A Probabilistic Framework for Building Privacy-preserving Synopses of Multi-dimensional Data

Filippo Furfaro¹, Giuseppe M. Mazzeo^{1,2}, Domenico Saccà^{1,2}

¹University of Calabria, Rende (CS) 87036, Italy ²ICAR-CNR, Rende (CS) 87036, Italy

Outline

- Multi-dimensional data summarization
- Histograms and sensitive information disclosure
- A probabilistic framework for evaluating privacy preservation of histograms
- Construction of privacy-preserving histograms
- Conclusions and future works

Outline

- Multi-dimensional data summarization
- ☐ Histograms and sensitive information disclosure
- A probabilistic framework for evaluating privacy preservation of histograms
- ☐ Construction of privacy-preserving histograms
- Conclusions and future works

Multi-dimensional data summarization

- Application contexts: selectivity estimation, OLAP range queries (for preliminary explorations), etc.
- □ Goal: providing approximate but fast answers to range queries, which can be adopted for useful statistical analysis
- Dozens of existing techniques: sampling, wavelet, histograms

Multi-dimensional data summarization

- Application contexts: selectivity estimation, OLAP range queries (for preliminary explorations), etc.
- □ Goal: providing approximate but fast answers to range queries, which can be adopted for useful statistical analysis
- Dozens of existing techniques: sampling, wavelet, histograms

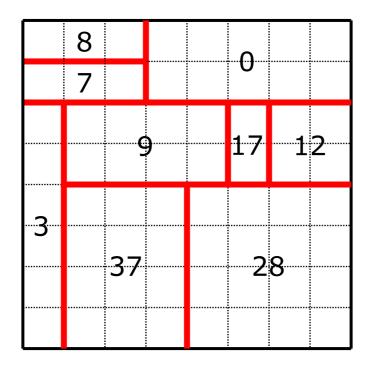
Let **D** be a two-dimensional data set (discrete dimension domains and nonnegative real measure)

5	2	1	0	0	0	0	0
3	4	0	0	0	0	0	0
2	0	0	5	0	8	4	1
0	3	1	0	0	9	3	4
0	0	6	9	1	0	0	2
0	0	7	8	2	0	3	3
1	0	0	4	6	1	3	3
0	1	0	2	2	2	0	0

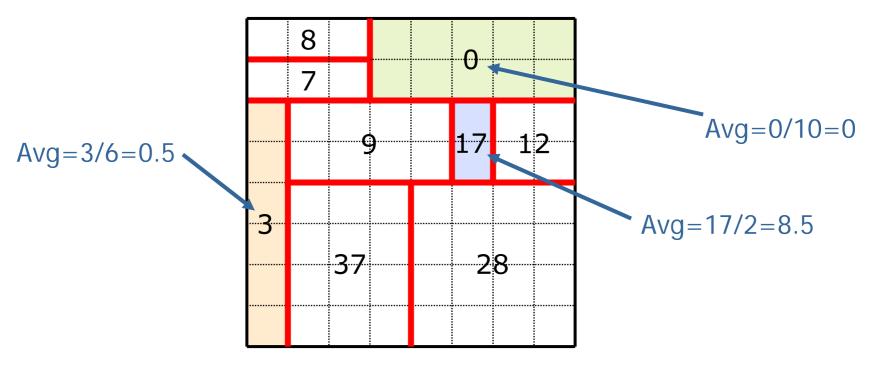
Data domain is partitioned into buckets...

5	2	1	0	0	0	0	0
3	4	0	0	0	0	0	0
2	0	0	5	0	8	4	1
0	3	1	0	0	9	3	4
0	0	6	9	1	0	0	2
0	0	7	8	2	0	3	3
1	0	0	4	6	1	3	3
0	1	0	2	2	2	0	0

...for each bucket its boundaries and the sum of its elements are stored



Queries are evaluated by assuming that each point inside a bucket is associated with the same value (i.e, the bucket average, sum/volume)



Histogram construction algorithms

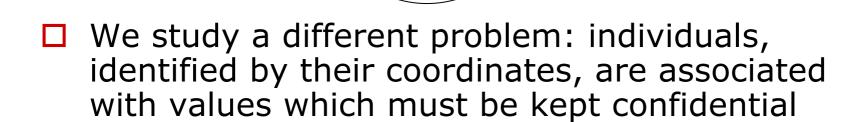
- □ The goal of algorithms for constructing histograms is to define the "best" partition of the data domain within a storage space bound
- □ Constructing the histogram which minimize the overall error of a query workload is a NP-Hard problem [Muthukrishnan et al., 1999]
- Several greedy approaches have been proposed in the last three decades
- □ Few work dealing with the disclosure of sensitive information from data summarized by means of histograms

Outline

- Multi-dimensional data summarization
- ☐ Histograms and sensitive information disclosure
- A probabilistic framework for evaluating privacy preservation of histograms
- ☐ Construction of privacy-preserving histograms
- Conclusions and future works

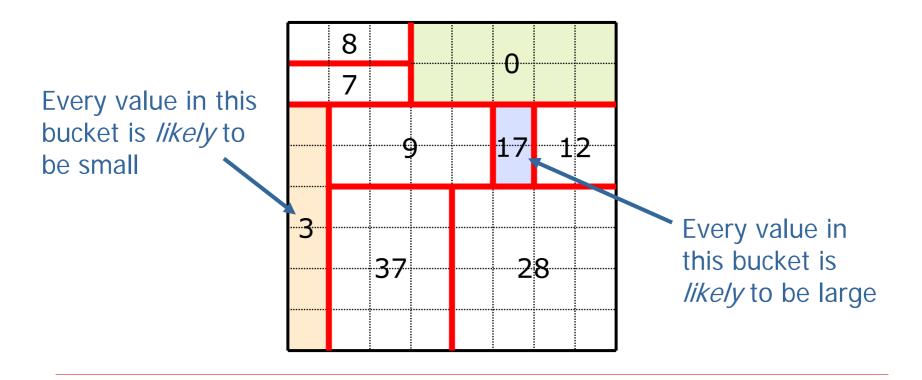
- One of the main works on histograms and privacy considers privacy as protection from being brought to the attention of others [Chawla et al., 2005]
- □ The work focuses on unlabelled points, representing individuals, whose identity (i.e., the point coordinates) must be protected
- ☐ The summarization must prevent individuals from being isolated

A point **p** is isolated by a point **q** if the ball of radius c[,] |**q**-**p**| centered at **q** contains less than t points

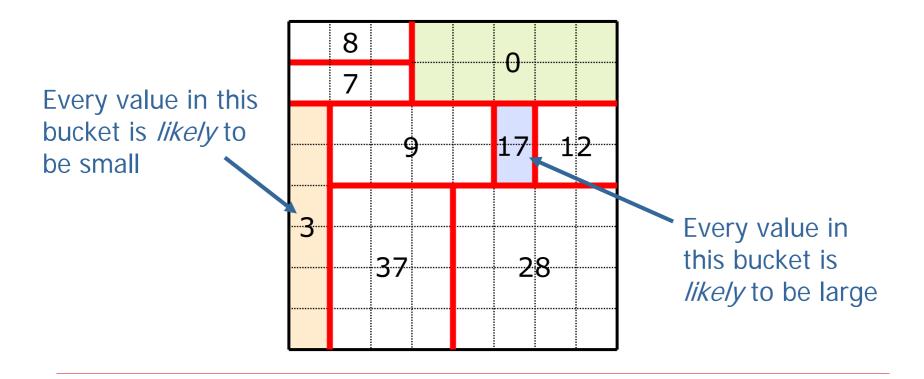


c=2

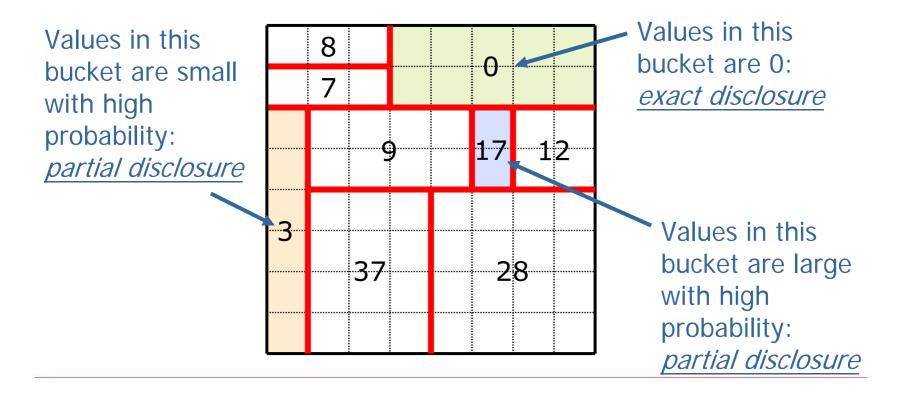
What can we say about individual values summarized by the histogram?



How much "likely" to be small/large?
If "too likely" privacy of individuals could be compromised!



How much "likely" to be small/large?
If "too likely" privacy of individuals could be compromised!



- ☐ Intuitively, privacy is compromised when it is possible to infer with high probability that an individual value belongs to a range revealing some reserved information
- Examples: the annual income of an employee is
 - in [24,000..26,000] with probability 90%
 - greater than 1,000,000 with probability 80%
 - less than 10,000 with probability 85%

- We focus our attentions on the possibility to estimate with high confidence the actual values associated with individuals (i.e., points)
- Privacy of an individual value X, estimated to be E(X), is compromised if its actual value is inside $[(1-\epsilon)\cdot E(X), (1+\epsilon)\cdot E(X)]$ (ϵ -confidence-interval) with probability higher than P
- E.g., the privacy of an employee, whose income is estimated to be 25,000, is compromised if its actual income is in [24,000, 26,000] (ϵ =0.04) with probability higher than 90% (P=0.9)

Privacy-preserving histograms

- \square A pair $\langle \varepsilon, P \rangle$ will represent a privacy constraint
- \square A bucket β is said to be privacy-preserving w.r.t. a privacy constraint $\langle \varepsilon, P \rangle$ if for each individual value X inside β the confidence interval $[(1-\varepsilon)\cdot E(X), (1+\varepsilon)\cdot E(X)]$ has confidence level (probability) less than P
- \square A histogram is said to be privacy-preserving w.r.t. a privacy constraint $\langle \varepsilon, P \rangle$ if it consists of only privacy-preserving buckets w.r.t. the same privacy constraint $\langle \varepsilon, P \rangle$

Outline

- Multi-dimensional data summarization
- ☐ Histograms and sensitive information disclosure
- A probabilistic framework for evaluating privacy preservation of histograms
- □ Construction of privacy-preserving histograms
- Conclusions and future works

- By modeling individual values as random variables, their probability distribution enables to evaluate if privacy is compromised
- In order to model individual values as random variables we assume that
 - the summarized data are known (for each bucket, its sum and its volume is published)
 - all the values are nonnegative real numbers
 - there is no correlation among values inside different buckets
 - no additional information is known

- □ Since
 - each individual value belongs to exactly one bucket (β), and
 - values in buckets are not correlated, the probability distribution of each value depends only on the sum (s) and volume (b) of the bucket β containing it
- \square $\tilde{q}_{s,b}$ will denote the random variable representing an individual value inside β
- \square The sample space of $q_{s,b}$ is [0...s], since values in the bucket are assumed to be nonnegative and their sum is s

☐ If s>0, b>1 and $0\le x\le s$ (the other cases are straightforward)

$$Pr(\tilde{q}_{s,b} < x) = F(x) = 1 - \left(1 - \frac{x}{s}\right)^{b-1}$$
$$E(\tilde{q}_{s,b}) = \frac{s}{b}$$

By means of the cumulative probability distribution it is simple to compute the probability that an individual value is within a range [a, b] (i.e., by computing F(b)-F(a))

□ We are interested in the ε-confidence-interval [(1-ε)·E, (1+ε)·E]

$$Pr\left((1-\epsilon) \cdot \frac{s}{b} < \tilde{q}_{s,b} < (1+\epsilon) \cdot \frac{s}{b}\right) =$$

$$= F\left((1+\epsilon) \cdot \frac{s}{b}\right) - F\left((1-\epsilon) \cdot \frac{s}{b}\right) =$$

$$= \left(1 - \frac{1-\epsilon}{b}\right)^{b-1} - \left(1 - \frac{1+\epsilon}{b}\right)^{b-1}$$

□ A bucket with sum s (s>0) and volume b (b>1) is privacy-preserving w.r.t. a privacy constraint $\langle \varepsilon, P \rangle$ if

$$\left(1 - \frac{1 - \epsilon}{b}\right)^{b - 1} - \left(1 - \frac{1 + \epsilon}{b}\right)^{b - 1} < P$$

- ☐ The condition does not depend on the bucket sum!
- It is possible to compute the value b* for a pair
 ⟨ε, P⟩ such that buckets are privacy-preserving iff b≥ b* (and s>0)

Outline

- Multi-dimensional data summarization
- ☐ Histograms and sensitive information disclosure
- A probabilistic framework for evaluating privacy preservation of histograms
- ☐ Construction of privacy-preserving histograms
- Conclusions and future works

Construction of privacy-preserving histograms

- Classical histogram-construction techniques progressively refine the partition of multidimensional domain according to some heuristic
- ☐ The partitioning ends when there is no more available space for storing more buckets
- We focus our attention on constructing a ⟨ε, P⟩-privacy-preserving histogram minimizing the error on a query workload W

$$SSE(W) = \sum_{w \in W} (ex(w) - ap(w))^{2}$$

A greedy strategy

- 1. Init a set S of (refinable) buckets with a bucket summarizing the whole data set
- 2. Extract a bucket β from S
- 3. Choose the best safe split of β into $\langle \beta', \beta'' \rangle$
- 4. If $\langle \beta', \beta'' \rangle$ exists add β' and β'' to S else mark β as *final*
- 5. If S is not empty go to 2
- 6. Return the set of final buckets

A greedy strategy

- ☐ The best safe split is a split yielding two privacy-preserving buckets which maximize the SSE(W) reduction
- If a bucket β admits no safe splits (i.e., every split yields at least one non-privacypreserving bucket) then it is marked as final
- It easy to show that any split sequence of a non-privacy-preserving bucket yields privacy non-preserving-buckets, thus it can be correctly marked as final

Algorithm complexity

- \square The complexity of the algorithm is $O(N^{2} | W|^{-t} d)$
 - N is the number of points in the data set
 - O(td) is the size of the data set domain
 - |W| is the number of queries in the workload
- □ The upper bound is actually "quite large"
 - O(N) iterations (at most N/b *)
 - For each iteration, O(t⁻d) splits are tried (much less as the number of iterations increases)
 - For each possible split, |W| queries are evaluated (much less if only the queries of W overlapping the bucket to be split are considered)
 - Each query evaluation has cost O(N): more precisely O(i) at the i-th iteration

Outline

- Multi-dimensional data summarization
- ☐ Histograms and sensitive information disclosure
- A probabilistic framework for evaluating privacy preservation of histograms
- ☐ Construction of privacy-preserving histograms
- □ Conclusions and future works

Conclusions

- □ The problem of sensitive information disclosure caused by publication of summarized multidimensional data was studied
- Privacy on values associated with individuals was considered, differently from existing work on privacy preserving histograms which focuses on anonymity of unlabelled points
- □ A framework for evaluating the risk for privacy of individual values was introduced
- □ A greedy algorithm for constructing privacypreserving histograms was proposed

Future works

- Considering other kinds of privacy constraints
 - Preventing small/large values to be inferred
 - Considering "absolute" confidence intervals and mixed (relative/absolute) confidence intervals
- Considering the possibility that further information about values inside buckets is known (e.g., count of non-null values, max, min)
- Considering the possibility that different histograms summarizing the same data set are published

Thanks for your attention! Questions?

- □ The probability that q=x is given by the ratio between
 - the number of ok-configurations and
 - the number of all the possible configurations (each configuration is equiprobable), that is
 - the number of configurations of (b-1) values such that their sum is s-x

and

the numer of configurations of b values such that their sum is

☐ If values are cardinals, there are

$$\begin{pmatrix} s+b-1 \\ s \end{pmatrix}$$

ways to distribute sum *s* among *b* cells (s cells must be chosen, enabling repetitions, among b)

☐ If values are cardinals, the probability that a single value is v in [0..s] is given by

$$Prob(\tilde{q}_{s,b} = x) = \frac{\begin{pmatrix} s - x + b - 2 \\ s - x \end{pmatrix}}{\begin{pmatrix} s + b - 1 \\ s \end{pmatrix}}$$

- □ In the case of real values, the probability that q=x is 0 (the sample space [0,s] contains infinite values)
- The cumulative probability distribution in the continuous can be obtained by the discrete one, in which s/γ objects each of value γ are considered to be distributed among b cells, and computing the limit for $\gamma \to 0$