
New Challenges in Petascale 
Scientific Databases

Alex Szalay
The Johns Hopkins University



Living in an Exponential World

• Scientific data doubles every year
– caused by successive generations 

of inexpensive sensors + 
exponentially faster computing

• Changes the nature of scientific computing
• Cuts across disciplines (eScience)
• It becomes increasingly harder to extract knowledge
• 20% of the world’s servers go into huge data centers 

by the “Big 5”
– Google, Microsoft, Yahoo, Amazon, eBay

• So it is not only the scientific data!
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Astronomy Trends

CMB Surveys (pixels)
• 1990   COBE 1000
• 2000 Boomerang 10,000
• 2002 CBI 50,000
• 2003 WMAP 1 Million
• 2008 Planck 10 Million

Galaxy Redshift Surveys (obj)
• 1986  CfA 3500
• 1996  LCRS                23000
• 2003  2dF 250000
• 2005  SDSS              750000

Angular Galaxy Surveys (obj)
• 1970  Lick 1M
• 1990  APM 2M
• 2005  SDSS 200M
• 2009  PANSTARRS  1200M
• 2015  LSST 3000M

Time Domain
• QUEST
• SDSS Extension survey
• Dark Energy Camera
• PanStarrs
• SNAP…
• LSST…

Petabytes/year by the end of the decade…



Collecting Data

• Very extended distribution of data sets:
data on all scales!

• Most datasets are small, and manually maintained 
(Excel spreadsheets)

• Total amount of data dominated by the other end
(large multi-TB archive facilities)

• Most bytes today are collected via electronic sensors



Next-Generation  Data Analysis

• Looking for
– Needles in haystacks – the Higgs particle
– Haystacks: Dark matter, Dark energy

• Needles are easier than haystacks
• ‘Optimal’ statistics have poor scaling

– Correlation functions are N2, likelihood techniques N3

– For large data sets main errors are not statistical
• As data and computers grow with Moore’s Law, 

we can only keep up with N logN
• A way out: sufficient statistics? 

– Discard notion of optimal (data is fuzzy, answers are approximate)
– Don’t assume infinite computational resources or memory

• Requires combination of statistics & computer science
– Clever data structures, new, randomized algorithms



Data Intensive Scalable Computing

• The nature of scientific computing is changing
• It is about the data
• Adding more CPUs makes the IO lag further behind
• Getting even worse with multi-core
• We need more balanced architectures



Amdahl’s Laws

Gene Amdahl (1965):  Laws for a balanced system
i. Parallelism: max speedup is S/(S+P)
ii. One bit of IO/sec per instruction/sec (BW)
iii. One byte of memory per one instruction/sec (MEM)
iv. One IO per 50,000 instructions (IO)

Modern multi-core systems move farther away from 
Amdahl’s Laws (Bell, Gray and Szalay 2006)

For a Blue Gene the BW=0.013, MEM=0.471.
For the JHU cluster BW=0.664, MEM=1.099



Gray’s Laws of Data Engineering

Jim Gray:
• Scientific computing is revolving around data
• Need scale-out solution for analysis
• Take the analysis to the data!
• Start with “20 queries”
• Go from “working to working”



Reference Applicatons

Several key projects at JHU
– SDSS: 10TB total, 3TB in DB, soon 10TB, in use for 6 years
– NVO Apps: ~5TB, many B rows, in use for 4 years
– PanStarrs: 80TB by 2009, 300+ TB by 2012
– Immersive Turbulence: 30TB now, 300TB next year,

can change how we use HPC simulations worldwide
– SkyQuery: perform fast spatial joins on the largest 

astronomy catalogs / replicate multi-TB datasets 20 times for 
much faster query performance (1Bx1B in 3 mins)

– OncoSpace: 350TB of radiation oncology images today, 
1PB in two years, to be analyzed on the fly 

– Sensor Networks: 200M measurements now, billions next 
year, forming complex relationships



Goal
Create the most detailed map 
of the Northern sky 

“The Cosmic Genome Project”
Two surveys in one

Photometric survey in 5 bands
Spectroscopic redshift survey

Automated data reduction
150 man-years of development

High data volume
40 TB of raw data
5 TB processed catalogs
Data is public

2.5 Terapixels of images
Now officially FINISHED
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SDSS Now Finished!

• As of May 15, 2008 SDSS is officially complete
• Final data release (DR7.2) later this year
• Final archiving of the data in progress

– Paper archive at U. Chicago Library
– Digital Archive at JHU Library

• Archive will contain >100TB
– All raw data
– All processed/calibrated data
– All version of the database
– Full email archive and technical drawings
– Full software code repository



Database Challenges  

• Loading (and scrubbing) the Data
• Organizing the Data (20 queries, self-documenting)
• Accessing the Data (small and large queries, visual)
• Delivering the Data (workbench)
• Analyzing the Data (spatial, scaling…)



MyDB: Workbench

• Need to register ‘power users’, with their own DB
• Query output goes to ‘MyDB’
• Can be joined with source database
• Results are materialized from MyDB upon request
• Users can do:

– Insert, Drop, Create, Select  Into, Functions, Procedures
– Publish their tables to a group area

• Data delivery via the CASJobs (C# WS)

=> Sending analysis to the data!



User Level Services

• Three different applications on top of the same core
– Finding Chart (arbitrary size)
– Navigate (fixed size, clickable navigation)
– Image List (display many postage stamps on same page)

• Linked to
– One another
– Image Explorer (link to complex schema)
– On-line documentation



Geometries

• SDSS has lots of complex boundaries
– 60,000+ regions
– 6M masks, represented as spherical polygons

• A GIS-like library built in C++ and SQL
• Now converted to C# for direct plugin into 

SQLServer 2005 (17 times faster than C++)
• Precompute arcs and store in database for rendering
• Functions for point in polygon, intersecting polygons, 

polygons covering points, all points in polygon
• Using spherical quadtrees (HTM)



Public Use of the SkyServer

• Prototype in data publishing
– 450 million web hits in 6 years
– 930,000 distinct users

vs 15,000 astronomers
– Delivered 50,000 hours

of lectures to high schools
– Delivered >100B rows of data
– Everything is a power law

• Interactive workbench
– Casjobs/MyDB
– Power users get their own database, no time limits
– They can store their data server-side, link to main data
– They can share results with each other
– Simple analysis tools (plots, etc)
– Over 1,600 ‘power users’



Skyserver Sessions

Vic Singh et al (Stanford/ MSR)



Why Is Astronomy Special?

• Especially attractive for the wide public
• Community is not very large
• It has no commercial value

– No privacy concerns, freely share results with others
– Great for experimenting with algorithms

• It is real and well documented
– High-dimensional (with confidence intervals)
– Spatial, temporal

• Diverse and distributed
– Many different instruments from many different 
places and times

• The questions are interesting
• There is a lot of it (soon petabytes)

WORTHLESS!



The Virtual Observatory

• Premise:  most data is (or could be online)
• The Internet is the world’s best telescope:

– It has data on every part of the sky
– In every measured spectral band: 

optical, x-ray, radio..
– As deep as the best instruments (2 years ago).
– It is up when you are up
– The “seeing” is always great
– It’s a smart telescope: 

links objects and data to literature on them
• Software became the capital expense

– Share, standardize, reuse..



National Virtual Observatory

• NSF ITR project, “Building the Framework for the 
National Virtual Observatory” is a collaboration of 17 
funded and 3 unfunded organizations
– Astronomy data centers
– National observatories
– Supercomputer centers
– University departments
– Computer science/information technology specialists

• Similar projects now in 15 countries world-wide
=> International Virtual Observatory Alliance



SkyQuery

• Distributed Query tool using a set of web services
• Many astronomy archives from 

Pasadena, Chicago, Baltimore, Cambridge (England).
• Implemented in C# and .NET
• After 6 months users wanted to perform joins

between catalogs of ~1B cardinality
• Current time for such queries is 1.2h
• We need a parallel engine
• With 20 servers we can deliver 5 min

turnaround for these joins



SkyQuery: Interesting Patterns

• Sequential crossmatch of large data sets
– Fuzzy spatial join of 1B x 1B

• Several sequential algorithms, require sorting
• Can be easily parallelized
• Current performance

– 1.2 hours for 1B x 1B on a single server over whole sky
– Expect 20-fold improvement on SQL cluster

• How to deal with “success”?
– Many users, more and more random access

• Ferris Wheel
– Circular “scan machine”, you get on any time, off after one circle
– Uses only sequential reads
– Can be distributed through synchronizing (w. Grossman)



Simulations

Cosmological simulations have 109 particles and 
produce over 30TB of data (Millennium)

• Build up dark matter halos
• Track merging history of halos
• Use it to assign star formation history
• Combination with spectral synthesis
• Realistic distribution of galaxy types

• Too few realizations (now 50)
• Hard to analyze the data afterwards -> need DB
• What is the best way to compare to real data?



Pan-STARRS

• Detect ‘killer asteroids’
– PS1: starting in November 2008
– Hawaii + JHU + Harvard/CfA + 

Edinburgh/Durham/Belfast + 
Max Planck Society

• Data Volume
– >1 Petabytes/year raw data
– Over 5B celestial objects

plus 250B detections in database
– 80TB SQLServer database built at JHU,

the largest astronomy DB in the world
– 3 copies for redundancy

• PS4
– 4 identical telescopes in 2012, generating 4PB/yr



PS1 ODM High-Level Organization
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PS1 Table Sizes - Monolithic

13.7811.208.184.44Indexes (+20%)
2.522.372.071.78Other Tables

23.7320.3413.566.78StackDetection
2.171.861.240.62StackApFlx
4.273.662.441.22StackModelFits

82.71

6.15
28.06

2.03
Year 3.5

71.50

5.27
24.05

2.03
Year 3

49.0726.65Total

3.511.76StackHighSigDelta
16.038.02P2Detection

2.032.03Objects
Year 2Year 1Table

Sizes are in TB



Immersive Turbulence

• Understand the nature of turbulence
– Consecutive snapshots of a 

1,0243 simulation of turbulence:
now 30 Terabytes

– Soon 6K3 and 300 Terabytes (IBM)
– Treat it as an experiment, observe

the database! 
– Throw test particles in from your laptop,

immerse yourself into the simulation,
like in the movie Twister

• New paradigm for analyzing 
HPC simulations!

with C. Meneveau, S. Chen (Mech. E), G. Eyink (Applied Math), R. Burns (CS)



advect backwards in time !

-

-

-

minus

Not possible during DNS 

Sample code (gfortran 90!) running on a laptop



Life Under Your Feet
• Role of the soil in Global Change

– Soil CO2 emission thought to be
>15 times of anthropogenic

– Using sensors we can measure it
directly, in situ, over a large area

• Wireless sensor network
– Use 200 wireless (Intel) computers, 

with 10 sensors each, monitoring
• Air +soil temperature, moisture, …
• Few sensors measure CO2 concentration

– Long-term continuous data, >200M measurements/year
– Complex database of sensor data, built from the SkyServer

with K.Szlavecz (Earth and Planetary), A. Terzis (CS)     

http://lifeunderyourfeet.org/
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Next deployment

• Integration with Baltimore 
Ecosystem Study LTER
– End of July 08
– Deploy 200 2nd gen motes
– Goal: Improve understanding 

of coupled water and carbon 
cycle in the soil

– Use better sensors

CO2 Flux tower
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Ongoing BES Data Collection

Welty and McGuire 2006Welty and McGuire 2006



Commonalities

• Huge amounts of data, aggregates needed
– But also need to keep raw data 
– Need for parallelism

• Requests enormously benefit from indexing
• Very few predefined query patterns

– Everything goes….
– Rapidly extract small subsets of large data sets
– Geospatial everywhere
– Buckets and crawlers….

• Data will never be in one place
– Remote joins will not go away

• Not much need for transactions
• Data scrubbing is crucial



Emerging Trends for DISC 

• Large data sets are here, solutions are not
• Scientists are “cheap”

– Giving them SW is not enough 
– Need recipe for solutions

• Emerging sociological trends:
– Data collection in ever larger collaborations (VO)
– Analysis decoupled, off archived data by smaller groups

• Even HPC projects choking on IO
• Exponential data growth

– > data will be never co-located

• “Data cleaning” is much harder than data loading



Petascale Computing at JHU

• We are building a distributed SQL Server cluster 
exceeding 1 Petabyte

• Just becoming operational
• 40x8-core servers with 22TB each, 

6x16-core servers with 33TB each, 
connected with 20 Gbit/sec Infiniband

• 10Gbit lambda uplink to StarTap
• Funded by Moore Foundation, Microsoft  

and the Pan-STARRS project
• Dedicated to eScience,

will provide public access



IO Measurements on JHU System

1 server: 1.4 Gbytes/sec,   22.5TB,    $12K



Aggregate Performance



Data Layouts

a b c d e f g h

a a a a a a a a
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a b c d e f g h

(a) replicated

(b) sliced

(c) hierarchical

SkyQuery

Turbulence

Pan-STARRS



Components

• Data must be heavily partitioned
• It must be simple to manage

• Distributed SQL Server cluster
• Management tools
• Configuration tools
• Workflow environment for loading/system jobs
• Workflow environment for user requests
• Provide crawler framework 

– Both SQL and procedural languages
• User workspace environment  (MyDB)



The Road Ahead

• Build Pan-Starrs (be pragmatic)
• Generalize to GrayWulf prototype
• Fill with interesting datasets
• Create publicly usable dataspace
• Add procedural language support for user crawlers
• Adopt Amazon-lookalike service interfaces

– S4 -> Simple Storage Services for Science (Budavari)

• Distributed workflows across geographic boundaries
– “Ferris-wheel”/streaming algorithms (w. B. Grossman)
– “Data pipes” for distributed workflows (w. B. Bauer)
– “Data diffusion” (w I. Foster and I. Raicu)



Continuing Growth

How long does the data growth continue?
• High end always linear
• Exponential comes from technology + economics

rapidly changing generations
– like CCD’s replacing plates, and become ever cheaper

• How many new generations of instruments do we 
have left?

• Are there new growth areas emerging?
• Software is also an instrument

– hierarchical data replication
– virtual data
– data cloning



Technology+Sociology+Economics

• Neither of them is enough
• Technology changing rapidly

– Sensors, Moore's Law
– Trend driven by changing generations of technologies

• Sociology is changing in unpredictable ways
– YouTube, tagging,…
– Best presentation interface may come from left field
– In general, people will use a new technology if it is 

• Offers something entirely new
• Or substantially cheaper
• Or substantially simpler

• Economics: funding is not changing



Grand Challenges (a’la TPC)?

• Benchmark characteristics
– Define simple filter (<100 cycles per byte)
– Set selectivity threshold to a few percent (1%-2%-5%)
– Apply it to a PB of data, extract the result

1. Fastest post-processing of a petabyte data set
2. The cheapest Terabit/sec for a  PB data set

– Apply similar pattern as above, measure continuous IO
3. Do a Terabit/sec join between separated PB data

(a) Data sets reside on separate machines
(b) Data sets reside at different geographic locations

4. Load/Analyze a PB
– Same as 1, but also need to load the data as well



Summary

• Data growing exponentially
• Petabytes/year by 2010

– Need scalable solutions
– Move analysis to the data
– Spatial and temporal features essential

• Explosion is coming from inexpensive sensors
• Same thing happening in all sciences

– High energy physics, genomics, cancer research,
medical imaging, oceanography, remote sensing, …

• Science with so much data requires a new paradigm
– Computational methods, algorithmic thinking will 

come just as naturally as mathematics today
• We need to come up with new HPC architectures
• eScience: an emerging new branch of science


