

Tree Search

Guoliang I

Motivation

Applications Metrics

Metrics Related Wor

TSearch

Intuition Sequencing

Experiments

Experiments

Efficient Similarity Search for Tree-Structured Data

Guoliang Li Xuhui Liu Jianhua Feng Lizhu Zhou (SSDBM 2008)

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

July 10, 2008

RoadMap

Tree Search

Motivation

TSearch

Motivation

- Problem
- Applications
- Similarity Metrics
- **Existing Methods**
- Sequence-Based Tree-Structured Data Similarity Search
 - Intuition
 - Sequencing
 - Edit Distance Transformation
- **Experiments**
- Conclusion

RoadMap

Tree Search

Motivation

TSearch

- Motivation
 - Problem
 - Applications
 - Similarity Metrics
 - **Existing Methods**

Problem

Tree Search

Motivation Problem

TSearch

Problem

- Given a set of trees and a query tree
- Find all the trees that are **similar** to the query tree

Applications

Tree Search

Guoliang |

Motivation

Applications

Metrics

Related Wo

TSearch

Sequencing

Experiments

Experiments

Applications

- Comparison of hierarchically structured data
- Alignment of RNA secondary structures in computational biology
- Approximate XML document match
- Schema mapping of tree-structured data

Tree Similarity Metrics

Tree Search

Guoliang I

Motivation

Applica

Metric

Related W

TSearch

.

Sequencing Transformation

Experiments

Experiments

Conclusio

Tree Similarity Metrics

- Largest Common Subtree
- Smallest Common Super-tree
- Tree Edit Distance
- ...

Largest Common Subtree Distance

Tree Search

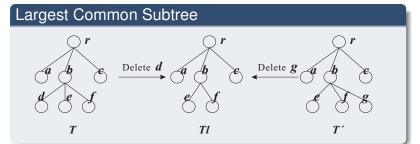
Guoliang I

Motivation

Problem

Application Metrics

Related Wo


TSearch

1 Searci

Sequencing

Experiments

Experiments

Largest Common Subtree Distance (LCST)

• the sum of # of operations to transfer the two trees into the largest common subtree

Smallest Common Super-tree Distance

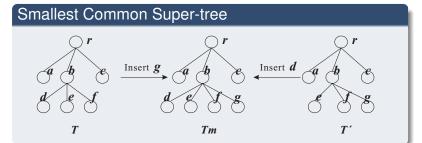
Tree Search

Guoliang I

Motivation

Application

Metrics


Related Wo

TSearch

Sequencing

Experiments

Experiments

Smallest Common Super-tree Distance (SCST)

 the sum of # of operations to transfer the two trees into the smallest common super-tree

Tree Edit Distance

Tree Search

Guoliang I

Motivation

Application

Metrics

Related Wo

TSearch

1 Octaioi

Sequencing

Experiments

Experimente

Tree Edit Operations

- Insert Node
- Delete Node
- Substitute Node

Tree Edit Distance

• # of tree edit operations

Edit Operations

Tree Search

Guoliang |

Motivation

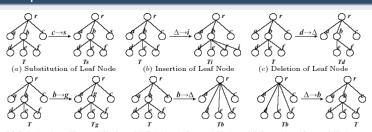
Problem

Application

Metrics

neialeu wc

TSearch


Sequencing

Transformatio

Experiments

Ехроппопи

Examples

- (d) Substitution of Internal Node
- (e) Deletion of Internal Node
- (f) Insertion of Internal Node

Edit Operations

Tree Search

Motivation

TSearch

Edit Operations

$$\lambda_s(v) = \mathtt{cSize}(v)$$

$$\lambda_d(v) = \begin{cases} 2 & \text{if } v \text{ is a leaf node} \\ 1 & \text{if } v \text{ is an internal node and } \mathtt{parent}(v) = v \\ \mathtt{cSize}(v) & \text{if } v \text{ is an internal node and } \mathtt{parent}(v) \neq v \end{cases}$$

$$\lambda_i(v) = \begin{cases} 2 & \textit{if } v \textit{ is a leaf node} \\ 1 & \textit{if } v \textit{ is an internal node and } \mathtt{parent}(v) = v \\ \mathtt{cSize}(v) & \textit{if } v \textit{ is an internal node and } \mathtt{parent}(v) \neq v \end{cases}$$

Tree Edit Distance

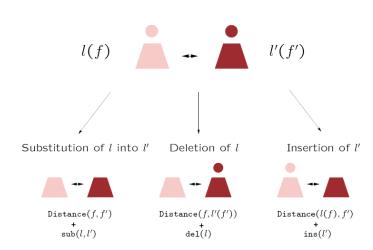
Tree Search

Guoliang L

Motivation

Problem

Утррпос


Belated W

TSearch

Sequencing

Experiments

0 1 :

Forest Edit Distance

Tree Search

Motivation

TSearch

Leftmost decomposition

Substitution of l into l'

Deletion of l

Insertion of
$$l'$$

$$\texttt{Distance}(l(f), l'(f'))$$

$$\mathtt{Distance}(t,t')$$

$$\mathtt{Distance}(f \circ t, l'(f') \circ t') + \mathtt{del}(l)$$

Distance (
$$j \circ i, i (j) \circ i$$
) | $del(i)$

$$Distance(l(f) \circ t, f' \circ t') + ins(l')$$

Forest Edit Distance

Motivation

TSearch

Rightmost decomposition

$$\begin{aligned} & \text{Distance}(l(f), l'(f')) \\ & + \\ & \text{Distance}(t, t') \end{aligned}$$

Deletion of l

$$\texttt{Distance}(t \mathrel{\circ} f, t' \mathrel{\circ} l'(f')) + \texttt{del}(l) \\$$

Insertion of l'

$$\texttt{Distance}(t \circ l(f), t' \circ f') + \texttt{ins}(l')$$

Forest Edit Distance

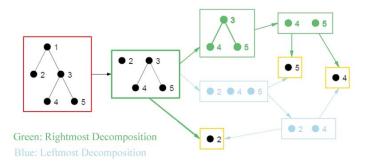
Tree Search

Guoliang L

Motivation

Application

Motrice


Rolated Wo

TSearch

Intuition Sequencing

Evnerimente

Схропписть

Tree Edit Distance

Tree Search

Guoliang |

Motivation

Applica

Metrics

Related W

TSearch

Tocarci

Sequencing Transformation

Experiments

Experiments

Edit Distance

- Different decomposition strategies
- Dynamic programming
- The costs of a commonly used algorithm
 - Space: $|T_1| * |T_2|$
 - Time:

 $|T_1|^*|T_2|^*min(|depth(T_1)|, |leaves(T_1)|)^*min(|depth(T_2)|, |leaves(T_2)|)$

- Worst Case: $|T_1|^2 * |T_2|^2$
- High CPU and IO costs!

Tree Edit Distance

Tree Search

Guoliang |

Motivation

Applic:

Metrics

Related W

TSearch

Tocarci

Sequencing

Experiments

Experiment

Edit Distance

- Different decomposition strategies
- Dynamic programming
- The costs of a commonly used algorithm
 - Space: $|T_1| * |T_2|$
 - Time:
 - $|T_1|^*|T_2|^*min(|depth(T_1)|, |leaves(T_1)|)^*min(|depth(T_2)|, |leaves(T_2)|)$
 - Worst Case: $|T_1|^2 * |T_2|^2$
- High CPU and IO costs!

Complexity of Tree Similarity Metrics

Tree Search

Guoliang I

Motivation

Problem Applicati

Metrics Related Wo

TSearch

1 Searci

Sequencing Transformatio

Experiments

LAPETITION

Complexity

Tree edit distance

		Tree care disease		
variant	type	time	space	reference
general	0	$O(T_1 T_2 D_1^2D_2^2)$	$O(T_1 T_2 D_1^2D_2^2)$	[43]
general	0	$O(T_1 T_2 \min(L_1, D_1)\min(L_2, D_2))$	$O(T_1 T_2)$	[55]
general	0	$O(T_1 ^2 T_2 \log T_2)$	$O(T_1 T_2)$	[25]
general	0	$O(T_1 T_2 + L_1^2 T_2 + L_1^{2.5}L_2)$	$O((T_1 + L_1^2) \min(L_2, D_2) + T_2)$	[8]
general	U	MAX SNP-hard		[54]
constrained	0	$O(T_1 T_2)$	$O(T_1 T_2)$	[51]
constrained	0	$O(T_1 T_2 I_1I_2)$	$O(T_1 D_2I_2)$	[37]
constrained	U	$O(T_1 T_2 (I_1 + I_2) \log(I_1 + I_2))$	$O(T_1 T_2)$	[52]
less-constrained	0	$O(T_1 T_2 I_1^3I_2^3(I_1 + I_2))$	$O(T_1 T_2 I_1^3I_2^3(I_1 + I_2))$	[29]
less-constrained	U	MAX SNP-hard		[29]
unit-cost	0	$O(u^2 \min(T_1 , T_2) \min(L_1, L_2))$	$O(T_1 T_2)$	[41]
1-degree	0	$O(T_1 T_2)$	$O(T_1 T_2)$	[38]

Tree alignment distance

general	0	$O(T_1 T_2 (I_1 + I_2)^2)$	$O(T_1 T_2 (I_1 + I_2)^2)$	[18]
general	U	MAX SNP-hard		[18]
similar	0	$O((T_1 + T_2) \log(T_1 + T_2)(I_1 + I_2)^4 s^2)$	$O((T_1 + T_2) \log(T_1 + T_2)(I_1 + I_2)^4 s^2)$	[17]

Tree inclusion

general	0	$O(T_1 T_2)$	$O(T_1 \min(D_2L_2))$	[21]
general	0	$O(\Sigma_{T_1} T_2 + m_{T_1,T_2}D_2)$	$O(\Sigma_{T_1} T_2 + m_{T_1,T_2})$	[36]
general	0	$O(L_1 T_2)$	$O(L_1 \min(D_2L_2))$	[7]
general	U	NP-hard		[22, 32]

Existing Methods

Tree Search

Guoliang I

Motivation

Applicati

Related Work

TSearch

Sequencing

Evnerimente

LAPOITHORIC

Existing Methods

- PQ-Gram based method
- Binary tree based method
- Filter and Refine

Binary tree based similarity search [SIGMOD05]

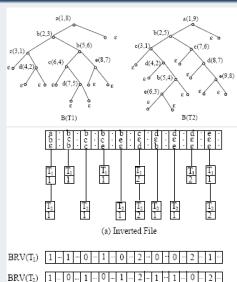
Tree Search

Guoliang Li

Motivation

Application Matrice

Related Work


TSearch

Intuition Sequencing

Experiments

Lxperiment

Binary tree

pq-gram based similarity search [VLDB05]

Tree Search

Guoliang I

Motivation

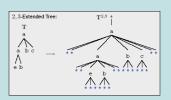
Problem Application

Related Work

TSearch

Intuition Sequencing

Evperiments


Experiment

pq-gram

$\operatorname{\mathscr{F}}$ Extended Tree T^{pq} :

Patch boundaries by adding null nodes (*):

- $\Rightarrow p-1$ ancestors to the root
- ightharpoonup q-1 nodes before the first and after the last child of each non-leaf node
- $\Rightarrow q$ children to each leaf
- $\operatorname{\mathscr{P}}$ $pq ext{-}\mathsf{Gram}\ G ext{:}$ Subtree of T^{pq} .
 - ⇒ Anchor node
 - \Rightarrow with p-1 ancestors
 - \Rightarrow and q children.
 - Contiguous siblings in G are contiguous siblings in T^{pq} .

pq-gram based Similarity Join [VLDB05]

Tree Search

Motivation

Related Work

TSearch

pq-gram

Patch boundaries by adding null nodes (*):

- $\Rightarrow p-1$ ancestors to the root
- $\Rightarrow q-1$ nodes before the first and after the last child of each non-leaf node
- ⇒ q children to each leaf
- $\protect\graphi$ $pq ext{-Gram }G ext{:}$ Subtree of T^{pq} .
 - ⇒ Anchor node
 - \Rightarrow with p-1 ancestors
 - ⇒ and q children.

Contiguous siblings in G are contiguous siblinas in T^{pq} .

- $\mathcal{P} pq$ -gram Profile $P^{p,q}(T)$:
 - ⇒ Bag of all pq-grams of T.

2, 3-Gram Pattern:

2.3-Extended Tree:

 $T^{2,3}$

RoadMap

Tree Search

Motivation

TSearch

- Problem
- **Applications**
- Similarity Metrics
- **Existing Methods**
- Sequence-Based Tree-Structured Data Similarity Search
 - Intuition
 - Sequencing
 - Edit Distance Transformation

TSearch

Tree Search

Guoliang |

Motivation

Application Metrics

Related Wo

TSearch

Sequencing

Experiments

Experiments

Intuition

- Efficiency
- Both Structural and Textual features

Intuition

- Trees -> Strings
- Using approximate string search for approximate tree search

Tree Search

Motivation

TSearch

Sequencing

Name Conf Author Paper Author Paper Title Paper Conf Year Conf

Tree Search

Guoliang L

Motivation

Applicat

Metrics Related W

TSearch

.

Sequencing


Transformatio

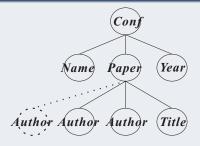
Experiments

Experiment

0----

Sequencing

Name Conf First Author Last Author Paper Title Paper Conf Year Conf



Tree Search

Motivation

TSearch

Insert Leaf Node

Name Conf Author Paper Author Paper Author Paper Title Paper Conf Year Conf

Tree Search

Motivation

TSearch

Delete Leaf Node

Name Conf Author Paper Author Paper Title Paper Conf Year Conf

Tree Search

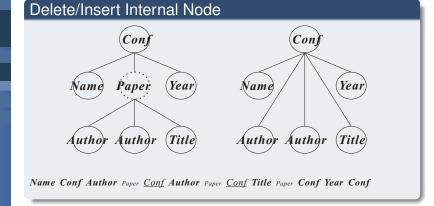
Guoliang L

Motivation

Application

Metrics Related Wo

TSearch


Intuition

Sequencing

- . .

Experiments

Edit Distance Transformation

Tree Search

Guoliang L

Motivation

Applications Metrics

Related Wo

TSearch

Intuition Sequencing

Transformation

Experiments

Experiments

Edit Distance Transformation

 $\mathit{ted}(\mathcal{T},\mathcal{T}') \leq \mathit{ed}(\mathcal{S},\mathcal{S}') = \mathit{ed}(\mathcal{T},\mathcal{T}') \leq \mathcal{C}_{max} * \mathit{ted}(\mathcal{T},\mathcal{T}')$

LCST Distance Transformation

Tree Search

Guoliang I

Motivation

Application Metrics

Related Wo

TSearch

Intuition

Sequencing Transformation

Experiments

LCST Distance Transformation

 $lcstd(\mathcal{T},\mathcal{T}') \ge ted(\mathcal{T},\mathcal{T}')$

 $lcstd(T, T') \ge ted(T, T') \ge \frac{1}{C_{max}} *ed(S, S')$

SCST Distance Transformation

Tree Search

Guoliang |

Motivation

Application Metrics

Metrics Related Wo

TSearch

Intuition

Sequencing

Experiments

Experiments

$$scstd(\mathcal{T}, \mathcal{T}') \ge ted(\mathcal{T}, \mathcal{T}')$$

SCST Distance Transformation

$$\textit{scstd}(\mathcal{T}, \mathcal{T}') \geq \textit{ted}(\mathcal{T}, \mathcal{T}') \geq \frac{1}{C_{max}} * \textit{ed}(\mathcal{S}, \mathcal{S}')$$

Tree Search

Motivation

TSearch

- - Problem
 - **Applications**
 - Similarity Metrics
 - **Existing Methods**
- - Intuition
 - Sequencing
- **Experiments**

Data Sets

Tree Search

Guoliang I

Motivation

Applications Metrics

Metrics Related Wo

TSearch

Intuition
Sequencing
Transformation

Experiments

Experiments

8
8
6
6

Pruning Power

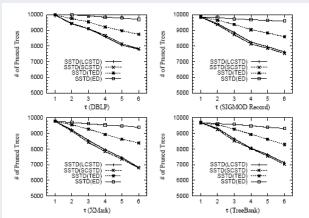
Tree Search

Guoliang L

Motivation

Application Metrics

Related Wo


TSearch

Sequencing
Transformation

Experiments

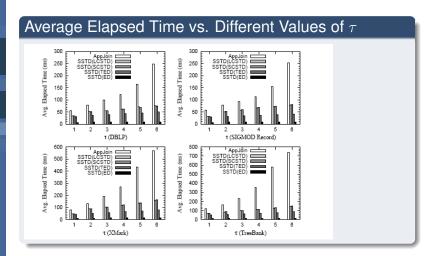
Experiment

Performance

Tree Search

Guoliang L

Motivation


Applications Metrics

TSearch

Intuition
Sequencing
Transformation

Experiments

Lxperiments

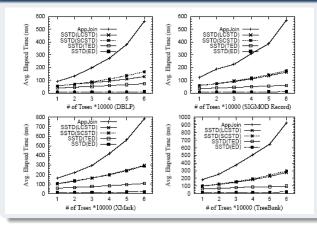
Performance

Tree Search

Guoliang L

Motivation

Applications Metrics


TSearch

Intuition Sequencing

Experiments

. . .

Average Elapsed Time vs. Different Numbers of Trees $(\tau=3)$

RoadMap

Tree Search

Motivation

TSearch

- - Problem
 - **Applications**
 - Similarity Metrics
 - **Existing Methods**
- - Intuition
 - Sequencing
- Conclusion

Sequence Based Similarity Search

Tree Search

Guoliang

Motivation

Application Metrics

Metrics Related Wo

TSearch

Sequencing Transformation

Experiments

Conclusion

Sequence Based Similarity Search for Tree-Structured Data

- Trees -> Strings: Sequencing method
- Using approximate string search for approximate tree search: Edit Distance Transformation
- Efficient methods for different metrics

Tree Search

Guoliang L

Motivation

Applications
Metrics

TSearch

Intuition Sequencing

Transformation

Experiments

Thanks!!
Questions?