Disclosure Risks of Distance Preserving Data Transformations

E. Onur Turgay, Thomas B. Pedersen, Yücel Saygın, Erkay Savaş, Albert Levi

Sabancı Üniversitesi

SSDBM, Hong Kong July 9, 2008 Motivation

The Attack

Conclusion

Motivation

The Attack

Conclusion

Outsourcing — can the statistician be trusted?

Outsourcing — can the statistician be trusted?

Outsourcing — can the statistician be trusted?

- Outsourcing can the statistician be trusted?
- Sharing

- Outsourcing can the statistician be trusted?
- Sharing can they trust each other?

Data Transformations — a way to get rid of trust.

Data Transformations — a way to get rid of trust.

Data Transformations — a way to get rid of trust.

Data Transformations — a way to get rid of trust.

Liu, Giannella, Kargupta: Attack on perturbed data.

Data Transformations — a way to get rid of trust.

Liu, Giannella, Kargupta: Attack on perturbed data. Mutual distances:

Data Transformations — a way to get rid of trust.

Liu, Giannella, Kargupta: Attack on perturbed data. Mutual distances:

Fact Are useful in many analytical techniques.

Data Transformations — a way to get rid of trust.

Liu, Giannella, Kargupta: Attack on perturbed data. Mutual distances:

Fact Are useful in many analytical techniques.

Claim Do not leak private information.

Data Transformations — a way to get rid of trust.

Liu, Giannella, Kargupta: Attack on perturbed data. Mutual distances:

Fact Are useful in many analytical techniques. Claim Do not leak private information. Wrong!

Things an attacker might know: Data sample

Data sample

Public knowledge

Data sample

- Public knowledge
- Own data

Data sample

- Public knowledge
- Own data
- Injected data

Data sample

- Public knowledge
- Own data
- Injected data
- Leaked data

Data sample

- Public knowledge
- Own data
- Injected data
- Leaked data

Probability distribution

Data sample

- Public knowledge
- Own data
- Injected data
- Leaked data

Probability distribution

National statistical institutes

Data sample

- Public knowledge
- Own data
- Injected data
- Leaked data

Probability distribution

- National statistical institutes
- Previous studies

Data sample

- Public knowledge
- Own data
- Injected data
- Leaked data

Probability distribution

- National statistical institutes
- Previous studies
- Qualified guess

	p_1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	<i>p</i> ₅
<i>p</i> ₁	-	1.3	0.9	1.2	0.3
<i>p</i> ₂	1.3	-	1.1	0.2	1.0
				0.5	
<i>p</i> 4	1.2	0.2	0.5	-	0.9
p_5	0.3	1.0	0.5	0.9	-

	p_1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	p_5
p_1	-	1.3	0.9	1.2	0.3
p_2	1.3	-	1.1	0.2	1.0
<i>p</i> 3	0.9	1.1	-	0.5	0.5
p_4	1.2	0.2	0.5	-	0.9
p_5	0.3	1.0	0.5	0.9	-

Height ∳

Åge

Motivation

The Attack

Conclusion

Database n objects with d attributes

Database *n* objects with *d* attributes Published Distances between objects

The attack:

1. Guess d + 1 objects.

The attack:

- 1. Guess d + 1 objects.
- 2. Use lateration to fix remaining objects.

The attack:

- 1. Guess d + 1 objects.
- 2. Use lateration to fix remaining objects.
- 3. Rotate and mirror to fit known distribution.

Hyper-lateration

Known points $\overline{p}_1, \ldots, \overline{p}_n \in \mathbb{R}^d$

Known points $\overline{p}_1, \ldots, \overline{p}_n \in \mathbb{R}^d$ Unknown point $\overline{\mathbf{x}}$ at distance $\|\overline{\mathbf{x}} - \overline{p}_i\| = \delta_i$ Known points $\overline{p}_1, \ldots, \overline{p}_n \in \mathbb{R}^d$ Unknown point $\overline{\mathbf{x}}$ at distance $\|\overline{\mathbf{x}} - \overline{p}_i\| = \delta_i$

Hyper-lateration

Known points $\overline{p}_1, \ldots, \overline{p}_n \in \mathbb{R}^d$ Unknown point \overline{x} at distance $\|\overline{x} - \overline{p}_i\| = \delta_i$ *n* quadratic equations:

$$\delta_i^2 = \sum_{j=1}^d (\mathbf{x}_j - p_{ij})^2 = \sum_{j=1}^d \mathbf{x}_j^2 - 2\mathbf{x}_j p_{ij} + p_{ij}^2$$

Known points $\overline{p}_1, \ldots, \overline{p}_n \in \mathbb{R}^d$ Unknown point \overline{x} at distance $\|\overline{x} - \overline{p}_i\| = \delta_i$ *n* quadratic equations:

$$\delta_i^2 = \sum_{j=1}^d (\mathbf{x}_j - p_{ij})^2 = \sum_{j=1}^d \mathbf{x}_j^2 - 2\mathbf{x}_j p_{ij} + p_{ij}^2$$

n-1 linear equations:

$$\delta_i^2 - \delta_0^2 = \sum_{j=1}^d 2 \mathbf{x}_j (\mathbf{p}_{0j} - \mathbf{p}_{ij}) + \mathbf{p}_{ij}^2 - \mathbf{p}_{0j}^2$$

Known points $\overline{p}_1, \ldots, \overline{p}_n \in \mathbb{R}^d$ Unknown point \overline{x} at distance $\|\overline{x} - \overline{p}_i\| = \delta_i$ *n* quadratic equations:

$$\delta_i^2 = \sum_{j=1}^d (\mathbf{x}_j - p_{ij})^2 = \sum_{j=1}^d \mathbf{x}_j^2 - 2\mathbf{x}_j p_{ij} + p_{ij}^2$$

n-1 linear equations:

$$\delta_i^2 - \delta_0^2 = \sum_{j=1}^d 2 \mathbf{x}_j (\mathbf{p}_{0j} - \mathbf{p}_{ij}) + \mathbf{p}_{ij}^2 - \mathbf{p}_{0j}^2$$

If n > d and $span\{\overline{p}_i\}_i = \mathbb{R}^d$, solution is unique.

Hyper-lateration Unique up to orthogonal transform.

Hyper-lateration Unique up to orthogonal transform. PCA Recognizes orientation of data

Hyper-lateration Unique up to orthogonal transform. PCA Recognizes orientation of data (does not recognize mirroring).

Hyper-lateration Unique up to orthogonal transform.

PCA Recognizes orientation of data (does not recognize mirroring).

Hyper-lateration Unique up to orthogonal transform. PCA Recognizes orientation of data (does not recognize mirroring).

Covariance matrix: $\Sigma = \begin{bmatrix} Cov(A_1, A_1) & \cdots & Cov(A_1, A_d) \\ \vdots & & \vdots \\ Cov(A_d, A_1) & \cdots & Cov(A_d, A_d) \end{bmatrix},$ $Cov(A, B) = E[(A - \mu)(B - \nu)].$

Hyper-lateration Unique up to orthogonal transform. PCA Recognizes orientation of data (does not recognize mirroring).

Covariance matrix: $\Sigma = \begin{bmatrix} Cov(A_1, A_1) & \cdots & Cov(A_1, A_d) \\ \vdots & \vdots \\ Cov(A_d, A_1) & \cdots & Cov(A_d, A_d) \end{bmatrix},$ $Cov(A, B) = E[(A - \mu)(B - \nu)].$ Eigenvectors, and values: $(\overline{e}_1, \lambda_1), \dots, (\overline{e}_d, \lambda_d).$

Hyper-lateration Unique up to orthogonal transform. PCA Recognizes orientation of data

(does not recognize mirroring).

Covariance matrix:

$$\Sigma = \begin{bmatrix} Cov(A_1, A_1) & \cdots & Cov(A_1, A_d) \\ \vdots & & \vdots \\ Cov(A_d, A_1) & \cdots & Cov(A_d, A_d) \end{bmatrix}$$

$$Cov(A, B) = E[(A - \mu)(B - \nu)].$$
Eigenvectors, and values:

$$(\overline{e}_1, \lambda_1), \dots, (\overline{e}_d, \lambda_d).$$

Do this for both hyper-laterated points and sample drawn from known distribution.

1. Guess first *d* objects

1. Guess first *d* objects (unique up to rotation and mirroring)

- 1. Guess first *d* objects
 - (unique up to rotation and mirroring)
- 2. Find remaining objects with lateration

- 1. Guess first *d* objects
 - (unique up to rotation and mirroring)
- 2. Find remaining objects with lateration
- 3. Find principal components

- 1. Guess first *d* objects
 - (unique up to rotation and mirroring)
- 2. Find remaining objects with lateration
- 3. Find principal components
- 4. Rotate to match principal components of known probability distribution

- 1. Guess first *d* objects
 - (unique up to rotation and mirroring)
- 2. Find remaining objects with lateration
- 3. Find principal components
- 4. Rotate to match principal components of known probability distribution
- 5. Find best mirroring (optimized)

Attack Accuracy (1)

Auto Miles per Gallon (using 5 attributes)

Attack Accuracy (2)

Motivation

The Attack

Conclusion

Known	Leaked
Sample of $d + 1$ objects	Everything
Probability distribution	Everything with high fidelity

Known	Leaked
Sample of $d + 1$ objects	Everything
Probability distribution	Everything with high fidelity

Never publish distances between data points!

Known	Leaked
Sample of $d + 1$ objects	Everything
Probability distribution	Everything with high fidelity

Never publish distances between data points!

Thank You