

Scientific and Statistical Database Management (SSDBM'08)

# Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks

Matthias Renz

Hans-Peter Kriegel, Peer Kröger, Tim Schmidt Ludwig-Maximilians-Universität München Munich, Germany www.dbs.ifi.lmu.de



M. Renz: Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks, SSDBM'08





# Introduction

- Embedding of Large Road Networks
  - flat embedding
  - multi-level embedding
  - distance approximations
- Multi-Step Distance Query Processing
- Experimental Evaluation
- Summary





- Distance Queries in Road-Networks
  - Query Types:
    - distance range query
    - k-nearest-neighbor query
  - Applications
    - Location-Based Service Applications
    - new applications in the car / navigation system industry
    - ...





- traditional approaches:
   mainly focus on small search space
- problem addressed here:
  - very dense road-network graph
  - query relevant objects are sparsely distributed
  - distance computations between Q and O∈DB very expensive

query relevant objects





- we propose:
  - efficient filter-refinement query processor
    - efficient computation of lower/upper-bounding distance approximations (filter step)
    - use distance approximations to accelerate the exact distance computations (refinement step)
  - hierarchical graph embedding
    - support queries covering large network graphs





- Introduction
- Embedding of Large Road Networks
  - flat embedding
  - multi-level embedding
  - distance approximations
- Multi-Step Distance Query Processing
- Experimental Evaluation
- Summary





- Flat Embedding:
  - Lipschitz embedding based on *k* reference nodes (landmarks)  $N' = \{n_{r_1}, n_{r_2}, ..., n_{r_k}\} \subseteq N$
  - *reference node embedding* of G(N,E) based on
     N' defines the function:

 $F^{N'}(n) = (F_1^{N'}(n), \dots, F_k^{N'}(n)) \quad (k = |N'|)$  where

$$F_i^{N'}(n) = d_{net}(n, n_{r_i})$$





 embedding of objects located on an edge between two nodes:



$$F_i^{N'}(o) = \min\{d_1(o) + F_i^{N'}(n_1), d_2(o) + F_i^{N'}(n_2)\}$$





Distance Approximations:
 – lower bounding distance approximation

$$D(F^{N'}(x), F^{N'}(y)) = \max_{i=1..k} \left\{ F_i^{N'}(x) - F_i^{N'}(y) \right\}$$

- upper bounding distance approximation

$$D^{*}(F^{N'}(x), F^{N'}(y)) = \min_{i=1..k} \left\{ F_{i}^{N'}(x) + F_{i}^{N'}(y) \right\}$$





- problem with flat embedding:
  - few reference nodes
    - → bad distance approximation
    - $\rightarrow$  low filter selectivity
  - many reference nodes
    - → large reference node vectors
    - → high storage costs
  - →bad query performance
- approximations for long distances do not need to be as accurate as short distances





- Hierarchical Embedding:
  - idea: introducing further embedding levels
  - lower level embedding for local distance approximations

→ only a small set of (k << |N'|) local reference nodes are required (1<sup>st</sup>-level)

- higher level embedding for global distance approximations

 $\rightarrow$  distances between sets of local reference nodes are materialized in an additional graph (2<sup>nd</sup>-level)

 distance approximations are composed of 1<sup>st</sup>-level distances and 2<sup>nd</sup>-level distances





- Schema of the 2-Level Embedding
  - Matrix M' stores pair-wise distances between
    - 1st-level reference nodes







7

- Distance Approximations:
  - lower bounding distance approximation

$$\widetilde{D}(\widetilde{F}^{N_{x}}(x),\widetilde{F}^{N_{y}}(y)) = \max_{k \in N_{x}, l \in N_{y}} \begin{cases} M_{i_{k},i_{l}} - \widetilde{F}_{k}^{N_{x}}(x) - \widetilde{F}_{l}^{N_{y}}(y), \\ \widetilde{F}_{k}^{N_{x}}(x) - M_{i_{k},i_{l}} - \widetilde{F}_{l}^{N_{y}}(y), \\ \widetilde{F}_{l}^{N_{y}}(y) - \widetilde{F}_{k}^{N_{x}}(x) - M_{i_{k},i_{l}}, \end{cases} \end{cases}$$

- upper bounding distance approximation  $\widetilde{D}^{*}(\widetilde{F}^{N_{x}}(x),\widetilde{F}^{N_{y}}(y)) = \min_{k \in N_{x}, l \in N_{y}} \left\{ M_{i_{k},i_{l}} + \widetilde{F}_{k}^{N_{x}}(x) + \widetilde{F}_{l}^{N_{y}}(y) \right\}$ 





• Examples:



 $d_{net}(r_1, r_2) > d_{net}(x, r_1) + d_{net}(y, r_2)$ 

 $d_{net}(y,r_2) > d_{net}(x,r_1) + d_{net}(r_1,r_2)$ 





- Introduction
- Embedding of Large Road Networks
  - flat embedding
  - multi-level embedding
  - distance approximations
- Multi-Step Distance Query Processing
- Experimental Evaluation
- Summary



## Multi-Step Distance Query Processing



- Multi-Step Query Processing
  - Distance Range Queries
    - filter step: scan over all objects and filter out true hits and true drops according to D and D\*
    - refinement: shortest path computation for all remaining candidates
  - k-Nearest Neighbor Queries
    - <u>refinement optimal</u> multi-step k-NN query as proposed in [1]

[1] Kriegel H.-P., Kröger P, Kunath P., Renz M.:

Generalizing the Optimality of Multi-Step k-Nearest Neighbor Query Processing. In Proc. 10th International Symposium on Spatial and Temporal Databases (SSTD'07), Boston, U.S.A., 2007, pp. 75-92.





- Refinement Step:
  - Accelerated Shortest Path Computation
    - computation of the shortest path between query object q and database object o:
      - A\*-search method.
      - use distance approximation *D* for the forward estimation
      - use distance approximation D\* to further prune the candidate list





- Introduction
- Embedding of Large Road Networks
  - flat embedding
  - multi-level embedding
  - distance approximations
- Multi-Step Distance Query Processing
- Experimental Evaluation
- Summary





- Datasets:
  - SA: San Francisco,
  - 175 000 nodes -TG: San Joaquin County, 18 300 nodes
- Approaches:
  - REF: no embedding
  - 1RNE: flat embedding
  - 2RNE: 2-level embedding





Storage Requirements

 – size of the embedding, w.r.t. size of the network graph
 <sup>30</sup>
 <sup>31</sup>
 <sup>31</sup></



# • 2-level embedding allows 2 orders of magnitude more reference nodes





- Multi-Step Query Performance
   Distance Range Queries DRQ
  - performance measured in page accesses:







- Multi-Step Query Performance
   Distance Range Queries DRQ
  - filter selectivity:







- Multi-Step Query Performance
   k-Nearest-Neighbor Queries kNNQ
  - filter selectivity:







Refinement: Exact Distance Computation

 search spaces for one shortest path computation



Dijkstra

Euclidean (A\*-Search) flat embedding (A\*-Search) 2-level embedding (A\*-Search)





- Introduction
- Embedding of Large Road Networks
  - flat embedding
  - multi-level embedding
  - distance approximations
- Multi-Step Distance Query Processing
- Experimental Evaluation
- Summary





- Summary
  - we proposed
    - hierarchical graph embedding
    - multi-step query processing based on lower and upper bounding distance estimations
    - accelerated A\*-search based refinement
  - hierachical embedding
    - is appropriate for large graphs
    - outperforms flat embedding and other existing competitors in terms of pruning power and overall query performance





# • Future Work

- detailed evaluation of multi-level embeddings (more than 2 levels)
- development of methods for efficient handling of updates





#### Thank you,

#### for your attention,

any questions?

M. Renz: Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks, SSDBM'08





### Multi-Level Graph Embedding







- Comparison to Competing Approach
  - 2-level embedding approach (DRQ) compared to Signature based approach [1]



query relevant objects, density

[1] Hu, H., Lee, D.L., Lee, V.C.S.: "Distance Indexing on Road Networks". In: Proc. Int. Conf. on Very Large Databases (VLDB'06). 2006

M. Renz: Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks, SSDBM'08 24