identical to those described
earlier for the single multi-layer perceptron system.
Only the “winning” perceptron, if there was a
perceptron with output of magnitude greater than 0.5,
was updated at each time-step. The results were not
consistent nor did they resemble experimental results.
This design was not pursued further.

1 1

2 2

log log logB Rc a
B R

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

248248248

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 05:27 from IEEE Xplore. Restrictions apply.

5. Conclusion

The consistent applicability of the generalized
matching equation to the simulation data lends
credence to the use of a modified back-propagation
algorithm on a single multi-layer perceptron to
produce molar models of behavior. This is remarkable
in light of the simplicity of the model. We plan to
further investigate the molecular behavior of our
simulated subjects within each state as well as during
transitions between the states and to compare the
results of these simulations to laboratory experiments,
such as those in [6] and [7].

6. Acknowledgements

We would like to thank Kelly Banna and Chris
Newland for suggesting this investigation and for
sharing their data.

7. References

[1] B. F. Skinner, The Behavior of Organisms; an
Experimental Analysis. New York, London: D. Appleton-
Century Company, incorporated, 1938.
[2] V. Dragoi and J. E. R. Staddon, "The dynamics of
operant conditioning", Psychol. Rev., vol. 106, pp. 20-61,
January 1999.

[3] A. Dickinson, Contemporary Animal Learning Theory.
Cambridge Eng.; New York: Cambridge University Press,
1980.
[4] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins,
"Learning and Sequential Decision Making", in Learning
and Computational Neuroscience: Foundations of Adaptive
Networks, M. Gabriel and J. Moore, Ed. Cambridge, Mass:
MIT Press, 1990, pp. 539-602.
[5] R. H. Bauer and J. M. Fuster, "Delayed-matching and
delayed-response deficit from cooling dorsolateral prefrontal
cortex in monkeys", J. Comp. Physiol. Psychol., vol. 90, pp.
293-302, Mar. 1976.
[6] K.M. Banna, “Drug Effects on Behavior in Transition:
Does Context Matter?” doctoral Dissertation, Dept. of
Psychology, Auburn University, Auburn, Alabama, 2007.
[7] K.M. Banna, and M.C. Newland (under review), “The
Acquisition of Choice.”
[8] D. Patterson, "Per-period Backpropagation”, May 2006,
http://www.csee.umbc.edu/~dpatte3/nn/res/backprop.m
[9] S. S. Haykin, Neural Networks: A Comprehensive
Foundation., 2nd ed. Upper Saddle River, N.J.: Prentice
Hall, 1999.
[10] C. R. Gallistel, The Organization of Learning.
Cambridge, Mass: MIT Press, 1990.
[11] R. R. Bush and F. Mosteller, Stochastic Models of
Learning. New York: Wiley, 1964.
[12] W. M. Baum, "On two types of deviation from the
matching law: bias and undermatching", J. Exp. Anal.
Behav., vol. 22, pp. 231-242, Jul. 1974.

Figure 2. Simulation Responses.

249249249

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 05:27 from IEEE Xplore. Restrictions apply.

