Efficient Computation of Statistical Significance of Query Results in Databases

Vishwakarma Singh, Arnab Bhattacharya, Ambuj K. Singh

University of California, Santa Barbara Indian Institute of Technology (IIT), Kanpur

Motivation

- Query on a database retrieves objects
- Score of result shows similarity with query

 Useful for ranking
- Not directly useful for
 - Analysis of query and database properties
 - Is the result very likely in the database?
 - Or, is the score *s* an extremely rare occasion?
- Statistical significance
 - Queries with different attributes
 - Score is an aggregate function of attributes

Statistical significance of query results

• Single-attribute query

- May have multiple dimensions

Multiple-attribute queries

How to efficiently compute p-value?

- Generating score distributions for each query component is expensive
- Random DB model is expensive
 - All possible combinations of all individual components in the database
- Convolution has quadratic complexity

1			1				Score	Prob
	Score	Prob.		Seere	Droh		3	0.03
	1	0.1		Score	PIOD.		5	0.03
				2	0.3		4	0.12
	2	0.4		0.1		5	0.10	
	3	0.3	-	4	0.1		5	0.10
				5	0.6			
	4	0.2	_		1		0.40	
							19	U.12

July 9, 2008

Efficient computation

- Maintain histograms instead of score distributions
 - Score pdf has too much detail
 - Number of bins, b, determine accuracy
- Perform cascaded convolutions

$$\sigma_i = \sigma_{i-1} \oplus h_i$$

- Each intermediate σ_i contains *b* bins
- $-O(b^2r)$ operations
- Use bounds to convolute histograms

So far ...

Pruning of scores using bounds

Bound on $\sigma_i = 100 - 40 = 60$

Bound on $h_i = 60 - 25 = 35$

Bound on $\sigma_{i-1} = 60 - 55 = 5$

- Threshold score
 - Cannot add up to final score
 - Bins below are not required
- Only 4 and 3 bins required in σ_{i-1} and h_i respectively
 - Convolution of σ_{i-1} with h_i costs 12 operations instead of 36

Effect of binning and pruning

 Binning and pruning saves orders of magnitude time

Effect of query size

 Pruning makes algorithm scalable with query size

Error in p-value due to binning

 For practical number of bins, error in p-value is negligible

Conclusions

- How to efficiently compute p-value for multiobject query results for non-parametric distributions?
- Binning, cascading, bounding

 Faster by 5 orders of magnitude
 Error less than 5%
- Future work
 - Examining order of convolution
 - Sampling
 - Other aggregate functions like max