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Abstract 
 

Field-programmable gate arrays (FPGAs) are 
becoming increasingly popular due to low design times, 
easy testing and implementation procedures and low 
costs. FPGAs placement and routing are NP-complete 
problems dealt well with modern tools using heuristic 
algorithms. As modern FPGAs increase in size and also 
new capabilities, such as Run-Time Reconfiguration 
(RTR), are introduced, the complexity of these problems 
is greatly increased. In this paper we approach both 
problems using a modified version of Kohonen Self-
Organizing map. The algorithm, consisting of four phases, 
takes into consideration constraints that may apply to the 
FPGA design (such as I/O pins, resource constraints like 
global clock etc).  The modified algorithm yields a good 
topological map of the design to be placed, minimizing 
the average distance between connecting logic blocks. 

 
Index Terms—FPGA, self-organizing feature map, 

placement, routing, constraints 
 
1. Introduction 
 

Field-programmable gate arrays (FPGAs) are 
semiconductor devices, which consist of programmable 
components called “logic blocks”. These blocks can be 
programmed to perform different functions (such as AND, 
OR) or to store data. Logic blocks connect through wires 
running all over the FPGA board. Many connected logic 
blocks create an FPGA design that performs a specified 
operation. An FPGA board can be reprogrammed, while 
its main counterpart, Application Specific Integrated 
Circuits (ASICs) are manufactured for a specific 
application and their operation cannot change. The main 
disadvantage of using FPGAs compared to ASICs is that 
FPGAs are pre-manufactured so their cost increases 
linearly for every board, while ASICs have a huge initial 
cost but production cost for larger quantities increases 
slowly. Also, FPGAs are slower and more power 
consuming. On the other hand, an FPGA has no initial 
manufacturing cost, it has low recurring engineering costs 

and is significantly cheaper than ASICs for small 
quantities. 

A user programs the board using High-level 
description languages (HDLs); the output code is 
converted by tools to logic blocks. The exact place that a 
logic block will be stored is defined through the 
“placement” procedure. Similarly, the wire tracks that 
will be used to connect logic blocks are defined through 
the “routing” process. Placement and routing are often 
interactive because good routing is highly dependent on 
good placement. 

In this paper we approach placement and routing 
processes using a modified version of Kohonen’s Self-
Organizing Map algorithm defined in [1]. Specifically, 
we modify the notion of a winning neuron and which 
neurons are updated.  

In Section 2 the Self-Organizing map algorithm is 
given, while in Section 3 the placement and routing 
process of an FPGA is described. In Section 4 we 
introduce our approach on FPGA placement and routing 
using SOMs. Section 5 presents a case study where our 
algorithm is used to place a complex design on an FPGA 
board. Finally, in Section 6 performance figures are 
presented along with a discussion of the results of the 
algorithm. 
 
2. Self-Organizing Map Algorithm  
 

Self-organizing maps (SOMs) are a special class of 
artificial neural networks, based on both competitive and 
cooperative learning. The main purpose of the SOM is to 
transform an incoming signal pattern of arbitrary 
dimension into a one or two dimensional discrete map. 
Each neuron in the map is fully connected to all source 
nodes in the input layer [2]. SOM training is based on two 
basic principles: 

Competition. The prototype vector that is most similar 
to an input data vector (where similarity can be defined in 
terms of Euclidean distance) “wins” the competition and 
is then transformed in order to be more “similar” to the 
input vector. By means of this process the algorithm 
learns the position of input data. 
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Cooperation: Besides the winning neuron, all its 
neighbors (where neighborhood radius must be defined 
by some parameter) are moved towards the input data 
vector as well. With cooperation, the map self-organizes.  

A detailed description of the SOM algorithm is 
presented in [2]. 

 

3. FPGA placement and routing 
 

An FPGA board consists of several logic blocks. In a 
simple FPGA design, a logic block contains a Look-Up 
Table (LUT) and a flip-flop, so it could either perform a 
specific function defined in the LUT or store a single bit. 
A LUT contains the truth table of the function 
implemented. The output of a logic block goes to the 
input of another logic block through wiring tracks, unless 
Input/Output connections are specified (usually at the 
edges of the board). Placement and Routing are essential 
parts of a typical application synthesis flow. 

During Placement, all packed blocks of logic have to 
be assigned to specific block locations in the 
prefabricated two-dimensional array of the FPGA board. 
Ideally, perfecting localized routability in each subsection 
of the board would yield the best placement, but given the 
distributed nature of interconnect and dependencies 
caused by segmentation this approach becomes infeasible. 
So a metric to evaluate an algorithm performance is the 
wiring length of the placement. Placement is an NP-
complete problem. 

After placing the logic blocks in specific places, these 
blocks must be connected using routing segments and 
switches to create a connecting path through FPGA’s 
routing tracks. This is called Routing and is likewise an 
NP-complete problem, because an FPGA has a limited 
number of wiring tracks running around the board. The 
most commonly used algorithms for routing are the maze-
routing algorithms [3],[4]. These algorithms are based on 
Dijkstra’s shortest path algorithm. The placement and 
routing processes must not be separated; a specific 
placement may not be routable at all, while a slightly 
different one may yield a good quality routing. 

During placement and routing procedures, FPGAs 
constraints have to be considered. A straightforward 
example of a constraint is a logic block that receives its 
input from outside the board, so it has to be placed on the 
I/O blocks (usually at the edges of the board). So the 
route and place algorithms must take into consideration 
the special nature of this logic block. Another example of 
a constraint comes from switch pins that exist in specific 
places on the board where the corresponding logic block 
must be placed appropriately to receive the switch state.  

Besides such constraints, there are some constraints 
that affect design’s performance and not design 
correctness. For example, in an FPGA design all clocked 
elements (such as Flip-Flops) share the same global clock; 
so the clock signal must arrive at clocked elements 
simultaneously and as fast as possible (for better 
performance). Thus, these elements must be placed near 
the clock buffers that produce the clock signal. 
 
4. Modified SOM algorithm 

 
We devise an algorithm to achieve good placement and 

routing on the FPGA board. Good placement yields good 
routing and vice versa. 

We modified part of the Kohonen SOM algorithm in 
order to handle possible constraints of the FPGA design. 
The lattice we use for the SOM algorithm corresponds to 
the real layout of the design we want to place and route. 
So, a neuron in the lattice represents a logic block that has 
to be placed in a logic block of the FPGA, while synapses 
represent the connections between logic blocks (a logic 
block can have up to four connections). For example, for 
the simple design shown in Fig. 1, the lattice that would 
be produced is show in Fig. 2.  

 
Figure 1.  Simple design to be placed 
 
 Constraints that can be applied in the algorithm fall in 

two different categories: 
Strict constraints: Constraints in this category are 

defined as conditions that must hold in order for the 
design to work properly. For example, a specific logic 
block must be placed on a specific block (e.g. an I/O pin).  

Relaxed constraints: Violation of constraints in this 
category will not affect the correctness of the design but 
its performance. The modified algorithm may violate 
some relaxed constrains in order to achieve a better 
placement and routing. For example a logic block should 
be placed as near as possible to an FPGA resource. The 
final distance between the logic block and the resource 
affects the performance of the design. Generally, we can 
regard these types of constraint as resource race 
constraints, because multiple elements have to be placed 
close to a specific resource. 
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Figure 2.  Lattice for sample circuit of Fig. 1 

 
A constraint has an importance property, graded from 

1-10, where 10 implies great importance. Strict constrains 
are automatically assigned a value of 10. This property 
helps the algorithm evaluate constraint importance and 
drives the algorithm to prioritize the constraints to be 
considered, optimizing the quality of the final placement. 

The ultimate goal of this algorithm is to minimize 
distances between interconnecting logic blocks, so as to 
maximize design performance. The algorithm consists of 
four discrete phases and an initialization phase. 

Algorithm Initialization: We first define the lattice of 
the circuit to be placed (as described in Fig. 3). A logic 
block (LB) is represented by a neuron and synapses 
between neurons represent the connections between the 
logic blocks. So if the design has M logic blocks to be 
placed we have the following set of neurons in the lattice 
labeled arbitrarily 1, …, M. 

 These M neurons connect through the MxM 
connection matrix C where: 

⎩
⎨
⎧

=
otherwise

connectedarejandiLBsif
Cij ,0

,1
           (5) 

A strict constraint is defined by three values [s1, s2, s3], 
where s1 and s2 define the coordinates where the logic 
block must be placed, and s3 is the index of the logic 
block that has to be placed in the position [s1, s2] on the 
FPGA board. For example, the set [1, 1, 5] specifies that 
the logic block 5 has to be placed in the [1, 1] position of 
the FPGA board. 

Similarly, a relaxed constraint is defined by two values 
[c1, c2], where c1 is the index of the logic block and c2 is 
the index of the resource.  For example, the set [2, 3] 
implies that block 2 must be placed close to resource 3. 

A resource is defined by three values [r1, r2, r3], where 
r1 and r2 are the X-Y coordinates of the resource and r3 
specifies its importance property. 

Finally, N denotes the dimension of the squared FPGA 
board where the logic blocks must be placed (for example 
for N=20 we have a board with 20x20 = 400 positions for 
logic blocks). 

Initialization of the algorithm consists of placing the 
lattice randomly on the FPGA board, employing a 
uniform distribution.  

Phase 1 - Constraints set: During this phase we place 
the strict constrained logic blocks in the exact coordinates 
defined by design constraints. During following phases, 
these neurons are not involved in the competitive or 
cooperative process of the self-organizing map (they 
remain fixed throughout the whole process of ordering 
and convergence).In case of a conflict, we move the logic 
block to the nearest unoccupied block. 

Phase 2 - Resource Competition: In the second phase 
the algorithm considers the relaxed constrains set by the 
FPGA design. During this phase, the algorithm’s effort is 
to move the logic blocks (neurons) close to the resources 
in order to optimize placement quality.  

An SOM self-organizes based on input vectors, so we 
have to generate these vectors. For each resource, one 
input vector is generated. For example, if we have a 
resource in [2, 2] position on the board, then a two-
dimensional input vector is generated in the same position 
([2, 2]). Fig. 3 presents the feature map using a resource 
placed at the bottom left of the FPGA board. 

 
Figure 3.  Self-organized feature space  

 
Using this method, we drive winning neurons closer to 

resources. Only constrained neurons are allowed to win, 
so they will gradually move closer to the resources. The 
probability that an input vector will be selected during 
sampling is directly proportional to the importance 
property defined for each resource. So the modified 
algorithm for this phase is the following: 

1. Initialization. The values of the initial weight 
vectors are copied from the weight vectors of 
phase 1 (e.g. we continue using the same feature 
map) 

2.  Sampling. We choose a sample x from the input 
space, with probability directly proportional to the 
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importance of this vector. Thus, more important 
resources will be sampled more often than others. 

3. Similarity matching. We find the best-matching 
neuron i(x), where i is a neuron that competes for 
the resource. Therefore, only racing neurons are 
allowed to win. The best matching criterion is 
Euclidean distance: 

Lkk
Rkiwnxxi ∈−= ,,)(minarg)(            (6) 

where RL is the subset on neurons that compete 
for Resource L. 

4. Updating. We adjust the synaptic weight vectors 
of all neurons using the following formula: 

))()(()()()1( 11 nwnxhnnwnw jjj −+=+ η   (7) 

where learning rate parameter η1(n) gradually 
decreases over time, and h1 is the neighborhood 
constant; so neighborhood radius remains constant 
throughout the algorithm.  

5. Continuation. These steps are repeated until no 
noticeable changes in the map are observed. 

 
At the end of this phase the constrained neurons will be 

closer to the desired resources, while the rest of the map 
will still be unordered. The synaptic weights of these 
neurons, like strict constrained neurons presented in 
Phase 1, won’t be updated during subsequent phases. 
Phase 2 is repeated for every resource defined in the 
FPGA design. 

Phase 3 - Ordering and Convergence: During this 
phase, placement is finalized using the Kohonen SOM 
algorithm presented in Section II. Again, the input data 
vectors must be defined.  Similarly to Phase 2, one input 
vector is created for every resource and for every strict 
constrained neuron (placed during Phase 1). So the final 
input vector set consists of two dimensional vectors that 
represent the position of the resources and strict 
constrained neurons.  

When this phase completes, a good geometric 
approximation of the design to be placed will be produced. 
The result is not guaranteed to be optimal; placement and 
routing are NP-complete problems.  

Also, due to the mathematical nature of the SOM 
algorithm, logic blocks’ coordinates will have real values; 
this is not allowed, because logic blocks should be placed 
on distinct logic block places. This misalignment defect is 
targeted in the next and final phase. 

Phase 4 - Quantization: During this final phase logic 
blocks are moved to the nearest logic block location. If 
during this quantization phase more than one logic block 
is to be placed in a single location, only the nearest logic 
block is allowed to move there; in case of a tie, the first in 
the list is moved there. Then the rest of the blocks are 

placed in the nearest unoccupied block using Euclidean 
distance. 

After this final phase we get a design that fulfills the 
constraints of the FPGA design while achieving good 
placement and routing. In most of the cases the modified 
SOM algorithm manages to reduce the distances of the 
initial random placement up to 10 times. A specific 
example of using the algorithm follows. 
 
5. Case study 

 
In this section the modified SOM algorithm is 
demonstrated. Assuming we have an FPGA board of 
10x10 logic block locations, we will attempt to place and 
route 30 randomly connected logic blocks (keeping the 
limit of up to 4 connections though).  

We add three strict constraints in our case study: 
[ 1  4  3] 
[10  2 26] 
[ 5  5 15] 

The first two values are the X-Y coordinates of 
position that the logic block must be placed in, while the 
third value specifies which logic block will be placed 
there. 

We also add one resource located in four different 
places with different importance properties: 

[ 2  2 10] 
[ 2  7 10] 
[ 7  2  5] 
[ 7  7  5] 

In the above matrix the first two values in a row specify 
the X and Y coordinate of the resource while the third 
specifies its importance.  

The logic blocks that will compete for this resource are 
defined in the following matrix: 

[10 22 8 20] 
The above matrix specifies that the logic blocks with 
index 10, 22, 8 and 20 will compete for the resource. 

During initialization of the algorithm, we randomly 
place the logic blocks on the board. The initial summed 
distance between all logic blocks is 1345 units. 

In phase 1 the strict constrained logic blocks are moved 
to their specified positions. In this case study the summed 
distance is slightly increased, but it could also be slightly 
decreased or remain the same.  

Phase 2 is the resource competition phase. Logic 
blocks are placed close to the resources and they are 
evenly spaced among them. The summed distance in this 
stage was decreased to 273.44 units, which is very good 
considering the fact that the algorithm actually hasn’t 
started final ordering and convergence. 

In phase 3 the final ordering and convergence of the 
algorithm is performed. After 600 iterations the map 
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finally converged. The distance is much smaller (126.04) 
compared to the initial one (1345.00), which ensures us 
that the algorithm has greatly improved the placement and 
routing of the design. 

During the 4th and final phase, we quantize the final 
positions of the logic blocks. This quantization yields 
increased distances (170 units) This is expected because 
close to resources there are more logic blocks, so 
conflicts will occur because of limited logic block 
locations. While conflicting logic blocks move to nearby 
places, summed distance increases. 

 
6. Results and discussion 
 
6.1 Performance Evaluation 

In this section we will evaluate algorithm performance. 
Generally, the best measurement for placement’s quality 
is the summed distance of logic blocks. We could also use 
other measurements, such as the mean quantization and 
the topological error. 

We first focus on the performance of the algorithm for 
different iterations, using summed distance as our quality 
measurement. The summed distance of logic blocks in 
each phase will be calculated.  By performing 20 different 
runs of the algorithm we get the distances presented in 
Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Summed distance between all 
phases of the algorithm for 20 runs 
 
The first conclusion from this figure is that the 

algorithm exhibits similar performance for each run: great 
improvement during Phase 2, further improvement during 
final ordering and convergence during Phase 3, while 
during the Quantization Phase 4 summed distance are 
slightly increased. Also, Phase 3 has the least deviation 
compared to all other phases; so algorithm performance 
seems to be deterministic. 

Another important conclusion is that the final 
placement is independent of the initial random placement; 

so no matter how good or bad the initial placement is, 
algorithm performance isn’t affected. 

Next consider evaluation of the average performance 
of the algorithm for many runs.  We perform 100 
iterations of the algorithm and calculate the average value 
of summed distance between phases. The results shown in 
Fig. 5 are clear; all iterations exhibit the same behavior as 
described previously. 

 
Figure 5.  Average distance between phases 
for 100 runs 

 
6.2 Discussion 

The proposed methodology is an approach to 
placement and routing problems using a self-organizing 
neural network. An FPGA design can be viewed as a 
lattice that has to be organized optimally.  

The modified algorithm produces a good topological 
approach of the design to be placed; it decreases distances 
between logic blocks and avoids intersecting wires by 
decreasing the topology error. It is possible that this 
layout may be fine-tuned locally (for example by using 
single logic block swaps and recalculating distances) but 
the overall design will adhere to the same topology.  

We should also mention that the algorithm is slow, and 
for large designs it would probably require a large 
number of iterations to converge. Also the resource race 
phase results are not deterministic; so we can’t predict 
with certainty the specifications of the placed layout. 
However, exploring all possible parameters for each 
training phase of the algorithm could yield greater 
certainty, trading-off an optimized placement. 
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