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1. INTRODUCTION

What if paintings could move? In this article, we propose a way of animating Chinese paintings by
automatically decomposing an image of a painting into its hypothetical brush stroke constituents.
Most Chinese paintings are typically sparse with each brush stroke drawn very purposefully [Smith
and Lloyd 1997]. Our method is specifically geared to handling paintings that employ brush strokes
economically; in addition to most Chinese paintings, other suitable styles include Sumi-e and certain
watercolor and oil paintings such as those of van Gogh.

In Chinese paintings, each stroke is often introduced to depict something specific in the real world.
Thus, the output of our stroke-based decomposition of these paintings is a set of graphical objects that
are meaningful with regard to the set of real objects the paintings depict. As a result, animators would
likely feel comfortable manipulating these graphical objects. In addition, the number of strokes in each
painting is usually small and hence manageable.

Our approach uses segmentation techniques and a library of brush strokes for fitting. The recovered
brush strokes are basically vectorized elements which are easy to animate (Figure 1). In addition to
animation, the set of recovered brush strokes can be used for synthesis of paintings or for manipulating
images of paintings.

Our automatic stroke decomposition technique has other potential uses. For example, a system uti-
lizing a camera or scanner along with the traditional media of paper, brush, and paint can be thought of
as a kind of natural tablet (as opposed to a digital tablet). Another application is compression—an an-
imation sequence of a painting can be more efficiently represented and transmitted across a network.
This is a direct consequence of the decomposition process which produces a set of vectorized stroke
elements. The resulting compressed representation could be used, for instance, to augment a textual
chat system with little additional required bandwidth. Finally, the recovered representation could be
analyzed to identify an artistic style and identity.

To our knowledge, there has been little or no work in automatically decomposing images of paintings
into brush strokes. However, several related topics have been explored. One such example is that of
optical character reader (OCR) systems where stroke analysis techniques are used for segmenting
handwriting purely on the basis of shape (e.g., Wang and Jean [1993]). Another related line of research
is diagram recognition which includes recognizing engineering drawings [Joseph and Pridmore 1992],
mail pieces [Wang and Srihari 1988], sketch maps [Mulder et al. 1988], math expressions [Zanibbi et al.
2002], and music symbols [Blostein and Haken 1999]. However, the targets in diagram recognition are
usually limited to symbols or objects drawn using thin lines which are not nearly as visually rich as
brush strokes in paintings.

In computer graphics, electronic virtual brushes have been developed to simulate the effects of brush
painting in a computer. One of the earliest works in this area is that of Strassman [1986] where paint
brushes are modeled as a collection of bristles that evolve over the course of a stroke. Hsu and Lee [1994]
introduced the concept of the skeletal stroke which allows strokes to be textured. This idea was later
used in a 2D stroke-based animation system called LivingCels [Hsu et al. 1999]. The Deep Canvas
system [Daniels 1999] allows brush strokes to be digitally created on 3D surfaces and then animated.
The virtual brush for oil painting was proposed by Baxter et al. [2001]. The virtual hairy brush for
oriental painting was suggested by Xu et al. [2004]. Kalnins et al. [2002] presented a system that
supports the drawing of strokes over a 3D model.

Our stroke decomposition work is related to the extensively researched problem of image segmen-
tation in computer vision (see Jain [1989] and Forsyth and Ponce [2002]). One particularly relevant
approach is that of Neumann [2003]. He proposed an image segmentation technique that uses pre-
defined graphical shape models. However, the technique requires manual selection of corresponding
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Fig. 1. Animating a flower painting. A painting is animated by decomposing it into a set of vectorized brush strokes. The brush

strokes are produced by taking the input image (a) and oversegmenting it initially (b). These segments are then merged into

coherent strokes (c) which are chosen to match strokes in a brush stroke library. These strokes are then textured (d) using the

input image as a texture source. Finally, the strokes are individually animated as vectorized elements (e), (f).

key points which is nontrivial for large-scale data sets. Wang and Siskind [2003] propose the cut ratio
method (a graph-based method) for segmenting images which supports efficient iterated region-based
segmentation and pixel-based segmentation. Marroquin et al. [2003] propose a Bayesian formulation
for modeling image partitioning and local variation within each region. All these methods either require
manual input or assume nonoverlapping regions.

Our brush stroke extraction approach involves oversegmenting the image and incrementally merging
parts. This technique is common in computer vision and has been used in computer graphics as well.
For instance, DeCarlo and Santella [2002] progressively group regions based on similarity of color
modulated by region size. Liu and Sclaroff [2001] use a deformable, model-guided, split-and-merge
approach to segment image regions. We use a similar approach except that we consider the similarity
with brush strokes from a library as well as color distributions on region boundaries.

There are other object-based editing systems that do not involve brush strokes. In Litwinowicz and
Williams’s image editing system [1994], users can align features such as points, lines, and curves to the
image and distort the image by moving these features. Salisbury et al. [1994] developed an interactive
image-based nonphotorealistic rendering system that creates pen-and-ink illustrations using a photo-
graph as the reference for outline and tone. In Horry et al.’s Tour-Into-the-Picture system [1997], the
user can interactively create 2.5D layers, after which flythrough animations can be generated. Barrett
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Fig. 2. Stroke extraction results of the fish painting using Gooch’s algorithm [2002]. The original painting is Figure 15(a). Three

typical segmentation levels are tested: fine (A), medium (B), and coarse (C). The contours of extracted strokes for each test are

shown on the left, while their corresponding rendered results are shown on the right. The statistics for these results are listed

in the table below.

and Cheney [2002] developed an image editing system that allows the user to interactively segment
out objects in the image and manipulate them to generate animations.

The closest work to ours is probably that of Gooch et al. [2002] because of some similarity with two
important parts of our algorithms—image segmentation and medial axis extraction—and the shared
goal of generating brush strokes. However, Gooch et al. address a very different problem: they wish
to convert one image (photographs or views of synthetic 3D scenes) to another (a nonphotorealistic
rendering) without preserving the image’s exact appearance. Moreover, their system’s output is a static
image. As such, it is not important to them whether or not the extracted strokes are amenable to
animation. Also, correct recovery of overlapping strokes is not an issue for them because they are
not trying to replicate exactly the appearance of the input image. By comparison, we wish to de-
compose an image of a painting to separate vectorized elements, or strokes, so that rendering those
strokes reproduces the original image’s appearance. In addition, in order to facilitate more natural-
looking animation, the extracted strokes have to be plausible strokes that the artist may have made.
Figures 2 and 3 show the results of applying Gooch et al.’s algorithm [2002] to two images of paintings.
It is apparent that the extracted strokes do not depict anything that corresponds to the real world. This
makes proper animation of the painting significantly more labor-intensive than if the correct original
strokes were extracted. In addition, the original appearance of the painting is not preserved.

2. PAINTING DECOMPOSITION APPROACH

Before we animate a painting, we first decompose its image into a plausible set of brush strokes. A
graphical overview of our decomposition approach is depicted in Figure 4 which also shows an example
image, the intermediate results, and the final output. The basic idea is simple: we segment the image,
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Fig. 3. Stroke extraction results of the flower painting using Gooch’s algorithm [2002]. The original painting is Figure 4. Four

typical segmentation levels are tested, A–D. The top row shows the contours of extracted strokes, while their corresponding

rendered results are shown in the second row. The segmentation parameter and number of strokes extracted are listed in the

table below.

use a brush library to find the best fit for each region, and refine the brush strokes found directly
from the input image. The brush library used was created with the help of a painter who specializes in
Chinese paintings.

2.1 Image Segmentation

Given an image of a painting, we first segment the image into regions of similar color intensities.
This segmentation is done to speed up the processing for brush decomposition. We tune the mean-
shift algorithm [Comaniciu and Meer 2002] to produce an oversegmented image because similarity of
color intensity is a necessary but not sufficient condition for brush stroke segmentation. The overly
conservative segmentation ensures that each region does not straddle multiple brush strokes unless
they overlap.

2.2 Stroke Extraction by Region Merging

After oversegmentation is done, we merge contiguous regions that likely belong to the same brush
strokes. Our merging process is inspired by domain-dependent image segmentation techniques proposed
by Feldman and Yakimovsky [1974] and Tenenbaum and Barrow [1977] (and more recently, by Kumar
and Desai [1999] and by Sclaroff and Liu [2001]). In these techniques, the image is initially partitioned
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Fig. 4. Steps involved in our painting analysis and reconstruction approach.

without the use of domain knowledge. Subsequently, pairs of adjacent regions are iteratively merged
based on the likelihood of being single world objects.

In our approach, the domain knowledge is derived from two sources: the intuition that color gradients
are low along brush strokes (the directional smoothness assumption), and a stroke library containing
the range of valid stroke shapes (the shape priors). The directional smoothness assumption was imple-
mented using average gradients and the difference between the average color intensities along mutual
boundaries. The stroke library was obtained by digitizing single strokes drawn by an expert artist, and
the resulting shape priors are used to avoid implausible shapes. The shape priors also handle brush
stroke overlap, and, as such, our technique goes beyond conventional segmentation.

Before merging takes place, the region merging criterion ε (explained shortly) is computed for each
pair of adjacent regions. Pairs of adjacent regions are then merged in ascending order of ε. In addition,
we merge (or steal) neighboring regions if the best-fit brush stroke straddles them.

We now define the region merging criterion ε. Suppose we have two adjacent regions γi and γ j . The
boundary region of γi with respect to γ j , denoted as ∂(γi, γ j ), is the set of pixels in γi that are close to some
pixel in γ j . In our work, close is defined as within 3 to 5 pixels of the neighboring regions, and adjacency
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Fig. 5. Representative cases in the region merging process to illustrate the need for εg , εc, εw and εm. (a) εg : Regions i and j
have the same color values in the boundary pixels, but they should not be merged because of the sharp difference between the

gradients. (b) εc: Regions i and j have the same gradients along their common boundary, but they should not be merged due to

the significant difference between the color values along the common boundary. (c) εw: Here, the combined shape similarity is

good enough to overcome the color difference. (d) εm: Both the component strokes, i and j , and the combined stroke are all good

fits with the strokes in the library. In this case, εm cancels out εw, causing the merging decision to be made based on the boundary

color and gradient distributions.

is defined in the 4-connected sense, that is, a pixel p is adjacent to q if p and q are horizontal or vertical
neighbors. Neighboring regions are merged if the following region merging criterion ε, defined as the
sum of five terms, is negative:

ε � κgεg + κcεc + κwεw + κmεm + κo. (1)

The first two terms, εg and εc, measure differences in the color distributions of the two regions
(gradient and intensity-based measures, respectively), while the next two terms, εw and εm, measure
the shape similarities to those of library brush strokes (the names stand for weighted shape similarity
and maximum shape similarity, respectively). Figure 5 illustrates why the terms εg , εc, εw, and εm are
necessary. The first four constants, κg , κc, κw, and κm, are all positive, while κo, a threshold offset, is
negative. The values of these coefficients used for decomposing the Chinese painting shown in Figure 4
are given in Table I. Similar values are used for the other results.

Dividing both sides of (1) by κo yields only 4 independent parameters. Although the ratio between
κg and κc and the ratio between κw and κm have some effect on the decomposition result, the most
significant factor is the ratio between κgκc and κwκm. For paintings with strong edges in the stroke
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Table I. The Coefficients Used in (1) to Decompose the

Painting Shown in Figure 4 (The values used for the other

experiments are similar).

Coefficient κg κc κw κm κo

Value 0.083 0.05 16 5 4.5

Fig. 6. Boundary region processing. Here, regions i and j are being considered for merging. ∂(γi , γ j ) and ∂(γ j , γi) are the boundary

regions used to partially decide if these regions should be merged. The red curve is one pixel thick, and consists of pixels common

to both regions i and j . The yellow region is inside region i, adjacent to the red common boundary curve, and 3 to 5 pixels thick.

The green region is similarly defined for region j . ∂(γi , γ j ) consists of yellow and red regions, while ∂(γ j , γi) consists of green

and red regions. Ci is the set of colors in the yellow region, and Cj , the set of colors in the green region. Gradients Gi and G j
are computed using pixels in ∂(γi , γ j ) and ∂(γ j , γi), respectively. Note that here we use only the boundary regions rather than

the entire image region. The local computation strategy is necessary to handle strokes with significant texture variation, for

example, strokes created by dragging a semiwet brush along a long trajectory.

contours, better results are obtained using relatively high values of κw and κm. In our experiments, we
test the thresholds on a small representative portion of the painting before using them on the whole
image.

2.2.1 Comparing Boundary Color Distributions. To compare two boundary color distributions, we
first extract two sets of gradients Gi and G j , and two sets of color values Ci and Cj (ranging from 0
to 255 in each color channel) for the pixels in the boundary regions ∂(γi, γ j ) and ∂(γ j , γi), respectively.
Figure 6 shows the boundary regions considered during the region merging process. The color distri-
bution criteria in (1) are defined as

εg �
∑
r, g ,b

(∣∣Gi − G j
∣∣ arctan

(
λg

( ||Gi||
σ 2(Gi)

+ ||G j ||
σ 2(G j )

)))
(2)

εc �
∑
r, g ,b

(∣∣Ci − Cj
∣∣ arctan

(
λc

( ||Ci||
σ 2(Ci)

+ ||Cj ||
σ 2(Cj )

)))
, (3)

where λg and λc are constants, and X , ||X ||, and σ 2(X ) are the mean, cardinality, and variance of X ,
respectively. In the above equations, by

∑
r, g ,b, we mean the two features are computed for the r, g , and

b channels separately and then added together. Note that ||Gi|| = ||Ci||, since both of them refer to the
number of pixels in the same boundary region. Similarly, ||G j || = ||Cj ||. In all our experiments, λg and
λc were set to 0.05 and 0.75, respectively.

The gradient term εg measures the distance between the average local gradients along the two
boundaries modulated by their combined certainties. Each measure of certainty increases with longer
mutual boundaries and smaller variances. The positive coefficient λg and function arctan() are used to
bracket the confidence value to [0, π/2). The color term εc functions exactly the same way as εg except
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Fig. 7. Sample library brush shapes. Only 9 out of 62 shown here. The bottom row displays the modeled brush shapes in the

library with their skeletons shown as red curves. The top row shows respective counterparts collected from real paintings.

that color intensities are compared instead of local gradients. Both εg and εc measure the homogeneity
of the texture variation within each stroke region; we assume the texture variation within a stroke
region to be homogeneous.

While there are alternatives to comparing boundary color distributions, our design decisions were
governed by simplicity and symmetry of measurement. Estimation of εg and εc is a computational
bottleneck because they are estimated for each adjacent region pair. The Kullback-Leibler divergence
(or relative entropy), for example, may be used, but it is asymmetric with respect to the two probability
distributions. The Chernoff distance, which is another information-theoretic distance measure, may
also be used but it requires computation of maxima (a nontrivial optimization problem).

2.2.2 Using the Brush Stroke Library. The key to our decomposition approach is the use of a brush
stroke library. The image of a painting can be segmented in a variety of ways, but the most natural
approach would be to segment the image into hypothetical brush strokes that originally generated the
painting. Each brush stroke depicts part of the scene; as such, the output of our segmentation allows
the animation of the painting to look more natural.

We generated our brush library by digitizing single brush strokes drawn by an artist with ten years
of experience in Chinese painting. This brush library is by no means exhaustive (future work is planned
in this area); in our case, the artist drew 62 different brush strokes that he thought were well repre-
sentative of all the possible ones used in Chinese paintings. Each brush stroke was then binarized and
its skeleton computed. Sample brush strokes from this library are shown in Figure 7.

The brush stroke library acts as shape priors to guide the segmentation in order to avoid irregularly-
shaped segments. The library also allows us to hypothesize overlaps between brush strokes which
facilitates their separation. Without the brush stroke library, we can extract strokes using only the
color distribution in the original input image. The decomposition results would likely be irregularly-
shaped segments; such segments would be unintuitive from the painter’s perspective and thus difficult
to animate. (Note that only regions that are relatively thick are processed using the brush library.
Strokes that are thin are processed differently, see Section 2.4.)

Figure 8 shows the effect of not using our stroke library, that is, the stroke decomposition is performed
solely based on color distribution without using any shape priors. Stroke decomposition results at dif-
ferent granularities are shown. (The different granularities refer to the different levels of coarseness
controlled by segmentation parameter settings.) Regardless of the granularity, the decomposition re-
sults are not satisfactory. Ensuring proper brush stroke extraction without an explicit library is highly
nontrivial. One could, for example, favor smoothness of the medial axis as well as the radius function
along the axis. However, using such a heuristic would produce mostly symmetric, straight blobs which
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Fig. 8. Stroke decomposition without our stroke library. (a)–(h) show stroke decomposition results at different granularities

(progressively coarser). Without the stroke library to guide the decomposition, stroke decomposition is uneven, resulting in

irregular shapes.

would appear unnatural for Chinese paintings in general. In addition to producing false negatives, the
smoothness preference may also result in strokes that practicing artists would find inappropriate from
an aesthetic point of view. Such strokes could very likely cause incorrect style or artist identification if
they were to be analyzed.

2.2.3 Comparing Shapes. We compare each region to the model strokes in our brush stroke library
and find the model brush stroke with the highest shape similarity. Since the scale, orientation, and
shift of the observed brush stroke can be arbitrary, we find the best transform to optimize similarity to
each library brush stroke. To compute the best transform, we first initialize the shift by aligning the
centroids, the orientation by aligning the major axis directions, and the scale by comparing areas. The
transform is then refined through gradient descent to maximize shape similarity. The appropriately
transformed library brush stroke with the highest similarity with the observed brush stroke is then
chosen.

There is extensive work on 2D shape matching; a good survey of techniques is given by Veltkamp [1999].
We chose a simple (but effective) approach to shape similarity in order to keep the computation cost
manageable. Specifically, we define a similarity measure ϕ(γi) which describes how well a given region
γi fits some stroke in the library:

ϕ(γi) = max
k

A(γi ∩ Tkiβk)

A(γi ∪ Tkiβk)
,

where A(X ) is the area of region X , βk is the kth stroke in the brush stroke library, and Tki is the optimal
transform (shift, rotate, and scale) used to align βk with γi. The functional ϕ() ranges between 0 and
1; it is 1 when the two shapes are identical. Unlike many shape comparison approaches that compare
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contours, our shape-based criterion directly makes use of areas. Using areas is more reliable because
there is high variability in the detail of the contours of brush strokes. (Presmoothing the contour may
result in loss of critical information.)

The shape-based criteria in (1) can be defined as:

εw � ϕ(γi)A(γi) + ϕ(γ j )A(γ j )

A(γi ∪ γ j )
− ϕ(γi ∪ γ j ) (4)

εm � max{ϕ(γi), ϕ(γ j )} − ϕ(γi ∪ γ j ). (5)

Thus, εw compares the area-weighted sum of similarity measures associated with fitting two brush
strokes against the area-weighted similarity measure for a single brush stroke for the combined regions.
A large positive value of εw means that it is better to fit the two regions with two brush strokes instead
of one. The second measure, εm, compares the similarities of the two strokes versus the combined stroke
directly; a large value signifies that it is better not to merge the regions. Both εw and εm are used in
objective function (1) because we need to balance two conflicting biases: the bias towards fitting a single
brush stroke on the merged regions (εw) versus the bias towards preserving current regions that have
very good fit with the library (εm).

2.3 Stroke Refinement and Appearance Capture

Note that the extracted brush shapes are not the final shapes; the brush strokes in the library are used
merely to guide the segmentation process. After the brush strokes have been identified, their shapes
are refined using the final segmented regions in the image. The shape of each identified brush stroke
is first scaled, shifted, and rotated to maximize shape similarity with the corresponding stroke region.
The modified shape is then dilated to assume the shape of the brush stroke as much as possible.

Once each shape has been refined, an optimization algorithm is used to produce a maximum length
skeleton within the region. This is accomplished by searching the positions of the two ends of the
skeleton along the boundary. The search is done within the vicinity of the skeleton of the best-fit library
brush stroke. A piecewise 3rd-degree Bezier curve is used to fit the skeleton.

The appearance of the brush stroke is then captured by directly sampling texture from the image.
This is necessary in order to reproduce the appearance of the original painting. Section 3 describes how
texture sampling is done.

2.4 Thin Brush Strokes

Because thin brush strokes are very difficult to model as part of a library, we treat them separately.
Each region is categorized either as a regular brush stroke or as a thin brush stroke based on a simple
aspect-ratio analysis of the regions. We label a stroke as being thin if the arc length of its skeleton is
at least 10 times longer than its average stroke width. Adjacent thin strokes will also be merged if the
difference between their average intensities is less than 10 levels, and the gradients at their mutual
boundaries differ by less than 10%.

Skeletons for thin brush strokes are extracted by using a thinning algorithm [Zhou et al. 1995]. Inter-
val piecewise Bezier splines [Sederberg and Farouki 1992; Su et al. 2002] are then used to represent the
thin strokes. A piecewise Bezier curve is used to fit the skeleton of the stroke with local widths (corre-
sponding to local brush thickness) and intensities recorded at the spline knots. We adapted Schneider’s
algorithm [1990] for this purpose. In addition to placing spline knots uniformly along the skeleton, we
place additional spline knots at locations of high variation of local width or intensity. We resample the
width and intensity until their local variations are within acceptable limits.

At this point, let us discuss two important issues associated with our decomposition algorithm. First,
what happens when the artist draws strokes that are not in the database? Our algorithm will try to
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Fig. 9. Steps in analyzing and synthesizing a single brush stroke. (The thin and regular strokes are handled differently.)

force-fit the best brush stroke shape from the library. If the drawn stroke is only a little different from one
of the library strokes and the drawn stroke is close to being a solid stroke (strong boundary edges with
little contrast inside), it is likely that only one stroke will be extracted. However, if the drawn stroke is
dramatically different from any stroke shape from the library, oversegmentation will likely happen (with
possible overlap) because there is no single brush stroke that can fit it well. The second issue relates
to the background of the painting. The background need not be white or some other constant color for
our algorithm to work; it will work with any uniformly (finely) textured background. If the background
is cluttered, it will be treated the same as the foreground objects and decomposed in exactly the same
way. Our algorithm will work as long as there is enough contrast between strokes for separation.

3. APPEARANCE CAPTURE AND SYNTHESIS OF SINGLE BRUSH STROKES

3.1 Single-Stroke Appearance Model

Figure 9 shows an overview of how single brush strokes are refined and synthesized (if necessary).
In the case of thin brush strokes, their skeletons are represented by interval B-splines with local

brush widths and intensities recorded at the spline knots. They can be directly rendered using this
information.

For regular brush strokes (i.e., those that are not considered thin), we devised a single-stroke appear-
ance model (Figure 10). With the single-stroke model, each brush stroke undergoes a more complicated
iterative process which consists of four steps:

(1) Color distribution sampling. Given the shape of the brush stroke (i.e., skeleton and contour), normal
lines are computed at regular sample points along its skeleton (Figure 10(c)). The color distribution
in RGB space of the brush stroke is sampled along each normal and is represented using a piece-
wise 3rd-degree Bezier curve. We used Schneider’s algorithm [1990] to automatically segment the
samples. We assume that the error in fitting the color distribution is Gaussian noise. The modeled
Gaussian noise is then added to the fit color distribution to prevent the synthesized appearance
from appearing too smooth.
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Fig. 10. Appearance capture of a single brush stroke. Given an input stroke (a), its contour and skeleton are initially extracted

(b). The skeleton is then smoothed, and lines perpendicular to it are sampled from the input image (c). The stroke’s appearance

can then be generated (d).

(2) Bezier curve resampling. The number of Bezier segments may differ for a pair of adjacent normal
lines. To simplify the next step of appearance prediction, we resample the number of segments of
adjacent normal lines so that they contain the smallest common multiple of the number of samples
in the originals. We refer to this process simply as Bezier curve resampling. Note that each sample
line has two sets of representative Bezier segments, one to match the previous neighbor and the
other to match the next neighbor. The exceptions are the first and last sample lines which have only
one set of Bezier segments.

(3) Color distribution prediction. Given the Bezier approximation of color and noise distributions, we
can then synthesize the appearance of the brush stroke. Every pixel in the brush stroke is filled by
linearly interpolating the nearest two normal lines. This can be easily done because the number of
segments per normal line pair is the same (enforced by Step (2)).

(4) Refinement of sampling location. The synthesized brush stroke is used to refine the locations of
the sampling lines along the brush skeleton. We start off with a sufficiently high sampling density
along the skeleton (sampling every pixel is the safest starting point). Sampling lines are chosen at
random and tested to see if the degradation is significant when they are removed. If so, they stay;
otherwise, they are permanently removed. This process (which is a form of analysis by synthesis)
is repeated until either the error between the reconstructed and actual brush strokes is above a
threshold or the number of iterations exceeds a limit.

3.2 Why Direct Texture Mapping is Inadequate

A straightforward method to capture and reproduce the appearance of a brush stroke would be to
triangulate it, followed by texture mapping. One possible tessellation strategy for dividing the brush
stroke area into triangle strips is proposed by Hertzmann [1999]. There are two main problems with
this approach. First, the shape may be significantly distorted in the process of animation, causing
nonuniform warping of texture. Although the texture deformation within one triangle is uniform, the
discontinuity of deformed texture would become obvious across the edges of adjacent triangles. In
contrast, our stroke appearance model ensures texture smoothness throughout the deformed stroke
area because deformation is continuously distributed according to the skeleton of the stroke. Figure 11
compares the results of significant shape distortion.

The second problem with direct texture mapping is that separate tessellation of the source and
destination brush stroke shapes would introduce the nontrivial problem of establishing a one-to-one
correspondence between the two tessellation results to map the texture. It is possible to handle this
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Fig. 11. Comparison of distortion effects on texture mapped brush stroke and our appearance model. Given the original stroke

(a) and triangulation for texture mapping (b), significant deformation may result during animation (c). Compare the distorted

strokes using texture mapping (d) and our appearance model (e). The close-up views of the two respective approaches, (f) and (g),

demonstrate that the texture mapped version cannot handle this type of significant distortion as well as our appearance model.

problem using a dynamic tessellation algorithm that generates consistent tessellation results, for exam-
ple, Alexa et al. [2000]. However, this would introduce significant additional complexity at the expense
of speed. In addition, ensuring minimum distortion in the brush texture is not obvious. As a result, it
is also very hard to guarantee temporal coherence during animation if direct texture mapping is used.
Our appearance model does not suffer from these problems.

Our appearance model also naturally supports level-of-detail (LOD) for strokes and has the capability
of predicting the appearance of areas that may be partially occluded. This predictive power is used for
producing good initial appearances in the process of separating overlapping brush strokes (Section 4).

Although our appearance model outperforms texture mapping in terms of rendering quality, ren-
dering through direct texture mapping is much faster, typically at interactive speeds. Also when the
brush shape deformation is not too significant, establishing the one-to-one correspondence between
tessellation results for the initial and deformed brush shapes is not very challenging. Thus, we provide
two rendering modes in generating an animation clip from a collection of brush strokes extracted from
paintings. During the online authoring process, texture mapping is used for rendering. This is to en-
able the animator to manipulate the brush strokes and preview the results in realtime. Once the online
authoring stage is accomplished, the actual animation clip is generated using our brush appearance
model.

4. SEPARATING OVERLAPPING BRUSH STROKES

Brush strokes typically overlap in paintings (see, for example, Figure 12(a)). In order to extract the brush
strokes and animate them in a visually plausible way, we have to provide a mechanism to separate the
recovered brush strokes at the overlap regions. Techniques for separation of transparent layers exist in
the computer vision literature. For example, Farid and Adelson [1999] show how to separate reflections
off a planar glass surface placed in front of a scene. Their method can restore the image of the scene
behind the glass by removing the reflections. Unfortunately, their algorithm does not handle the more
general problem of image separation, that is, under arbitrary motion and using only one image (as in

ACM Transactions on Graphics, Vol. 25, No. 2, April 2006.



Animating Chinese Paintings Through Stroke-Based Decomposition • 253

Fig. 12. Separation of overlapping brush strokes. Given the original image of three overlapping strokes (a), we obtain the

separate strokes (b), with close-up views (c). These strokes can then be easily animated (d), (e).

our work). Another two-layer separation technique is that of Szeliski et al. [2000]. However, they use
multiple input images, assume planar motion for the two layers, and apply an additive model with no
alpha.

Levin and Weiss [2004] and Levin et al. [2004] also studied the problem of separating transparent
layers from a single image. In the first approach, gradients are precomputed, following which users
are required to interactively label gradients as belonging to one of the layers. Statistics of images of
natural scenes are then used to separate two linearly superimposed images. It is not clear if such an
approach would work for typical Chinese paintings (which are not photoreal) even with the benefit of
manual labeling. The second approach uses a similar framework, except that it minimizes the total
number of edges and corners in the decomposed image layers. However, the minimal edge and corner
assumptions are not valid for typical Chinese paintings due to the sharp edges of brush strokes. By
comparison, our assumption of minimum variation on the texture of brush strokes along the stroke
direction is more appropriate for our domain and turns out to be effective for automatically separating
overlapping brush strokes.

The overlap regions can be easily identified once we have performed the fitting process described in
Section 2.3. Once the library brush strokes have been identified, their contours are refined using a simi-
larity transform (scaling, shifting, and rotating) to maximize shape similarity with their corresponding
stroke regions. The transformed brush strokes are further dilated enough to just cover the observed
strokes in the image, after which the overlapping areas are identified.

We then apply an iterative algorithm to separate the colors at the overlap region. To initialize the
separate color distributions, we use the same strategy described in Step (3) of Section 3 to interpolate
the colors in the overlap regions using neighboring Bezier functions with known color distributions.

In real paintings, the color distribution at the overlap region is the result of mixing those from
the separate brushes. We adapted the mixture model proposed by Porter and Duff [1984] to model
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overlapping strokes as matted objects because the combination color in the overlapping brush region
is generally the result of mixing and optical superimposition of different pigment layers. We did not
use more sophisticated models such as the Kubelka-Munk model [Judd and Wyszecki 1975, pp. 420-
438] because the problem of extracting all the unknowns from only one image is ill-posed. While the
problem is similar to matting (e.g., Chuang et al. [2001]), matting does not explicitly account for brush
stroke texture and orientation. Currently, we separate only pairs of brushes that overlap. Extending
our method to handle multiple overlapping strokes is possible at higher computational cost.

Let ψi(p) and ψ j (p) be the colors of two overlapping brush strokes at a given pixel location p, with
brush stroke i over brush stroke j ; let αi(p) be the transparency of brush stroke i at p; and let ψr (p)
be the resulting color at that pixel. We model the appearance of these overlapping strokes using the
(unpremultiplied) compositing equation [Porter and Duff 1984]:

ψr (p) = αi(p)ψi(p) + (1 − αi(p))ψ j (p). (6)

In our case, ψr (p) is observed, and so our goal will be to solve for αi(p), ψi(p), and ψ j (p) at each pixel
p for which the strokes overlap. This problem is, of course, underconstrained by this single equation.
Thus, we will solve for the values of these three variables that minimize a certain expression encoding
some additional assumptions about the appearance of the strokes. In particular, we will assume that
the colors ψi and ψ j vary minimally along the lengths of their strokes and that the transparency αi
varies minimally along both the length and breadth of the upper stroke.

Our objective function, which we will minimize using gradient descent subject to (6), is as follows:∑
p∈γi∩γ j

(Vi(p) + Vj (p) + λt Ti(p)). (7)

Here, Vi can be thought of as the excess variation of the color of stroke i along its length, while Ti is
the variation of the transparency of stroke i along both its length and breadth.

To evaluate the excess variation, we will refer to the average variation Vi(p) of the color ψi(p) in the
parts of the stroke that do not overlap j in which that same color appears. We will call this exposed
region γi\ j (ψi(p)). Let  be the direction that is parallel to the length of the stroke at p. Then the average
variation of the color ψi is given by

Vi(p) = 1

A(γi\ j (ψi(p)))

∑
p∈γi\ j (ψi (p))

∥∥∂ψi(p)/∂
∥∥ . (8)

The excess variation Vi(p) is then given by the amount to which the derivative of the color of stroke
i at p along its length exceeds the average variation of that color in other parts of the stroke:

Vi(p) = max
{
0,

∥∥∂ψi(p)/∂
∥∥ − Vi(p)

}
. (9)

Finally, the variation of the transparency is given by the sum of the derivatives of the transparency
both along and across the stroke:

Ti(p) = ∥∥∂αi(p)/∂
∥∥ + ∥∥∂αi(p)/∂b

∥∥ , (10)

where b is the direction perpendicular to .
We generally set λt to a small number, around 0.05, since minimizing color variation appears to be

more important than transparency variation in most cases. An example of brush separation is shown
in Figure 12. The original brush strokes are shown in (a), and the separated brush strokes are shown
in (b).

Our compositing model is related to the Kubelka-Munk model [1975] which assumes that additivity
is valid for the absorption and scattering coefficients in the overlapping pigment layers. In other words,
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Fig. 13. The stroke decomposition process. We illustrate the decomposition process for input (a) by focusing on three brush

strokes delineated in red (b). After oversegmentation (c), candidate stroke regions are extracted (d), followed by fitting the best

library strokes (e). However, the best fit strokes typically do not completely cover the observed strokes (f), with blue contours

representing the fit strokes and red contours representing the observed strokes. To correct the problem, we search (through

gradient descent) the scaled rigid transform necessary for each fit stroke to minimally cover the observed stroke (g,h).

Kr = ci Ki + (1 − ci)K j and Sr = ci Si + (1 − ci)Sj , where Kr , Ki, K j are the absorption coefficients
in the overlapping area, brush stroke i, and brush stroke j , respectively. Sr , Si, Sj are the respective
scattering coefficients. ci, (1 − ci) are the percentages of the amounts of pigment carried by the brush
strokes i and j , respectively. It is easy to see that our additive compositing equation is a highly simplified
version of the Kubelka-Munk model.

The stroke decomposition and animation results show that the simple additive compositing model
(6) is rather effective. Our compositing model is significantly less complex than the Kubelka-Munk
model. In addition, it is not clear how the Kubelka-Munk model can be reliably used as it requires the
simultaneous recovery of multiple transparent layers from only one image.

A straightforward method for separating overlapping strokes would be to simply discard color in-
formation at the region of overlap and reconstruct via smooth interpolation from neighboring regions.
However, when an artist paints a single stroke, the color distribution within that stroke is typically
not uniform and not smooth. Reconstructing the missing overlap regions by just smoothly interpolat-
ing from neighboring regions will not only result in an overly smooth appearance but also a visually
incorrect one. By comparison, our technique accounts for the nonuniformity in color distribution.

5. DECOMPOSITION AND RECONSTRUCTION RESULTS

Figure 13 shows step-by-step the process of our stroke decomposition approach on a flower painting.
Here, for ease of illustration, we focus on only three extracted brush strokes. Another illustrative
example is given in Figure 14(a–i) where, both successful and failed stroke decomposition cases are
shown. These cases are discussed in Section 7. Decomposition results for entire paintings are shown in
Figures 4 (a different flower painting) and 15 (fish painting). As shown in all the examples, the appear-
ance of these paintings have been very well captured using our brush stroke library and appearance
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Fig. 14. Stroke decomposition example for a shrimp painting. Given the input (a), we limit our analysis to three segments of

the shrimp’s body, delineated in red (b). From (c) to (f), respectively: close-up of original, after oversegmentation, after extracting

candidate strokes, and after fitting library strokes. As expected, the best-fit library strokes (in blue) do not completely cover

the observed strokes (in red) (g). The refined best-fit library strokes that minimally cover the observed stroke region are shown

in (h) and (i). These results are a little different from the manual decomposition results (j), done by the original painter. By

superimpositing both results (k), we see that the large brush strokes have been correctly extracted (in green); those that were

incorrect were caused by oversegmentation (in purple). The enlarged views of the overly segmented regions are shown in (l).

model. In the stroke decomposition result shown in Figure 15(e), most parts of the fish body that anima-
tors would like to manipulate have been extracted as separate strokes. This decomposition is more con-
venient for animation than the results obtained without using our stroke library (Figure 8). Without us-
ing the stroke library, regions are either oversegmented (Figure 8(a–c)), undersegmented (Figure 8(g–h))
or inconveniently segmented (recovered strokes straddling multiple actual strokes, Figure 8(d–f)).

There are three reasons why stroke decomposition using only a simple shape smoothness assumption
instead of our stroke library (Section 2.2.3) produces less desirable results. First, strokes with large
variations in width and skeleton shape tend to be segmented incorrectly due to the violation of the
smoothness assumption. Second, irregular contours of brush strokes (which occur rather often) would be
similarly penalized, especially when overlapping occurs. Third, the smoothness assumption is intolerant
to noisy or incomplete skeletons. Unfortunately, skeletons are noisy or incomplete in the initial stages
of stroke decomposition, especially in the vicinity of overlaps. By comparison, our stroke library-based
approach is more robust because it incorporates more accurate domain-specific knowledge in the form
of commonly used stroke shapes.

In the example of reconstructing strokes from a Chinese fish painting (Figure 15), it may seem
surprising to observe that the eye of the fish is captured in our brush stroke decomposition even though
it has not been segmented correctly. (It is difficult to segment correctly here because the size of the eye
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Fig. 15. Chinese painting of a fish. The input image (a) is first oversegmented (b). Candidate stroke regions are ex-

tracted (c) and fitted with library strokes (d). Note that the thin strokes are represented by their skeletons to distinguish

them from regular brush strokes. The fitted regular library strokes are then refined through dilation (e). The dilation ef-

fect can be seen by superimposing the strokes (f). The painting can then be synthesized (g). Close-up views of the origi-

nal (h) and synthesized (i) show the slight blurring effects. Selected keyframes of the animated fish painting are shown in

Figure 16.
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Fig. 16. Animated fish painting. Out of 150 frames in the animation clip, we show (a) the 1st frame, (b) the 20th frame, (c) the

60th frame, and (d) the 90th frame. This animation is in the supplemental materials in the ACM Digital Library.

Fig. 17. A comparison between our decomposition result with manual stroke decomposition. (a) The flower portion of Figure 1. (b)

The decomposition result (candidate stroke regions). (c) The result of manual decomposition by an experienced Chinese painter

who did not create the painting. The blue lines are the edges of strokes extracted with high confidence, while lines in yellow are

extracted with much less confidence (i.e., deemed ambiguous). Although (b) is different from (c) in a number of places, the major

differences are mostly on the yellow lines where multiple interpretations exist. Our recovered brush strokes agree well in areas

where the brush strokes are distinguishable by eye.

is very small.) The reason this works is that everything within the boundary of the refined brush stroke
is considered its texture and is thus sampled. Note that, if overlapping brush strokes are detected, the
algorithm described in Section 4 will automatically recover the appearances of the separated brush
strokes. It is possible for a refined brush stroke shape to be bigger than it should be and thus cover a
little of the background or other brush strokes (as is in the case of the fish’s eye in Figure 15). While
an imperfect segmentation will usually not affect the synthesized appearance of a still image, it will
however introduce more sampling artifacts during animation.

We have also compared the results of our automatic stroke decomposition with those manually ex-
tracted by experts. Figure 17 shows such an example. Typically, while our results are not identical to
their manually extracted counterparts, the differences are minor in places where the brush strokes are
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Fig. 18. Graphical user interface for animation. This interface uses as input the vectorized strokes generated by our decompo-

sition algorithm. The blue dots are the control points of Bezier curves associated with the groups of brush strokes representing

the fish’s tail. There are four groups shown here. Note that each group is represented by a different line color, and each group’s

contour is that of the union of its constituent brush strokes. The shape of each group is manipulated by moving the control points.

The top and bottom fish images are generated before and after manipulation, respectively.

obvious to the eye. Most of the differences are in locations of significant ambiguity where even experts
have trouble separating brush strokes.

6. ANIMATING PAINTINGS

Figure 18 shows a screen shot of the user interface of our application program designed for animation.
The animator can select and move any control point of either the skeleton or the contour of the stroke
to be animated. The appearance of the modified stroke is automatically generated by rendering our
single-stroke appearance model. The key frames for the animation can thus be produced through very
simple user manipulation.

The in betweens are generated through interpolation. Note that our animation is done at the brush-
stroke level. Our brush appearance and mixture models allow the animated painting to be visually
acceptable.

Our animation system has the following important features that make it fast and easy to use.

—Addition and removal of brush strokes. Brush strokes from other paintings can be imported and used.

—Grouping of brush strokes for simultaneous manipulation or editing.

—Ability to edit shape and location of the common boundary between two adjacent strokes or to man-
ually decompose a stroke into multiple separate strokes. The latter feature is useful if parts of the
decomposition results are not considered fine enough.
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Fig. 19. Animated lotus pond painting. Out of the 580 frames in the animation clip, we show the 1st frame (a), the 196th frame

(b), the 254th frame (c), and the 448th frame (d). The 1st frame corresponds to the original painting. The animation is in the

supplemental materials in the ACM Digital Library.

—Preservation of stroke connectivity so that changes to any brush stroke will be appropriately propa-
gated.

—Shape interpolation using critical points (points with locally maximal curvature) on the stroke bound-
ary to better preserve the local shape characteristics during animation.

—Timeline support for editing motion trajectories (e.g., changes in speed or phase). The motion trajec-
tory for each brush stroke can be modified independently.

—The shapes of the brush contour and its skeleton are directly linked; if one of them is manipulated,
the other is automatically updated.

—The user can operate directly on either the candidate strokes (Figure 15(c)) or the refined strokes
(Figure 15(e)). Note that in Figure 18, groups of candidate strokes are manipulated.

Snapshots of animations can be seen in Figures 1 and 19 with more complete animation examples
shown in the supplementary electronic materials in the ACM Digital Library.

It is possible for our stroke decomposition algorithm to make mistakes. It may oversegment (requiring
more work to animate), undersegment (resulting in inadequate degrees of freedom for animation), or
even produce segments straddling multiple actual strokes. Some of the features in our authoring tool are
designed specifically to allow users to manually touch up the decomposition results or correct mistakes.
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7. DISCUSSION

There are other possible methods for extracting brush strokes. The simplest is to have the artist draw
directly using an interface to the computer, for example, a haptic interface [Baxter et al. 2001]. Another
method would be to record the painting process and infer the brush strokes. The idea would be to
digitize the intermediate results of the painting after every stroke or groups of strokes. This may be
accomplished by using an overhead camera that sees the entire painting. To avoid the problem of
occlusion, the artist could leave the field of view of the camera after each stroke or a small number
of strokes. However, the painting process is no longer natural. The artist has to adapt to the change
in the conditions for painting by using the haptic interface or (worse) the stop-and-paint approach.
Furthermore, existing paintings could not be handled.

Another straightforward (but more manually intensive) alternative is to design an authoring tool
that allows users to merge small stroke segments into meaningful ones or have users roughly delineate
the boundaries of strokes. This solution would provide a higher degree of control but comes at the cost
of extensive manual effort. Automatic color separation such as ours would have to be incorporated in
such a tool (common image editing tools such as PhotoshopTM do not have such a feature).

For the animation example shown at Figure 19, it took a single animator 40 hours to use our authoring
system to produce a 40-second clip. While there is no record of the exact cost of making the famous
18-minute 1988 video, Shan Shui Qing (Love for Mountains and Rivers), descriptions of the work
involved (e.g., Chen [1994]; Chen and Zhang [1995]) suggest that it required dozens of people working
for about a year.

As shown in Section 5, the reconstructed images look very close to the original ones (e.g., Figure 15).
On closer examination, however, we can see artifacts introduced by our brush stroke representation
(Figure 15(h) and (i)). In all our examples, we see that the reconstructed paintings appear fuzzier and
the boundaries of the brush strokes are more irregular. This is due to the discrete sampling of the
appearance along the brush skeleton (with intermediate areas merely interpolated). In addition, the
sampling along the brush skeleton is done independently, that is, there is no spatial coherence between
samples. We plan to investigate sampling techniques that better handle spatial continuity along the
brush stroke skeleton.

While many brush strokes appear to be correctly extracted, our algorithm did make mistakes espe-
cially in areas where brush strokes overlap significantly and where the strokes are thick and short. One
way of improving this is to extract the brush strokes globally, for example, ensuring better continuity
in the brush stroke direction. In addition, our overlap separation algorithm is currently applicable to
overlaps between two brush strokes only. It is not clear how robust our current algorithm is to overlaps
of an arbitrary number of brush strokes but this is a topic we intend to investigate further.

What happens if we were to use only a subset of brush stroke library for the decomposition process?
Figure 20 shows that the effect is oversegmentation which worsens as the size of the library is decreased.
This is not surprising as the impoverished versions of the brush stroke library are unable to adequately
account for the rich variety of stroke shapes in the painting.

We used Chinese-style and watercolor paintings for our work. There are instances where our algo-
rithm did not work well, for example, Figure 21, where there are extensive overlaps between many
short brush strokes. Our brush appearance model is also no longer a good fit when there is large color
variation along the brush strokes. Because the decomposition for such a painting would result in a large
number of small brush strokes, the process of animating the painting would be very labor intensive.
We have plans to work on images of paintings with significantly different styles (e.g., Renaissance oil
paintings). It is likely that we will need to expand our brush stroke library to handle the different brush
stroke styles available in different types of paintings.
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Fig. 20. The effect of different library sizes on decomposition. The example in Figure 17 is used for comparison. (a) is the result

using the full library (62 brush strokes), (b) is the result using 31 brush strokes, (c) with 16 brush strokes, and (d) with 8 brush

strokes. The brush stroke shapes in the libraries used for (b–d) were randomly chosen from the full library.

Fig. 21. A failure example. One painting that our algorithm failed to decompose properly is The Seine at La Grande painted by

Georges Seurat in 1888 (a). The stroke decomposition algorithm resulted in a very large number of small brush strokes. (b) is the

close-up view of the area enclosed by the red box in (a). Its corresponding decomposition result is shown in (c) with the final refined

brush strokes shown at (d). (We do not include the stroke skeletons in the stroke regions for ease of visualization.) Obviously,

animating paintings of this kind using our current algorithm would be very labor intensive. Secondly, our brush appearance

model is also no longer a good fit since there is large color variation along the brush strokes. This makes our stroke extraction

less accurate.

Our algorithm can fail even for some Chinese paintings; more specifically, it is unable to decompose
paintings drawn in a realistic style. Figure 22 shows such a failure case. In these paintings, both the
shapes and the color of brush strokes are deposited strictly according to the actual appearance and
geometry of real-world objects. This makes our brush appearance model no longer a good fit since there

ACM Transactions on Graphics, Vol. 25, No. 2, April 2006.



Animating Chinese Paintings Through Stroke-Based Decomposition • 263

Fig. 22. A failure case for Chinese painting. Our decomposition algorithm usually fails for realistic Chinese paintings such as

this one (a). The right side of the figure shows a close-up of the painting, the decomposition result (candidate stroke regions),

and the result of superimposing the decomposition result onto the original painting. Note the oversegmentation effect due to the

original’s arbitrarily shaped brush strokes and significant color variation.

can be large color variations along the stroke skeletons. In addition, our stroke library would no longer
be adequate because the shapes of brush strokes are drawn more arbitrarily to resemble the shapes
of real-world objects. To make the painting as realistic as possible, many tiny strokes (which may
significantly overlap with each other) are often drawn. This style of painting violates the mainstream
principle of the economical use of brush strokes for Chinese paintings.

Unfortunately, even a reasonable decomposition may not always be amenable to animation. This is es-
pecially true if the painting involves many small objects clustered closely together and if the animation
requires complex interacting motions. A good example of such a case is shown in Figure 23. While the
decomposition of the grape painting looks reasonable, animating each grape and leaf relative to other ob-
jects would be challenging. For such complicated paintings, it is not clear what a good solution would be.

Currently, our stroke model extracts transparency only at overlapping regions. The proper procedure
would be to calculate transparency throughout the overlapping stroke region. Unfortunately, the sep-
aration of colors using a single image is ill-posed. We handle this by specifying relative transparency
at the overlap regions with spatial regularization. One possible solution is to allow users to manually
(locally or globally) specify the natural transparency of a stroke. In our current implementation, Equa-
tion (6) assumes an additive color model, while ink tends to be subtractive. We would like to explore
more sophisticated pigment mixing models in the future.

Another limitation of our algorithm is that stroke separation and texture modeling steps are in-
dependent. As Figure 14(k-l) shows, our algorithm resulted in oversegmentation. This is caused by
significant texture changes within the failed regions. Our current stroke decomposition algorithm is
designed under the assumption that texture variation within a stroke region is approximately homo-
geneous. Unfortunately, for paintings whose pigment/ink diffusion effect is significant, the uniform
texture variation assumption no longer holds, leading to the failure cases in Figure 14. To handle such
a problem, we would have to incorporate texture modeling in the stroke decomposition process and
replace the uniform texture variation assumption with the step of directly fitting a texture model. This
would obviously increase the computational cost of the decomposition process.
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Fig. 23. A decomposition result unsuitable for animation. The input image of a grape painting (a), the initial segmented image

regions (b), and the extracted candidate strokes with skeletons (c).

Our current implementation is unoptimized. For the flower example shown in Figures 1 and 4 (with
resolution 560 × 1080), the times taken for each step on a Pentium III 1.2GHz computer are image
segmentation (10 secs), region merging (5 hrs), regular stroke refinement (40 mins), regular stroke
appearance capture (35 mins), thin stroke detection (10 mins) and interval spline fitting (1 min). We
plan to optimize our code to speed up the performance. Note that these steps are done offline and are
executed only once. During the actual online editing process, rendering of manipulated brush strokes
is at interactive rates (30fps when simple texture-mapping is used for previewing).

Once the brush strokes have been identified, it is entirely possible to analyze the painting by analyzing
the brush strokes themselves. By looking at the distribution of directions, stroke thickness, variation
of thickness along each stroke, and the color distribution along each stroke and within the painting,
the task of identifying the painting style and even the artist may be easier.

Decomposition results with arbitrarily shaped segments complicate the process of animation and
would very likely adversely affect the final visual output quality. Overly small segments increase the
amount of effort involved in specifying their motion trajectories. (This effort can be reduced by grouping
the small segments, but the grouping operation can be laborious and tedious as well.) On the other
hand, overly large segments straddle multiple brush strokes (wholly or partially) which severely limits
the degrees of freedom in animating. In addition, in cases where the large segments straddle partial
brush strokes, it is very difficult to ensure a correct appearance if the large segments are manipulated
independently because the separated brush strokes are distorted differently.

Our current decomposition algorithm does not handle very closely drawn brush strokes very well.
In such cases, it may create overly large refined strokes. It is possible to improve the decomposition
process by looking at boundary concavities and hypothesizing those to be boundaries of at least two
strokes. This is a difficult problem that we intend to investigate further.

Our current rendering implementation uses a simplistic approach to handling overlapping normal
lines (which occur when the user puts a sharp kink into the edited stroke, for example). The renderer
merely averages the color distributions of the overlapping normal lines. It is not clear what the right
solution to this situation is but the technique used by Hsu and Lee [1994] may be better. Another failure
mode occurs when the brush stroke is too distorted, causing severe deformation of the local appearance.
Fortunately, these problems do not occur very often.
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8. CONCLUSIONS

We have shown a new technique for animating paintings from images. What is particularly interesting
is that the animation is done at the brush-stroke level.

In order to decompose the image of a painting into hypothesized strokes, we proposed an approach
that uses a library of brush stroke shapes to aid region segmentation. Our brush stroke model plays
a critical role in allowing the painting’s appearance to be captured and subsequently rendered with
good fidelity. Finally, our overlap separation algorithm allows full appearance of strokes to be extracted
despite the presence of overlaps.

A key contribution of our work is the automatic recovery of separate, vectorized brush strokes. This is
a tremendous time saver compared to manual segmentation especially when the painting has hundreds
of brush strokes. In addition, proper automatic color separation in the overlap regions is not trivial and
is not a feature in common image editing tools such as PhotoshopTM. The animation is significantly
easier once the segmentation is done.

Experimental results show that our method of decomposition is capable of producing high-quality
reconstructions of paintings. The quality of the sample animations also serves to illustrate the effec-
tiveness of our decomposition approach. (The animation clips created using our technique can be found
as supplementary electronic materials to this article in the ACM Digital Library.)
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