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Data Transformations

Data Transformations — a way to get rid of trust.

Liu, Giannella, Kargupta: Attack on perturbed data.

Mutual distances:

Fact Are useful in many analytical techniques.

Claim Do not leak private information.

Wrong!
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Attack Scenarios

Things an attacker might know:

Data sample

I Public knowledge
I Own data
I Injected data
I Leaked data

Probability distribution

I National statistical institutes
I Previous studies
I Qualified guess
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An Example

p1 p2 p3 p4 p5

p1 - 1.3 0.9 1.2 0.3
p2 1.3 - 1.1 0.2 1.0
p3 0.9 1.1 - 0.5 0.5
p4 1.2 0.2 0.5 - 0.9
p5 0.3 1.0 0.5 0.9 -
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Attack Outline

Database n objects with d attributes

Published Distances between objects

Attacker Knows probability distribution

The attack:

1. Guess d + 1 objects.

2. Use lateration to fix remaining objects.

3. Rotate and mirror to fit known distribution.
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Hyper-lateration

Known points p1, . . . ,pn ∈ Rd

Unknown point x at distance ‖x − pi‖ = δi

n quadratic equations:

δ2
i =

d∑
j=1

(xj − pij)
2 =

d∑
j=1

x2
j − 2xjpij + p2

ij

n − 1 linear equations:

δ2
i − δ2

0 =
d∑

j=1

2xj(p0j − pij) + p2
ij − p2

0j

δ1 δ2

δ3

If n > d and span{pi}i = Rd , solution is unique.
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Principal Component Analysis

Hyper-lateration Unique up to orthogonal transform.

PCA Recognizes orientation of data
(does not recognize mirroring).

Covariance matrix:

Σ =

 Cov (A1,A1) · · · Cov (A1,Ad)
...

...
Cov (Ad ,A1) · · · Cov (Ad ,Ad)

 ,
Cov (A,B) = E [(A− µ)(B − ν)].
Eigenvectors, and values:
(e1, λ1), . . . , (ed , λd).

Do this for both hyper-laterated points
and sample drawn from known distribution.
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The Attack

1. Guess first d objects

(unique up to rotation and mirroring)

2. Find remaining objects with lateration

3. Find principal components

4. Rotate to match principal components of known
probability distribution

5. Find best mirroring (optimized)
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Attack Accuracy (1)

Auto Miles per Gallon (using 5 attributes)
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Attack Accuracy (2)

US Adult Census (using 4 attributes)
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Conclusion

Known Leaked
Sample of d + 1 objects Everything
Probability distribution Everything with high fidelity

Never publish distances between data points!

Thank You
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