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Motivation: Data Uncertainty

Many applications need to handle uncertain data
Example: Sensor networks, Location-based 
applications, Data integration, Biological databases

Existing databases do not provide direct support 
for uncertain data. Two simple options:

manage uncertain data outside DBMS, or
remove uncertainty from data

However, there is need for managing uncertain 
data at the database level

SSDBM 2008 2Query Selectivity Estimation for Uncertain Data



DBMS have been proposed to handle uncertain 
data

Examples: Orion, Trio, MystiQ, MayBMS
Probabilistic queries: Queries over uncertain 
data return answers with probabilities

Results with low probability of occurrence are often 
not desirable or meaningful

Probabilistic Threshold Queries: Return only 
those answers that exceed a specified threshold

Motivation (cont.)
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Motivation (cont.)

Query optimization is important
An essential ingredient is the ability to estimate cost of a 
given query plan

New indexes have been proposed for uncertain data
Their effective use needs a reasonable estimate of query 
selectivity
Optimizer needs to know when to use the indexes

Our Contribution
Efficient algorithms for selectivity estimation of 
probabilistic threshold queries over uncertain 
data
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Selectivity estimation for traditional relational 
databases is well studied [SIGMOD96]

Models for uncertain data
Attribute Uncertainty [SIGMOD03, ICDE08]
Tuple Uncertainty [VLDB04b, VLDB06]

Uncertainty management systems
Orion [Orion], Trio [CIDR05], Mystiq [SIGMOD05], 
MayBMS [ICDE07], [ICDE07b]

Related Work
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Efficient evaluation of probabilistic queries
Prob. range queries [VLDB04a,VLDB04b]
Prob. threshold indexing [VLDB04a]
Prob. NN queries [SIGMOD03, ICDE07c]

Selectivity estimation for probabilistic 
threshold queries has not been addressed 
before

Related Work
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Uncertainty Model

Attribute Uncertainty: An uncertain attribute a consists of 
an Uncertainty Interval [la, ra] and a pdf fa(x) (cdf Fa(x))
over the interval

Our techniques are also applicable to Tuple Uncertainty

ff aa((xx) ) –– uncertainty PDFuncertainty PDF

[la ra]
a

Uncertainty Interval 1 2 4
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xo

t

Selectivity of Unbounded Range Queries

Attribute value

Probability
p=1

Fa(x) Fb(x) Fc(x)

a <t xo: Pr(a < xo) > t fa(x) dx > t Fa(xo) > t
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General range query
Pr (x1 < a < x2) > t Fa(x2) – Fa(x1) > t

Instead of a 2D cdf curve, we can now plot 
a 3D curve for each uncertain data item:

The algorithm is similar to the unbounded 
case
Optimizations reducing construction time are 
possible (see paper)

Ga(x1,x2) =     fa(x) dx = Fa(x2) – Fa(x1)

General range queries
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Histogram approach for general range 
queries

Provides very good selectivity estimate
Initial construction time is quadratic in terms of 
range of input data

General Range Queries using Slabs
Provides a better space-time complexity than 
histogram technique
Has a lower accuracy (in general)

General Range Queries
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A slab S(x1,x2,t) stores the selectivity of query Q(x1,x2,t)
We define a hierarchy of slabs, with the size of slabs 
increasing exponentially
Space and construction time complexity of this approach is 
linear in terms of range of input data

General Range queries using Slabs

Attribute value

Slabs of size δ

Slabs of size 2δ

Slabs of size 4δ

Slabs of size 8δ
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Given a query Q(x1,x2,t), we find pairs of slabs 
that contains (over-estimate) and is contained 
(under-estimate) by the query

Selectivity estimation using Slabs

Attribute value
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We linearly interpolate the two estimates to get 
the final estimate

QQ
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We implemented our selectivity estimation 
techniques in Orion (probabilistic extension of 
PostgreSQL)
Synthetic Datasets: Each dataset of random 
sensor readings with uniform distribution 
[CIKM06, VLDB04a]

The intervals are distributed uniformly in [0,1000]
Interval sizes are distributed normally
Database size is 250,000 

Experiments
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Without any selectivity 
estimate function, 
PostgreSQL assumes a 
default (fixed) selectivity. 
In practice, it favors the use 
of un-clustered indexes

With our algorithms in place, 
PostgreSQL correctly picks 
the query plan with lower 
I/O cost

Effect on Query Plan
PostgreSQL Query plan
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Accuracy at Varying Selectivities

Selectivities (2D) Selectivities (3D)
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Accuracy at Varying Precisions
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Precision (2D) Precision (3D)



Developed efficient algorithms for selectivity 
estimation of probabilistic threshold queries
The algorithms were implemented in a real database 
system
Experiments show that the algorithms are efficient 
and provide good estimates for query selectivities
The algorithms can be further improved by 
combining them with standard cost estimation 
techniques such as equi-depth binning and 
sampling

Conclusion and Future work
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Thank you

Questions?

Sarvjeet Singh
sarvjeet@purdue.edu
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