Efficient Continuous K-Nearest Neighbor Query Processing over Moving Objects with Uncertain Speed and Direction

Yuan-Ko Huang, Shi-Jei Liao, and Chiang Lee
Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan, R.O.C.

Introduction (1/3)

- Continuous K-Nearest Neighbor (CKNN) query:

Finding the K-nearest neighbors (KNNs) of a moving user at each time instant within a user-given time interval $\left[t_{s}, t_{e}\right]$.

- We focus on how to process such a CKNN query on moving objects with uncertain speed and direction.
Speed of object is between a minimal and a maximal speed.
Direction of object is between a minimal and a maximal angle.

Introduction (2/3)

- Effect of uncertain speed and direction on processing CKNN query:
All "possible" locations should be taken into account so as to guarantee that all possible KNNs (PKNNs) will be included in the result

Case (a)

At time 1

Introduction (3/3)

- Contributions:

We develop a TPR ${ }^{(s, d)}$-tree to index moving objects with uncertainty.
An uncertain distance model is presented for representing the distance between objects.
We propose a continuous PKNN (CPKNN) algorithm to determine the PKNNs from t_{s} to t_{e}.

Uncertain distance model (1/5)

- Possible region $R_{o}(t)$ of object o :
object o's speed varies within [o.v, o.V].
object o 's direction varies within [$0 . \theta, o . \Theta$]

possible region $R_{0}(t)$ is enclosed by four endpoints, two
segments, and two arcs
possible region $R_{0}(t)$ moves with time

Uncertain distance model (2/5)

- Given $R_{o}(t)$ and $R_{q}(t)$, the distance between o and q at any time t will be bounded by a minimal and a maximal distance.

At time t

Uncertain distance model (3/5)

- Minimal distance function $d_{o, q}(t)$:
at any time instant the minimal distance would belong to one of the six cases

case 3

case 4

case 5

case 6 .

Uncertain distance model (4/5)

- Maximal distance function $D_{o, q}(t)$:
at any time instant the maximal distance would belong to one of the two cases

Uncertain distance model (5/5)

- Each point in the region bounded by $d_{o, q}(t)$ and $D_{o, q}(t)$ is a possible distance between o and q

> Based on $d_{o, q}(t)$ and $D_{o, q}(t)$, we develop the CPKNN algorithm to determine the PKNNs from t_{s} to t_{e}

CPKNN algorithm (1/6)

- Filtering step:
employs a branch-and-bound traversal on the TPR ${ }^{(s, d)}$-tree to prune non-qualifying objects
- Refinement step:
examines whether the candidates are the PKNNs or not

CPKNN algorithm (2/6)

- Filtering step:
utilizes two parameters to determine whether an index node E is visited or not
d_{E} : the global minimal distance between $M B R_{E}(t)$ and $M B R_{q}(t)$ within $\left[t_{s}, t_{e}\right]$
D_{E} : the global maximal distance between $M B R_{E}(t)$ and $M B R_{q}(t)$ within $\left[t_{s}, t_{e}\right]$
pruning heuristic:
If there exist n MBRs whose D_{E} are less than $d_{E i}$ of $M B R_{E_{i}}(t)$ and the total number of objects enclosed by these n MBRs is greater than or equal to K, then all of child nodes of E_{i} can be pruned

CPKNN algorithm (3/6)

Filtering step:
Example:
\quad finding 2 NNs

a linked list sorted in ascending order of D_{E}

Visit R	$L=\left\{E_{1}, E_{2}, E_{3}\right\}$	$D_{E 1}=10$	prune E_{3}
Visit E_{1}	$L=\left\{E_{4}, E_{5}, E_{2}\right\}$	$D_{E 4}=5$	prune E_{5}
Visit E_{4}	$L=\left\{E_{2}\right\}$	$D_{E 4}=5$	candidates $=\{a, b\}$
Visit E_{2}	$L=\left\{E_{6}, E_{7}\right\}$	$D_{E 4}=5$	prune E_{7}
Visit E_{6}	$L=\{$ null $\}$	$D_{E 4}=5$	candidates $=\{a, b, c, d\}$

objects a, b, c, d will be verified in
the refinement step

CPKNN algorithm (4/6)

- Refinement step:

The minimal and maximal distance functions of the candidates will be computed and represented in the timedistance space distance

CPKNN algorithm (5/6)

- Refinement step:

Heuristic:

- at each time instant, if there exist K candidates whose maximal distances are less than the minimal distance of candidate o^{\prime}, then o^{\prime} must not be a PKNN
distance

the candidate o_{k} whose maximal distance ranks at the K-th smallest is used to generate an answer-curve

CPKNN algorithm (6/6)

- Refinement step:
a candidate o is a PKNN only if its $d_{o, q}(t)$ is below the answer-curve
distance
answer curve
$d_{d, q}(t)$

$d_{b, q}(t)$
$d_{a, q}(t)$
time

Conclusions

- We focused on processing the CKNN query over moving objects with uncertain speed and direction
- We proposed an uncertain distance model to formulate the uncertain distance between objects.
- We developed the CPKNN algorithm to process a CKNN query

Thanks all.

