
Constraint-Based Placement and Routing for FPGAs using Self-Organizing Maps

Michail Maniatakos1, Songhua Xu2, and Willard L. Miranker2

1: Electrical Engineering Department, Yale University, New Haven, CT 06520 USA
2: Department of Computer Science, Yale University, New Haven, CT 06520, USA

{michail.maniatakos, songhua.xu}@yale.edu, miranker@cs.yale.edu

Abstract

Field-programmable gate arrays (FPGAs) are
becoming increasingly popular due to low design times,
easy testing and implementation procedures and low
costs. FPGAs placement and routing are NP-complete
problems dealt well with modern tools using heuristic
algorithms. As modern FPGAs increase in size and also
new capabilities, such as Run-Time Reconfiguration
(RTR), are introduced, the complexity of these problems
is greatly increased. In this paper we approach both
problems using a modified version of Kohonen Self-
Organizing map. The algorithm, consisting of four phases,
takes into consideration constraints that may apply to the
FPGA design (such as I/O pins, resource constraints like
global clock etc). The modified algorithm yields a good
topological map of the design to be placed, minimizing
the average distance between connecting logic blocks.

Index Terms—FPGA, self-organizing feature map,

placement, routing, constraints

1. Introduction

Field-programmable gate arrays (FPGAs) are
semiconductor devices, which consist of programmable
components called “logic blocks”. These blocks can be
programmed to perform different functions (such as AND,
OR) or to store data. Logic blocks connect through wires
running all over the FPGA board. Many connected logic
blocks create an FPGA design that performs a specified
operation. An FPGA board can be reprogrammed, while
its main counterpart, Application Specific Integrated
Circuits (ASICs) are manufactured for a specific
application and their operation cannot change. The main
disadvantage of using FPGAs compared to ASICs is that
FPGAs are pre-manufactured so their cost increases
linearly for every board, while ASICs have a huge initial
cost but production cost for larger quantities increases
slowly. Also, FPGAs are slower and more power
consuming. On the other hand, an FPGA has no initial
manufacturing cost, it has low recurring engineering costs

and is significantly cheaper than ASICs for small
quantities.

A user programs the board using High-level
description languages (HDLs); the output code is
converted by tools to logic blocks. The exact place that a
logic block will be stored is defined through the
“placement” procedure. Similarly, the wire tracks that
will be used to connect logic blocks are defined through
the “routing” process. Placement and routing are often
interactive because good routing is highly dependent on
good placement.

In this paper we approach placement and routing
processes using a modified version of Kohonen’s Self-
Organizing Map algorithm defined in [1]. Specifically,
we modify the notion of a winning neuron and which
neurons are updated.

In Section 2 the Self-Organizing map algorithm is
given, while in Section 3 the placement and routing
process of an FPGA is described. In Section 4 we
introduce our approach on FPGA placement and routing
using SOMs. Section 5 presents a case study where our
algorithm is used to place a complex design on an FPGA
board. Finally, in Section 6 performance figures are
presented along with a discussion of the results of the
algorithm.

2. Self-Organizing Map Algorithm

Self-organizing maps (SOMs) are a special class of
artificial neural networks, based on both competitive and
cooperative learning. The main purpose of the SOM is to
transform an incoming signal pattern of arbitrary
dimension into a one or two dimensional discrete map.
Each neuron in the map is fully connected to all source
nodes in the input layer [2]. SOM training is based on two
basic principles:

Competition. The prototype vector that is most similar
to an input data vector (where similarity can be defined in
terms of Euclidean distance) “wins” the competition and
is then transformed in order to be more “similar” to the
input vector. By means of this process the algorithm
learns the position of input data.

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.55

473

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.55

473

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.55

465

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 18:15 from IEEE Xplore. Restrictions apply.

Cooperation: Besides the winning neuron, all its
neighbors (where neighborhood radius must be defined
by some parameter) are moved towards the input data
vector as well. With cooperation, the map self-organizes.

A detailed description of the SOM algorithm is
presented in [2].

3. FPGA placement and routing

An FPGA board consists of several logic blocks. In a
simple FPGA design, a logic block contains a Look-Up
Table (LUT) and a flip-flop, so it could either perform a
specific function defined in the LUT or store a single bit.
A LUT contains the truth table of the function
implemented. The output of a logic block goes to the
input of another logic block through wiring tracks, unless
Input/Output connections are specified (usually at the
edges of the board). Placement and Routing are essential
parts of a typical application synthesis flow.

During Placement, all packed blocks of logic have to
be assigned to specific block locations in the
prefabricated two-dimensional array of the FPGA board.
Ideally, perfecting localized routability in each subsection
of the board would yield the best placement, but given the
distributed nature of interconnect and dependencies
caused by segmentation this approach becomes infeasible.
So a metric to evaluate an algorithm performance is the
wiring length of the placement. Placement is an NP-
complete problem.

After placing the logic blocks in specific places, these
blocks must be connected using routing segments and
switches to create a connecting path through FPGA’s
routing tracks. This is called Routing and is likewise an
NP-complete problem, because an FPGA has a limited
number of wiring tracks running around the board. The
most commonly used algorithms for routing are the maze-
routing algorithms [3],[4]. These algorithms are based on
Dijkstra’s shortest path algorithm. The placement and
routing processes must not be separated; a specific
placement may not be routable at all, while a slightly
different one may yield a good quality routing.

During placement and routing procedures, FPGAs
constraints have to be considered. A straightforward
example of a constraint is a logic block that receives its
input from outside the board, so it has to be placed on the
I/O blocks (usually at the edges of the board). So the
route and place algorithms must take into consideration
the special nature of this logic block. Another example of
a constraint comes from switch pins that exist in specific
places on the board where the corresponding logic block
must be placed appropriately to receive the switch state.

Besides such constraints, there are some constraints
that affect design’s performance and not design
correctness. For example, in an FPGA design all clocked
elements (such as Flip-Flops) share the same global clock;
so the clock signal must arrive at clocked elements
simultaneously and as fast as possible (for better
performance). Thus, these elements must be placed near
the clock buffers that produce the clock signal.

4. Modified SOM algorithm

We devise an algorithm to achieve good placement and

routing on the FPGA board. Good placement yields good
routing and vice versa.

We modified part of the Kohonen SOM algorithm in
order to handle possible constraints of the FPGA design.
The lattice we use for the SOM algorithm corresponds to
the real layout of the design we want to place and route.
So, a neuron in the lattice represents a logic block that has
to be placed in a logic block of the FPGA, while synapses
represent the connections between logic blocks (a logic
block can have up to four connections). For example, for
the simple design shown in Fig. 1, the lattice that would
be produced is show in Fig. 2.

Figure 1. Simple design to be placed

 Constraints that can be applied in the algorithm fall in

two different categories:
Strict constraints: Constraints in this category are

defined as conditions that must hold in order for the
design to work properly. For example, a specific logic
block must be placed on a specific block (e.g. an I/O pin).

Relaxed constraints: Violation of constraints in this
category will not affect the correctness of the design but
its performance. The modified algorithm may violate
some relaxed constrains in order to achieve a better
placement and routing. For example a logic block should
be placed as near as possible to an FPGA resource. The
final distance between the logic block and the resource
affects the performance of the design. Generally, we can
regard these types of constraint as resource race
constraints, because multiple elements have to be placed
close to a specific resource.

474474466

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 18:15 from IEEE Xplore. Restrictions apply.

Figure 2. Lattice for sample circuit of Fig. 1

A constraint has an importance property, graded from

1-10, where 10 implies great importance. Strict constrains
are automatically assigned a value of 10. This property
helps the algorithm evaluate constraint importance and
drives the algorithm to prioritize the constraints to be
considered, optimizing the quality of the final placement.

The ultimate goal of this algorithm is to minimize
distances between interconnecting logic blocks, so as to
maximize design performance. The algorithm consists of
four discrete phases and an initialization phase.

Algorithm Initialization: We first define the lattice of
the circuit to be placed (as described in Fig. 3). A logic
block (LB) is represented by a neuron and synapses
between neurons represent the connections between the
logic blocks. So if the design has M logic blocks to be
placed we have the following set of neurons in the lattice
labeled arbitrarily 1, …, M.

 These M neurons connect through the MxM
connection matrix C where:

⎩
⎨
⎧

=
otherwise

connectedarejandiLBsif
Cij ,0

,1
 (5)

A strict constraint is defined by three values [s1, s2, s3],
where s1 and s2 define the coordinates where the logic
block must be placed, and s3 is the index of the logic
block that has to be placed in the position [s1, s2] on the
FPGA board. For example, the set [1, 1, 5] specifies that
the logic block 5 has to be placed in the [1, 1] position of
the FPGA board.

Similarly, a relaxed constraint is defined by two values
[c1, c2], where c1 is the index of the logic block and c2 is
the index of the resource. For example, the set [2, 3]
implies that block 2 must be placed close to resource 3.

A resource is defined by three values [r1, r2, r3], where
r1 and r2 are the X-Y coordinates of the resource and r3
specifies its importance property.

Finally, N denotes the dimension of the squared FPGA
board where the logic blocks must be placed (for example
for N=20 we have a board with 20x20 = 400 positions for
logic blocks).

Initialization of the algorithm consists of placing the
lattice randomly on the FPGA board, employing a
uniform distribution.

Phase 1 - Constraints set: During this phase we place
the strict constrained logic blocks in the exact coordinates
defined by design constraints. During following phases,
these neurons are not involved in the competitive or
cooperative process of the self-organizing map (they
remain fixed throughout the whole process of ordering
and convergence).In case of a conflict, we move the logic
block to the nearest unoccupied block.

Phase 2 - Resource Competition: In the second phase
the algorithm considers the relaxed constrains set by the
FPGA design. During this phase, the algorithm’s effort is
to move the logic blocks (neurons) close to the resources
in order to optimize placement quality.

An SOM self-organizes based on input vectors, so we
have to generate these vectors. For each resource, one
input vector is generated. For example, if we have a
resource in [2, 2] position on the board, then a two-
dimensional input vector is generated in the same position
([2, 2]). Fig. 3 presents the feature map using a resource
placed at the bottom left of the FPGA board.

Figure 3. Self-organized feature space

Using this method, we drive winning neurons closer to

resources. Only constrained neurons are allowed to win,
so they will gradually move closer to the resources. The
probability that an input vector will be selected during
sampling is directly proportional to the importance
property defined for each resource. So the modified
algorithm for this phase is the following:

1. Initialization. The values of the initial weight
vectors are copied from the weight vectors of
phase 1 (e.g. we continue using the same feature
map)

2. Sampling. We choose a sample x from the input
space, with probability directly proportional to the

475475467

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 18:15 from IEEE Xplore. Restrictions apply.

importance of this vector. Thus, more important
resources will be sampled more often than others.

3. Similarity matching. We find the best-matching
neuron i(x), where i is a neuron that competes for
the resource. Therefore, only racing neurons are
allowed to win. The best matching criterion is
Euclidean distance:

Lkk
Rkiwnxxi ∈−= ,,)(minarg)((6)

where RL is the subset on neurons that compete
for Resource L.

4. Updating. We adjust the synaptic weight vectors
of all neurons using the following formula:

))()(()()()1(11 nwnxhnnwnw jjj −+=+ η (7)

where learning rate parameter η1(n) gradually
decreases over time, and h1 is the neighborhood
constant; so neighborhood radius remains constant
throughout the algorithm.

5. Continuation. These steps are repeated until no
noticeable changes in the map are observed.

At the end of this phase the constrained neurons will be

closer to the desired resources, while the rest of the map
will still be unordered. The synaptic weights of these
neurons, like strict constrained neurons presented in
Phase 1, won’t be updated during subsequent phases.
Phase 2 is repeated for every resource defined in the
FPGA design.

Phase 3 - Ordering and Convergence: During this
phase, placement is finalized using the Kohonen SOM
algorithm presented in Section II. Again, the input data
vectors must be defined. Similarly to Phase 2, one input
vector is created for every resource and for every strict
constrained neuron (placed during Phase 1). So the final
input vector set consists of two dimensional vectors that
represent the position of the resources and strict
constrained neurons.

When this phase completes, a good geometric
approximation of the design to be placed will be produced.
The result is not guaranteed to be optimal; placement and
routing are NP-complete problems.

Also, due to the mathematical nature of the SOM
algorithm, logic blocks’ coordinates will have real values;
this is not allowed, because logic blocks should be placed
on distinct logic block places. This misalignment defect is
targeted in the next and final phase.

Phase 4 - Quantization: During this final phase logic
blocks are moved to the nearest logic block location. If
during this quantization phase more than one logic block
is to be placed in a single location, only the nearest logic
block is allowed to move there; in case of a tie, the first in
the list is moved there. Then the rest of the blocks are

placed in the nearest unoccupied block using Euclidean
distance.

After this final phase we get a design that fulfills the
constraints of the FPGA design while achieving good
placement and routing. In most of the cases the modified
SOM algorithm manages to reduce the distances of the
initial random placement up to 10 times. A specific
example of using the algorithm follows.

5. Case study

In this section the modified SOM algorithm is
demonstrated. Assuming we have an FPGA board of
10x10 logic block locations, we will attempt to place and
route 30 randomly connected logic blocks (keeping the
limit of up to 4 connections though).

We add three strict constraints in our case study:
[1 4 3]
[10 2 26]
[5 5 15]

The first two values are the X-Y coordinates of
position that the logic block must be placed in, while the
third value specifies which logic block will be placed
there.

We also add one resource located in four different
places with different importance properties:

[2 2 10]
[2 7 10]
[7 2 5]
[7 7 5]

In the above matrix the first two values in a row specify
the X and Y coordinate of the resource while the third
specifies its importance.

The logic blocks that will compete for this resource are
defined in the following matrix:

[10 22 8 20]
The above matrix specifies that the logic blocks with
index 10, 22, 8 and 20 will compete for the resource.

During initialization of the algorithm, we randomly
place the logic blocks on the board. The initial summed
distance between all logic blocks is 1345 units.

In phase 1 the strict constrained logic blocks are moved
to their specified positions. In this case study the summed
distance is slightly increased, but it could also be slightly
decreased or remain the same.

Phase 2 is the resource competition phase. Logic
blocks are placed close to the resources and they are
evenly spaced among them. The summed distance in this
stage was decreased to 273.44 units, which is very good
considering the fact that the algorithm actually hasn’t
started final ordering and convergence.

In phase 3 the final ordering and convergence of the
algorithm is performed. After 600 iterations the map

476476468

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 18:15 from IEEE Xplore. Restrictions apply.

finally converged. The distance is much smaller (126.04)
compared to the initial one (1345.00), which ensures us
that the algorithm has greatly improved the placement and
routing of the design.

During the 4th and final phase, we quantize the final
positions of the logic blocks. This quantization yields
increased distances (170 units) This is expected because
close to resources there are more logic blocks, so
conflicts will occur because of limited logic block
locations. While conflicting logic blocks move to nearby
places, summed distance increases.

6. Results and discussion

6.1 Performance Evaluation

In this section we will evaluate algorithm performance.
Generally, the best measurement for placement’s quality
is the summed distance of logic blocks. We could also use
other measurements, such as the mean quantization and
the topological error.

We first focus on the performance of the algorithm for
different iterations, using summed distance as our quality
measurement. The summed distance of logic blocks in
each phase will be calculated. By performing 20 different
runs of the algorithm we get the distances presented in
Fig. 4.

Figure 4. Summed distance between all
phases of the algorithm for 20 runs

The first conclusion from this figure is that the

algorithm exhibits similar performance for each run: great
improvement during Phase 2, further improvement during
final ordering and convergence during Phase 3, while
during the Quantization Phase 4 summed distance are
slightly increased. Also, Phase 3 has the least deviation
compared to all other phases; so algorithm performance
seems to be deterministic.

Another important conclusion is that the final
placement is independent of the initial random placement;

so no matter how good or bad the initial placement is,
algorithm performance isn’t affected.

Next consider evaluation of the average performance
of the algorithm for many runs. We perform 100
iterations of the algorithm and calculate the average value
of summed distance between phases. The results shown in
Fig. 5 are clear; all iterations exhibit the same behavior as
described previously.

Figure 5. Average distance between phases
for 100 runs

6.2 Discussion

The proposed methodology is an approach to
placement and routing problems using a self-organizing
neural network. An FPGA design can be viewed as a
lattice that has to be organized optimally.

The modified algorithm produces a good topological
approach of the design to be placed; it decreases distances
between logic blocks and avoids intersecting wires by
decreasing the topology error. It is possible that this
layout may be fine-tuned locally (for example by using
single logic block swaps and recalculating distances) but
the overall design will adhere to the same topology.

We should also mention that the algorithm is slow, and
for large designs it would probably require a large
number of iterations to converge. Also the resource race
phase results are not deterministic; so we can’t predict
with certainty the specifications of the placed layout.
However, exploring all possible parameters for each
training phase of the algorithm could yield greater
certainty, trading-off an optimized placement.

10. References

[1] Kohonen T., The Self Organizing Map, Proceedings of the

IEEE Vol. 78 No. 9 (1990) pp. 1464-1480
[2] S. Haykin, Neural Networks: A comprehensive foundation

(Upper Saddle River, NJ: Prentice Hall, 1999)
[3] Tessier R., Fast Place and Route Approaches for FPGAs,

PhD thesis, MIT, 1999
[4] C. Lee, An algorithm for path Connections and its

Applications, IRE Transactions on Electronic Computers,
Sept 1961

477477469

Authorized licensed use limited to: Yale University. Downloaded on December 27, 2008 at 18:15 from IEEE Xplore. Restrictions apply.

