

Faculty of Computer Science, Institute for System Architecture, Database Technology Group

Linked Bernoulli Synopses Sampling Along Foreign Keys

Rainer Gemulla, Philipp Rösch, Wolfgang Lehner Technische Universität Dresden

Outline

- 1. Introduction
- 2. Linked Bernoulli Synopses
- 3. Evaluation
- 4. Conclusion

Motivation

Scenario

- Schema with many foreign-key related tables
- Multiple large tables
- Example: galaxy schema

Goal

- Random samples of all the tables (schema-level synopsis)
- Foreign-key integrity within schema-level synopsis
- Minimal space overhead

Application

- Approximate query processing with arbitrary foreign-key joins
- Debugging, tuning, administration tasks
- Data mart to go (laptop) → offline data analysis
- Join selectivity estimation

Example: TPC-H Schema

Known Approaches

Naïve solutions

- Join individual samples → skewed and very small results
- Sample join result → no uniform samples of individual tables

Join Synopses [AGP+99]

- Sample each table independently
- Restore foreign-key integrity using "reference tables"
- Advantage
 - Supports arbitrary foreign-key joins
- Disadvantage
 - Reference tables are overhead
 - Can be large

[AGP+99] S. Acharya, P.B. Gibbons, and S. Ramaswamy. Join Synopses for Approximate Query Answering. In SIGMOD, 1999.

Join Synopses – Example

Outline

- 1. Introduction
- 2. Linked Bernoulli Synopses
- 3. Evaluation
- 4. Conclusion

Linked Bernoulli Synopses

Observation

- Set of tuples in sample and reference tables is random
- > Set of tuples referenced from a predecessor is random

1:1 relationship

Key I dea

- Don't sample each table independently
- Correlate the sampling processes

Properties

- Uniform random samples of each table
- Significantly smaller overhead (can be minimized)

Algorithm

Process the tables top-down

- Predecessors of the current table have been processed already
- Compute sample and reference table

For each tuple t

- Determine whether tuple t is referenced
- Determine the probability pRef(t) that t is referenced
- Decide whether to
 - Ignore tuple t
 - Add tuple t to the sample
 - Add tuple t to the reference table

"t is selected"

Algorithm (2)

Decision: 3 cases

1.
$$pRef(t) = q$$

- t is referenced: add t to sample
- otherwise: ignore *t*

- t is referenced: add t to sample
- otherwise: add t to sample with probability

$$(q - pRef(t)) / (1 - pRef(t))$$
 (= 25%)

3.
$$pRef(t) > q$$

- t is referenced: add t to sample with probability q/pRef(t) (= 66%) 75% \rightarrow t or to the reference table otherwise
- *t* is not referenced: ignore *t*
- Note: tuples added to reference table in case 3 only

--- 50% \rightarrow

-- 33% $\rightarrow \boxed{t}$

Example

Computation of Reference Probabilities

General approach

- For each tuple, compute the probability that it is selected
- For each foreign key, compute the probability of being selected
- Can be done incrementally

1. Single predecessor (previous examples)

- References from a single table
- Chain pattern or split pattern

2. Multiple predecessors

- references from multiple tables
- a) Independent references
 - merge pattern
- b) Dependent references
 - diamond pattern

Diamond Pattern

Diamond pattern in detail

- At least two predecessors of a table share a common predecessor
- Dependencies between tuples of individual table synopses
- Problems
 - Dependent reference probabilities
 - Joint inclusion probabilities

Diamond Pattern - Example

Diamond Pattern – Example

Dep. reference probabilities

-tuple d_1 depends on b_1 and c_1 -Assuming independence: pRef(d_1)=75%

 $-b_1$ and c_1 are dependent \triangleright pRef(d_1)=50%

Diamond Pattern - Example

Joint inclusions

- Both references to d₂
 are independent
- Both references to d₃
 are independent
- But all 4 references are not independent
- d₂ and d₃ are always referenced jointly

Diamond Pattern

Diamond pattern in detail

- At least two predecessors of a table share a common predecessor
- Dependencies between tuples of individual table synopses
- Problems
 - Dependent reference probabilities
 - Joint inclusion probabilities

Solutions

- a) Store tables with (possible) dependencies completely
 - For small tables (e.g., NATION of TPC-H)
- b) Switch back to Join Synopses
 - For tables with few/small successors
- c) Decide per tuple whether to use correlated sampling or not (see full paper)
 - For tables with many/large successors

Outline

- 1. Introduction
- 2. Linked Bernoulli Synopses
- 3. Evaluation
- 4. Conclusion

Evaluation

Datasets

- TPC-H, 1GB
- Zipfian distribution with z=0.5
 - For values and foreign keys
- Mostly: equi-size allocation
- Subsets of tables

Impact of skew

- Tables: ORDERS and CUSTOMER
 - varied skew of foreign key from 0 (uniform) to 1 (heavily skewed)

Impact of synopsis size

- Tables: ORDERS and CUSTOMER
 - varied size of sample part of the schema-level synopsis

Impact of number of tables

Tables

- started with LINEITEMS and ORDERS, subsequently added CUSTOMER, PARTSUPP, PART and SUPPLIER
- shows effect of number transitive references

Outline

- 1. Introduction
- 2. Linked Bernoulli Synopses
- 3. Evaluation
- 4. Conclusion

Conclusion

Schema-level sample synopses

- A sample of each table + referential integrity
- Queries with arbitrary foreign-key joins

Linked Bernoulli Synopses

- Correlate sampling processes
- Reduces space overhead compared to Join Synopses
- Samples are still uniform

In the paper

- Memory-bounded synopses
- Exact and approximate solution

Thank you!

Questions?

Faculty of Computer Science, Institute for System Architecture, Database Technology Group

Linked Bernoulli Synopses Sampling Along Foreign Keys

Rainer Gemulla, Philipp Rösch, Wolfgang Lehner Technische Universität Dresden

Backup: Memory bounds

Memory-Bounded Synopses

Goal

Derive a schema-level synopsis of given size M

Optimization problem

- Sampling fractions $q_1,...,q_n$ of individual tables $R_1,...,R_n$
- Objective function $f(q_1,...,q_n)$
 - Derived from workload information
 - Given by expertise
 - Mean of the sampling fractions
- Constraint function $g(q_1,...,q_n)$
 - Encodes space budget
 - $g(q_1,...,q_n) \leq M$ (space budget)

Memory-Bounded Synopses

Exact solution

- f and g monotonically increasing
- Monotonic optimization [TUY00]
- But: evaluation of g expensive (table scan!)

Approximate solution

- Use an approximate, quick-to-compute constraint function
- $g_1(q_1,...,q_n) = |R_1| \cdot q_1 + ... + |R_n| \cdot q_n$
 - ignores size of reference tables
 - lower bound → oversized synopses
 - very quick
- When objective function is mean of sampling fractions
 - $q_i \propto 1/|R_i|$
 - equi-size allocation

[TUY00] H. Tuy. Monotonic Optimization: Problems and Solution approaches. *SIAM J. on Optimization*, 11(2): 464-494, 2000.

Memory Bounds: Objective Function

Memory-bounded synopses

- All tables
- computed f_{GEO} for both JS and LBS (1000 it.) with
 - equi-size approximation
 - · exact computation

Memory Bounds: Queries

Example queries

- 1% memory bound
- Q₁: average order value of customers from Germany
- Q_2 : average balance of these customers
- Q₃: turnover generated by European suppliers
- Q₄: average retail price of a part

	Q_1	Q_2	Q_3	Q_4
JS	3.51%	3.95%	3.28%	0.18%
LBS	2.69%	3.06%	2.43%	0.14%
(-23.4%) (-22.5%) (-25.9%) (-22.2%)				

Backup: Additional Experimental Results

Impact of number of unreferenced tuples

Tables: ORDERS and CUSTOMER

 varied fraction of unreferenced customers from 0% (all customers placed orders) to 99% (all orders are from a small subset of customers)

CDBS Database

large number of unreferenced tuples (up to 90%)