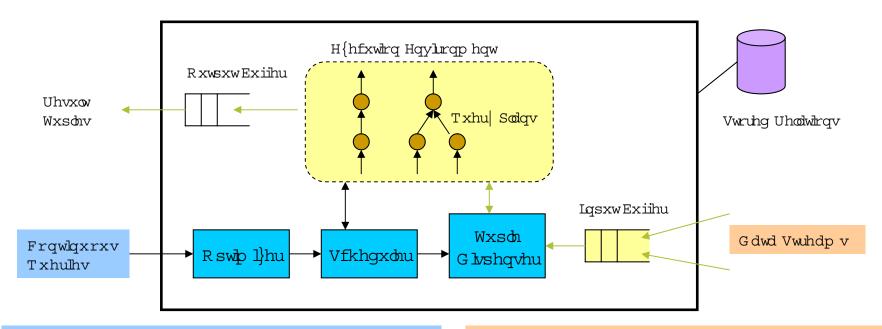
iJoin: Importance-aware Join Approximation over Data Streams

Dhananjay Kulkarni (Boston University)

Chinya V. Ravishankar (University of California – Riverside)

SSDBM 2008

Gold V who Polydjhp how V who v



A continuous query submitted once, but executed multiple times as new data arrives

- Average temperature on floor 3, every 10 minutes
- IP addresses of all packets, going to destination
 64.233.167.99 in last 1 hour

Data stream is a continuous, unbounded, time varying sequence of data tuples

- Data generated by sensors (temp, pressure)
- Network monitoring data
- XML Data

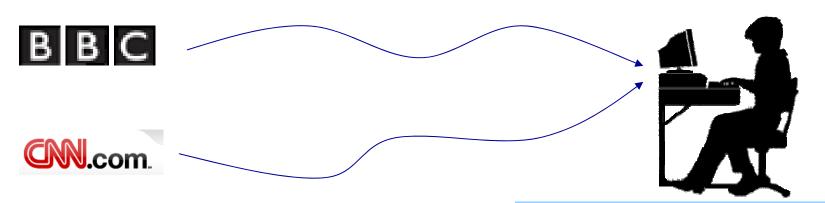
Uhodwirodog EP V yvlg dwd Vwrholo v

	Relational DBMS	Data Stream Management	
Data Characteristics	Mostly static, disk resident	Continuous, unbounded, mostly processed in memory	
Query Model	One-time query, based on request-response (pull)	Continuous query, based on pushing incoming data to queries	
Input to Queries	Complete Relation/table	Tuples within the 'window'	
Cost Model	Minimize disk I/O	Output rate, memory utilization	
Catalog information (data distribution, size)	Remains fairly static, unless there are updates	Changes dynamically as new data arrives into the system	
Overflow data	Written to disk	Dropped from processing or summarized in memory	
Access methods	Index structures	Summaries, histograms	
Examples	Inventory, census, payroll	Sensors, online bids, news feeds	
Implementations	Oracle, sybase, etcetc	Streambase, coral8, and other university research projects (STREAM, Aurora)	

Dssur{pohnMrbyryhuGohdVwhopv

- Joins are used to find correlations among data
- Applications
 - Find the news articles under the same category that appear in BBC and CNN news-feed
 - Equi-Join
 - Find all sensors that are reporting higher temperatures than other sensors in the area
 - Conditional Join

Q hz voihhg H {dp sdn



Data streams:

- html link
- keyword (e.g. California Fires, LA Lakers)
- category (e.g. sports, politics, weather)
- timestamp

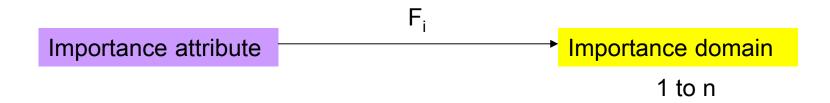
Sliding Window Join Query

Find all news articles reported in the last 2 hours that have the same keyword

iGoogle does something like this?

Y doxhoed the sruwdeth

- The tuple importance is determined based on the value
 - User Preferences:
 - Politics news in the morning
 - Sports news in the evening



Mrb Wdwahixorshuburu

- Consider
 - Streams R and S
 - Window W
 - Current time is T
- The sliding window join requires following R and S tuples to be in memory
 - □ r(i), such that T-W <= i <= T
 - \square s(j), such that T-W <= j <= T

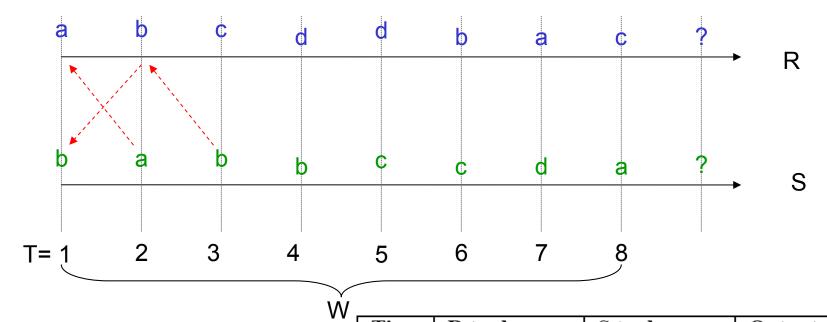
:

H (dp sdn

- Streams arrive at 1 tuple per second
- Equi-join over the 2 streams R and S
- Importance Function:
 - \square imp(a) = 1
 - \square imp(b) = 2
 - \square imp(c) = 3
 - \square imp(d) = 4

;

H {dfwMrbq



•	Memory	is not	limited
	141011101		mintoa

- Output Size = 16
- Total Importance = 36

Time	R tuples	S tuples	Output	Imp
2-3	a, b	b,a	b,a	3
3-4	a,b,c	b,a, b	b	2
4-5	a,b,c,d	b,a,b, b	b	2
5-6	a,b,c,d,d	b,a,b,b, c	С	3
6-7	a,b,c,d,d, b	b,a,b,b,c, c	b,b,b,c	9
7-8	a,b,c,d,d,b,a	b,a,b,b,c,c, d	a,d,d	5
8-9	a,b,c,d,d,b,a, c	b,a,b,b,c,c,d, a	c,c,a,a	8

Dssur{powhomp +UDQG,

Load-shedding Policy:

When M is full, randomly choose a tuple to drop.

Time	R tuples	S tuples	Output	Imp
2-3	a. b	b,a	b,a	3
3-4	a,c	a,b	1	0
4-5	a,d	b,b	1	0
5-6	d,d	b,c	-	0
6-7	d, b	b,c	b	2
7-8	b,a	b,d	_	0
8-9	b,c	b,a	_	0

- M=2
- Output Size = 3
- Total Importance = 5

Observation:

- R(c, 3) is dropped too early
- R(a,1) remains unproductive

Dssur{powhomp +IIIR,

Load-shedding Policy:

When M is full, drop the tuple at the front of the queue.

Time	R tuples	S tuples	Output	Imp
2-3	a , b	b,a	b,a	3
3-4	b,c	a, b	b	2
4-5	c,d	b,b	1	0
5-6	d,d	b,c	-	0
6-7	d,b	c,c	1	0
7-8	b,a	c,d	1	0
8-9	a,c	d, a	a	1

- M=2
- Output Size = 4
- Total Importance = 6

Observation:

- Does not exploit any value correlation
- Suffers from early drops

Dssur{powhomrby *VL] H,

Load-shedding Policy:

When M is full, drop a tuple corresponding to a value that has produced least outputs.

Time	R tuples	S tuples	Output	Imp
2-3	a , b	b,a	b,a	3
3-4	a,b	a, b	b	2
4-5	a,b	b, b	b	2
5-6	a,b	b,b	-	0
6-7	b, b	b,b	b,b	4
7-8	b,b	b,d	-	0
8-9	b,c	b,a	-	0

- M=2
- Output Size = 6
- Total Importance = 11

Observation:

- Does not exploit tuple-importance
- Suffers from early drops

GudzedfinvriSuhylrxvVfkhphv

- None exploit tuple-importance
- 2. Suffer from premature tuple drops
- Suffer from unproductive tuple retention
- 4. Unfair to some tuples with respect to time spent in memory
 - tuple-lifetime

R xuDssur{powing R eninfwyhv

- Overcome the drawbacks + maximize the total importance of join output
- We do not have any foreknowledge of
 - Tuple arrival characteristics
 - Data distributions

MrlgOrxwsxwtxddw

- We measure the join-quality in terms of the importance of tuples
 - \circ o(i).imp = min { r(j).imp, s(i).imp }
 - We can also use: max, sum, product, etc.
- Output set: Ω
- Total Importance of query q
 - \square IMP(q) = \sum o(i).imp, where o(i) $\varepsilon \Omega$

Suredip Vwolinp how

- Given the available memory M and a sliding window join query <α, c, w>, compute the approximate join, such that the total importance of the output is maximized.
 - α = set of streams {S1, S2, S3 ..Sn}
 - c is the join condition
 - w is the window size

OhwivehJUHHG \

Load-shedding Policy:

When M is full, drop the tuple with the lowest importance.

Time	R tuples	S tuples	Output	Imp
2-3	a, b	b,a	b,a	3
3-4	b,c	b, b	b	2
4-5	c,d	b,b	1	0
5-6	d,d	b,c	1	0
6-7	d,d	c,c	1	0
7-8	d,d	c,d	d,d	8
8-9	d,d	c,d	-	0

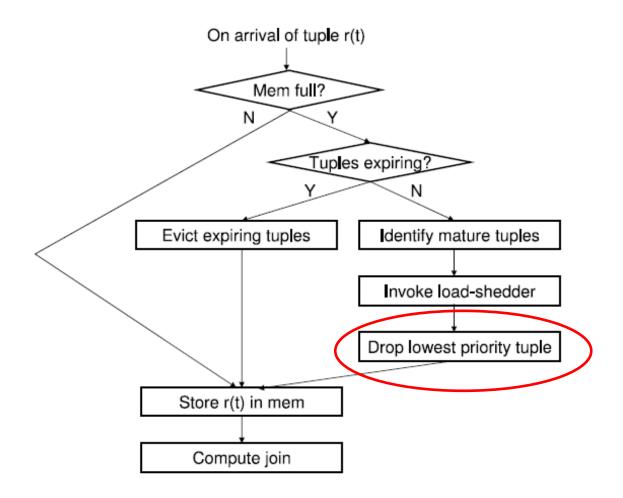
- M=2
- Output Size = 5
- Total Importance = 13

Observation:

- Does not exploit any value correlation
- Suffers from premature drops
- Suffers from unproductive tuples
- Unfair!

Printed with FinePrint trial version - purchase at www.fineprint.com

MR IQ R yhuyhz



Wxsch P hwdOG dwd

- We store the following with each tuple
 - t_a: arrival time
 - imp: tuple-importance
 - matches: number of join-output generated, so far.
 - prevmatch: timestamp of the most recent match
- This meta-data is used to compute tuple priority

Algorithm 1 Join operation

Require: r(i), $\gamma = \{s(j)\}$ such that $i-w \le j \le i$, w is the window size, c is the join condition

```
Ensure: the output-set \Omega
```

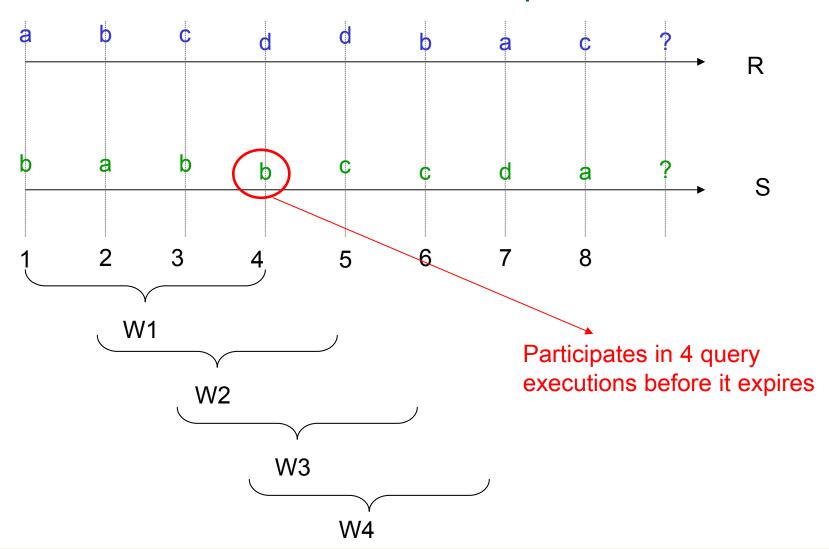
- 1: **for all** $s(j) \in \gamma$ **do**
- 2: **if** isMatch(s(j),r(i), c)= TRUE **then**
- 3: $o(i) = \{s(j), r(i)\}$
- 4: $o(i).imp = min \{s(j).imp, r(i).imp\}$
- 5: $\Omega \leftarrow \Omega \cup \{o(i)\}$
- 6: s(j).matches $\leftarrow s(j)$.matches + 1
- 7: s(j).prevmatch $\leftarrow i$
- 8: end if
- 9: end for
- 10: if $\Omega \neq \emptyset$ then
- 11: r(i).matches $\leftarrow |\Omega|$
- 12: r(i).prevmatch $\leftarrow i$
- 13: **end if**

WxsdnOSulrulw

- Basically, the estimated 'worth' of the tuple
- On arrival:
 - \Box P(r(i), t) = P_{INIT}
- At any time t':
 - $P(r(i), t') = F_p(r(i).imp, r(i).matches, r(i).age)$

Priority-function
$$F_p(imp, matches, age) = \frac{imp x matches}{age}$$

Joredbyv10rfdthSulrulw

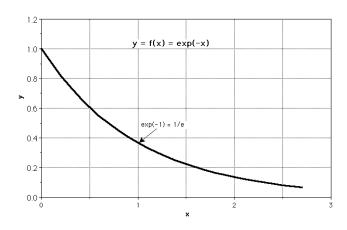


Orfoth Sulrul Ixqfwlrq

Where,

$$\mathtt{matches'} = \sum_{t=t_a}^{t'} \{ match_{[t,t-1]} \times e^{-d(t'-t)} \}$$

- d is a constant in the decay function
- $match_{[t,t-1]}$ is the number of matches in the window [t,t-1]



Wxson P dwxulw

- Only mature tuples should be considered as candidates for tuple eviction
- User-specified threshold: τ

Condition (Maturity): $r(i).age \ge \tau$

XqsurgxfwlyhWxsdn

- Unproductive tuples should be penalized.
- User-specified threshold: Δ

Condition (Unproductivity):
$$t' - r(i)$$
.prevmatch $\geq \Delta$

$$Penalty(\delta) = c \times (t' - r(i).prevmatch)$$

R xuOrdgOkhgglqj Vfkhp h

Algorithm 2 Load-shedding invoked at time (t)

```
Require: \beta = \{r(i)\} such that t-w \leq i \leq t, Maturity threshold
     \tau, Unproductivity threshold \Delta, Penalty \delta, k.
 1: for all r(i) \in \beta do
       Apply Condition Maturity (\tau) to determine if r(i) is
       MATURE
       if r(i) is NOT MATURE then
 3:
       \beta \leftarrow \beta - \{r(i)\}
 4:
 5:
       end if
 6: end for
 7: for all r(i) \in \beta do
       Determine the tuple-priority P(r(i),t)
 8:
       Apply Condition Unproductivity (\Delta) to determine if
 9:
       r(i) is UNPRODUCTIVE
       if r(i) is UNPRODUCTIVE then
 10:
          P(r(i), t) \leftarrow P(r(i), t) - \delta
11:
       end if
12:
13: end for
14: for all r(i) \in \beta do
15:
        Sort tuple by tuple-priority P(r(i), t)
16: end for
17: Drop r(j) such that P(r(j),t) = \min(P(r,t)) \forall r \in \beta
```

Z khq wr uhOfrp sxwh wxsdnOsulrulw B

- Frequent re-computation leads significant overhead
- Can we trade-off between overhead and join quality?
- We propose 3 re-computation schemes:
 - Successive
 - Priority is determined after each tuple drop
 - 2. k-Successive
 - Priority is determined after k drops
 - 3. Adaptive
 - Priority is determined only if join-quality drops by some threshold

H (shulp haw

- Synthetic dataset with importance semantics
- Equi-join queries
- Only memory is a constraint (FastCPU case)

Parameter	Value
arrival-rate	100-200 tuples per sec
tuple-domain	1-100 categorical values
imp-domain	1-100
join-memory M	10
window-size w	25
maturity-threshold $ au$	2
unproductivity-threshold Δ	3
recomputation policy	successive

P how how

- total importance: this is the measure of joinoutput quality
- output-size: number of output tuples generated by the query
- fairness: a measure of how the algorithm performs with respect to how long all tuples stay in memory

Pruhrq idluqhw

- None of the previous work consider fairness
- Fairness is important for several reasons
 - We have no knowledge of what is the 'worth' of a tuple if it is dropped.
 - 2. 100% fairness will give all tuples equal chance of being part of the join-result.
- We use Jain's measure of fairness, where L_i is the time spent by each tuple in join-memory.

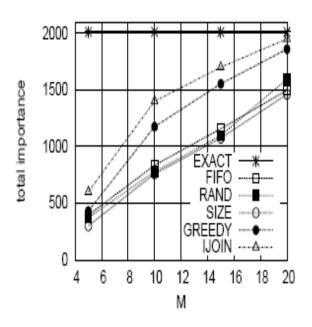
fairness =
$$\frac{(\sum L_i)^2}{n x (\sum L_i^2)}$$

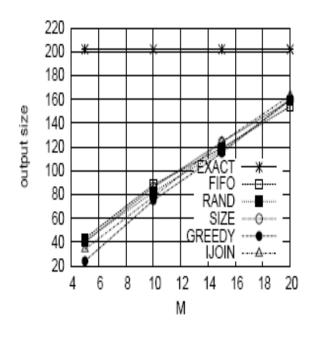
- How 'fair' is 'fair'?
 - Worst case: 1/n
 - Best case: 1

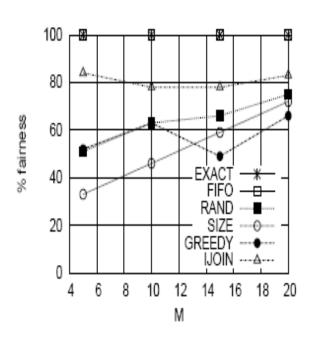
Vfkhp hvxvhg irufrp sdulvrq

- 1. EXACT
 - Unlimited Memory
- 2. FIFO
 - First-in-first-out
- 3. RAND
 - random drop
- 4. SIZE
 - tries to maximize the output size
- 5. GREEDY
 - drops the least important tuple
- 6. IJOIN
 - drops the only a mature tuple with lowest priority

Hiihfwri Phpru Vl}h





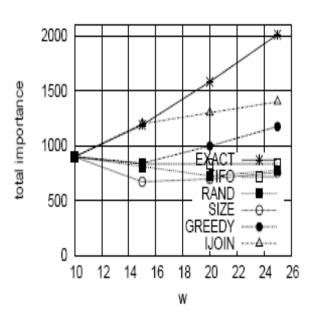


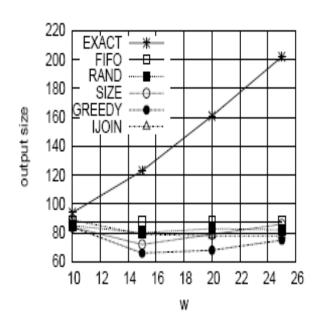
(a) Join output quality

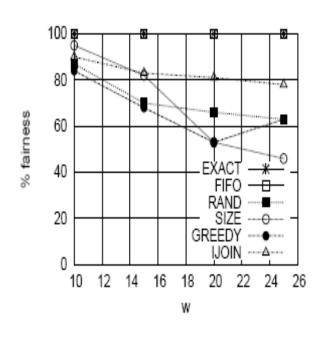
(b) Number of outputs

- FIFO is 100% fair, but join quality is low
- IJOIN scales well with increase in memory, and is consistently fair

HiihfwriZ lggrz Vl}h





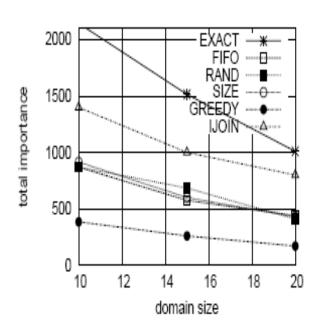


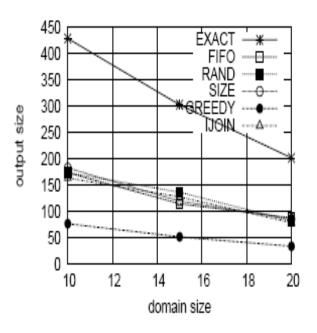
(a) Join output quality

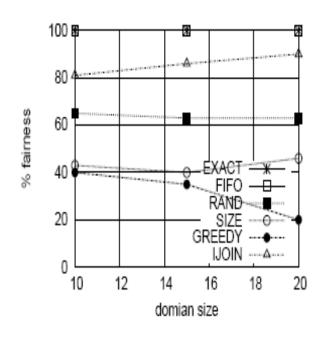
(b) Number of outputs

- Only IJOIN improves on join-quality
- Larger windows, provides better opportunity for IJOIN to estimate correlations
- Fairness drop from 90%-42% (SIZE)
- IJOIN is still between 80%-88% fair

HiihfwriGrpdbqVl}hriMrbqDwwlexwh





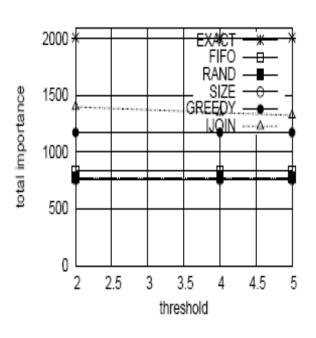


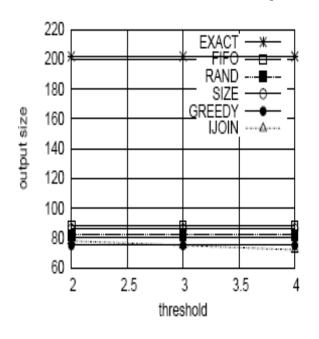
(a) Join output quality

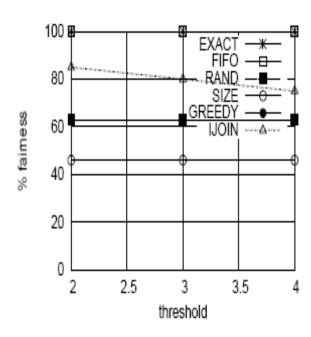
(b) Number of outputs

- All tuples have equal importance in this experiment
- Probability of finding a matching tuple drops with increase in domain size
- GREEDY is the worst in all measures

HiihfwriXqsurgxfwlylw Wkuhvkrog







(a) Join output quality

(b) Number of outputs

- This threshold is IJOIN specific
- IJOIN fairness is low (75%) when threshold is coarse (high value)
- Use lower threshold, or apply higher penalty!

Shuirup dqfh ri UhOfrp sxwdwlrq Vfkhp hv

	Successive	K-Successive	Adaptive
Total	1400	1200	1300
importance			
Output Size	80	75	80
Fairness	81 %	75 %	80 %
Overhead	High (1000 times)	Low (100 times)	Medium (600 times)

- Use Successive scheme if data is expected to be erratic
- Use Adaptive scheme for relatively stable distributions

Mrh=Ip sruwbywUhvxow

- iJoin addresses tuple 'importance'
- We have developed a framework that is very effective in maximizing join-quality
 - limits premature drops
 - penalizes unproductive tuple
- iJoin out-performs previous schemes used for load-shedding and join-approximation
- Fairness: Except for FIFO, IJOIN is the best
 - 80%-85% fair

