Query Selectivity Estimation for Uncertain Data

Sarvjeet Singh^{*}, Chris Mayfield^{*}, Rahul Shah[#], Sunil Prabhakar^{*} and Susanne Hambrusch^{*}

- **Department of Computer Science, Purdue University**
- **#** Department of Computer Science, Louisiana State University

Presented by: Reynold Cheng

Department of Computer Science, University of Hong Kong ckcheng@cs.hku.hk

Motivation: Data Uncertainty

- Many applications need to handle uncertain data
 - Example: Sensor networks, Location-based applications, Data integration, Biological databases
- Existing databases do not provide direct support for uncertain data. Two simple options:
 - manage uncertain data outside DBMS, or
 - remove uncertainty from data
- However, there is need for managing uncertain data at the database level

Motivation (cont.)

- DBMS have been proposed to handle uncertain data
 - Examples: Orion, Trio, MystiQ, MayBMS
- Probabilistic queries: Queries over uncertain data return answers with probabilities
 - Results with low probability of occurrence are often not desirable or meaningful
- Probabilistic Threshold Queries: Return only those answers that exceed a specified threshold

Motivation (cont.)

Query optimization is important

- An essential ingredient is the ability to estimate cost of a given query plan
- New indexes have been proposed for uncertain data
 - Their effective use needs a reasonable estimate of query selectivity
 - Optimizer needs to know when to use the indexes

Our Contribution

Efficient algorithms for selectivity estimation of probabilistic threshold queries over uncertain data

Related Work

- Selectivity estimation for traditional relational databases is well studied [SIGMOD96]
- Models for uncertain data
 Attribute Uncertainty [SIGMOD03, ICDE08]
 Tuple Uncertainty [VLDB04b, VLDB06]
- Uncertainty management systems
 Orion [Orion], Trio [CIDR05], Mystiq [SIGMOD05], MayBMS [ICDE07], [ICDE07b]

Related Work

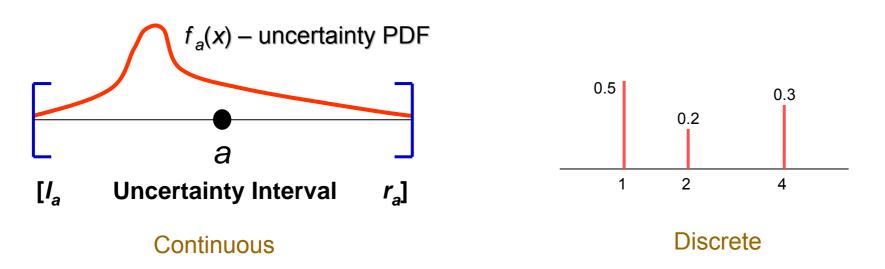
Efficient evaluation of probabilistic queries

- Prob. range queries [VLDB04a,VLDB04b]
- Prob. threshold indexing [VLDB04a]
- Prob. NN queries [SIGMOD03, ICDE07c]
- Selectivity estimation for probabilistic threshold queries has not been addressed before

Outline

- Motivation
- Uncertainty Model
- Selectivity estimation using Histogram
 - Unbounded Range Queries
 - General Range Queries
- Selectivity estimation using Slabs
- Experiments
- Conclusion

Uncertainty Model



- Attribute Uncertainty: An uncertain attribute a consists of an Uncertainty Interval [I_a, r_a] and a pdf f_a(x) (cdf F_a(x)) over the interval
- Our techniques are also applicable to Tuple Uncertainty

Outline

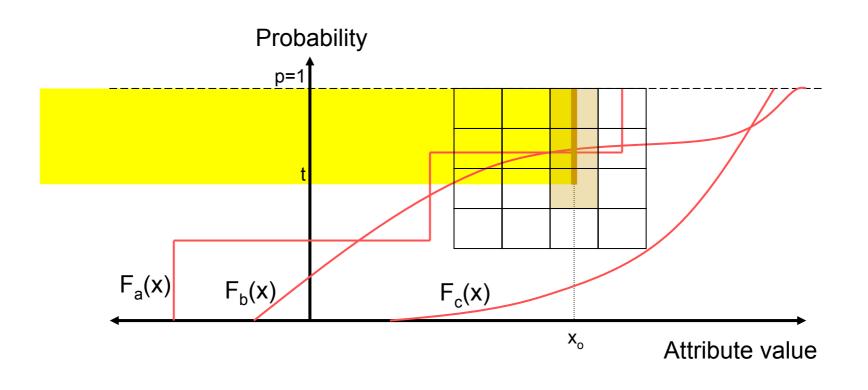
Motivation

- Uncertainty Model
- Selectivity estimation using Histogram
 - Unbounded Range Queries
 - General Range Queries
- Selectivity estimation using Slabs
- Experiments

Conclusion

Selectivity of Unbounded Range Queries

$$a <_t x_o$$
: $Pr(a < x_o) > t \Leftrightarrow \int_{-\infty}^{x_0} f_a(x) dx > t \Leftrightarrow F_a(x_o) > t$



General range queries

 General range query Pr (x₁ < a < x₂) > t ⇔ F_a(x₂) - F_a(x₁) > t
 Instead of a 2D cdf curve, we can now plot a 3D curve for each uncertain data item:

$$G_a(x_1,x_2) = \int_{x_1} f_a(x) dx = F_a(x_2) - F_a(x_1)$$

- The algorithm is similar to the unbounded case
- Optimizations reducing construction time are possible (see paper)

Outline

Motivation

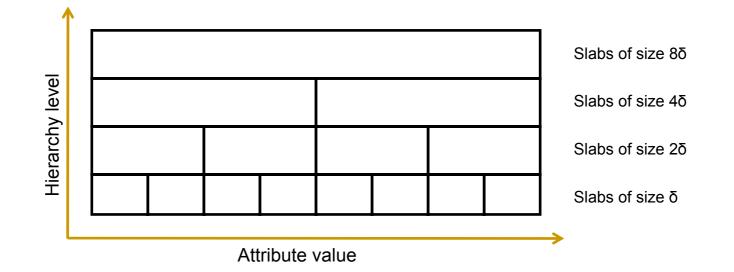
- Uncertainty Model
- Selectivity estimation using Histogram
 - Unbounded Range Queries
 - General Range Queries
- Selectivity estimation using Slabs
- Experiments

Conclusion

General Range Queries

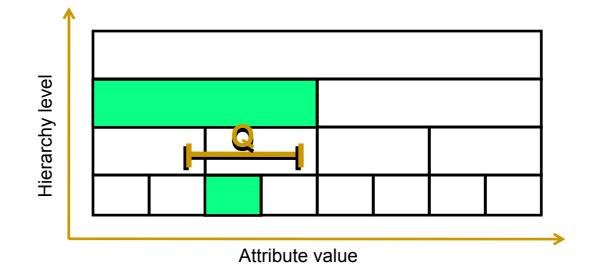
- Histogram approach for general range queries
 - Provides very good selectivity estimate
 - Initial construction time is quadratic in terms of range of input data
- General Range Queries using Slabs
 - Provides a better space-time complexity than histogram technique
 - Has a lower accuracy (in general)

General Range queries using Slabs



- A slab $S(x_1, x_2, t)$ stores the selectivity of query $Q(x_1, x_2, t)$
- We define a hierarchy of slabs, with the size of slabs increasing exponentially
- Space and construction time complexity of this approach is linear in terms of range of input data

Selectivity estimation using Slabs



- Given a query Q(x₁,x₂,t), we find pairs of slabs that contains (over-estimate) and is contained (under-estimate) by the query
- We linearly interpolate the two estimates to get the final estimate

Outline

Motivation

- Uncertainty Model
- Selectivity estimation using Histogram
 - Unbounded Range Queries
 - General Range Queries
- Selectivity estimation using Slabs

Experiments

Conclusion

Experiments

- We implemented our selectivity estimation techniques in Orion (probabilistic extension of PostgreSQL)
- Synthetic Datasets: Each dataset of random sensor readings with uniform distribution [CIKM06, VLDB04a]
 - □ The intervals are distributed uniformly in [0,1000]
 - Interval sizes are distributed normally
 - Database size is 250,000

Effect on Query Plan

PostgreSQL Query plan

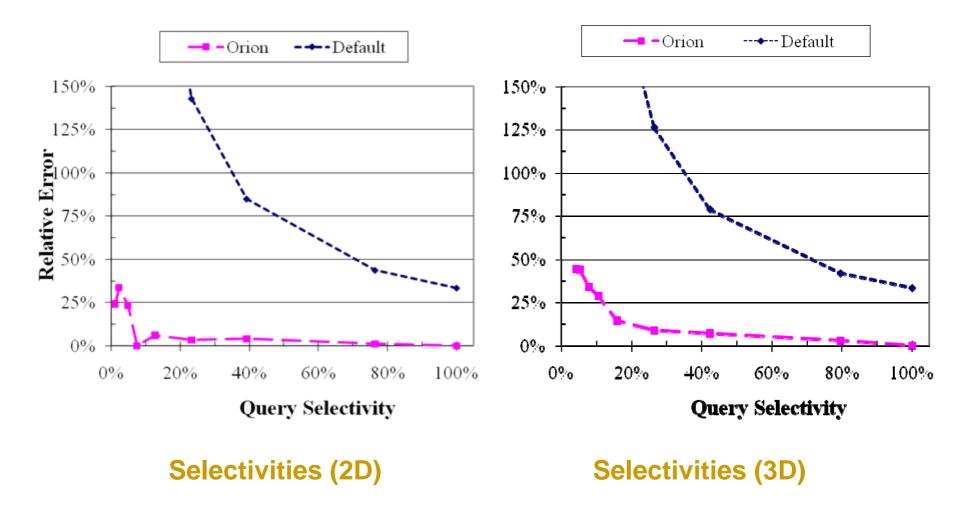
 Without any selectivity estimate function, PostgreSQL assumes a default (fixed) selectivity.
 In practice, it favors the use of un-clustered indexes

SELECT * FROM Readings WHERE value < 750;
Bitmap Heap Scan on Readings
(cost=742.334075.67 rows=666667 width=36)
(actual=20379.34820824.652 rows=153037)
Re <u>check Cond: (value</u> < 750::real)
-> Bitmap Index Scan on pti_value
(cost=0.00742.33 <u>rows=66667</u> width=0)
(actual=20378.677. <mark>20378.677</mark> rows=153K)
Index Cond: (value < 750::real)

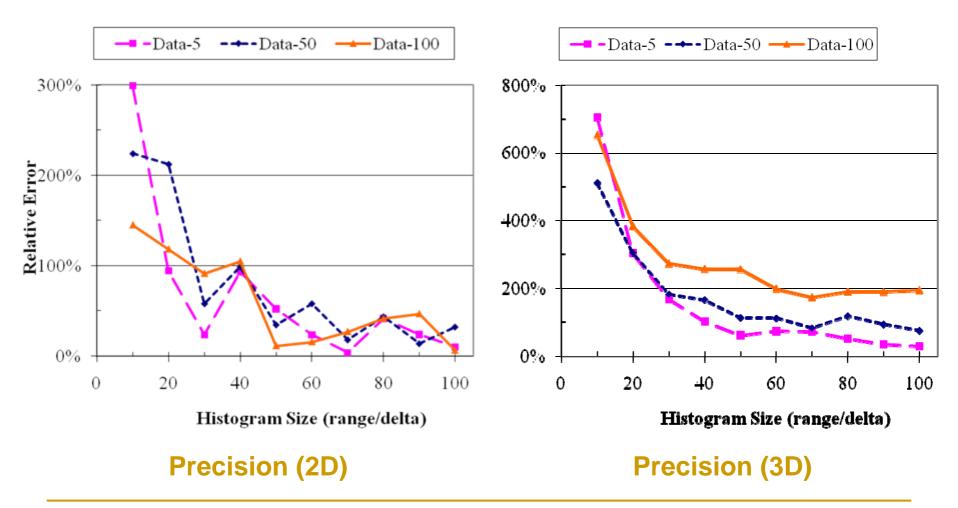
 With our algorithms in place, PostgreSQL correctly picks the query plan with lower I/O cost

(same query as before, but using our algorithms) Seq Scan on Readings (cost=0.00..5000.00 rows=164333 width=35) (actual=83.841. 15545.401 rows=153037) Filter: (value < 750::real)</pre>

Accuracy at Varying Selectivities



Accuracy at Varying Precisions



Conclusion and Future work

- Developed efficient algorithms for selectivity estimation of probabilistic threshold queries
- The algorithms were implemented in a real database system
- Experiments show that the algorithms are efficient and provide good estimates for query selectivities
- The algorithms can be further improved by combining them with standard cost estimation techniques such as equi-depth binning and sampling

References

- [SIGMOD96] Poosala et al. Improved histograms for selectivity estimation of range predicates. In SIGMOD 1996.
- [SIGMOD03] R. Cheng et al. Evaluating probabilistic queries over imprecise data. In SIGMOD 2003.
- **[ICDE08]** Singh et al. Database Support for Probabilistic Attributes and Tuples. In ICDE 2008. **[Orion]** <u>http://orion.cs.purdue.edu</u>, 2006.
- [CIDR05] J. Widom. Trio: A system for integrated management of data, accuracy and lineage. In CIDR, 2005.
- **[SIGMOD05]** J. Boulos et al. MYSTIQ: A system for finding more answers by using probabilities, IN SIGMOD 2005
- [ICDE07] Antova et al. 10^10^6 Worlds and beyond: Efficient representation and processing of incomplete information. In ICDE 2007
- [ICDE07b] Sen et al. Representing correlated tuples in Probabilistic databases, ICDE 2007
- [VLDB04a] R. Cheng et al. Efficient indexing methods for probabilistic threshold queries over uncertain data. In VLDB 2004
- [VLDB04b] N. Dalvi et al. Efficient Query Evaluation on Probabilistic Databases. In VLDB 2004.
- **[ICDE07c]** Ljosa et al. APLA: Indexing arbitrary probability distributions. In ICDE 2007. **[VLDB06]** O. Benjelloun et al. ULDBs: Databases with uncertainty and lineage, In VLDB 2006. **[CIKM06]** Reynold et al. Effiecient Join processing over uncertain data. In CIKM 2006.

Questions?

Sarvjeet Singh sarvjeet@purdue.edu