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Introduction
Emergency Center Nearest Path

Moving Car Car in Danger



Introduction
Our Problem: Monitoring k-NN objects over a road network to minimize 
(or maximize) an aggregate distance function for multiple query points.

VLDB 2006 TKDE 2005 Our Problem

Continuous Query? Yes No Yes
Object Points Can Move? Yes No Yes
Query Points Can Move? Yes No No
Multiple Query Points? No Yes Yes

TKDE 2005 Our Problem

VLDB 2006
Monitoring k-NN 
objects for a single 
fixed query point



Problem Definition
Continuous Nearest Neighbor Query CANN(Q,k,h):

Q: a set of fixed query points over a road network.
k: a positive integer.
h: an aggregate function (e.g. Sum, Min, Max).

Defined on points in Q
Variables are moving objects
Network distance

Result: monitoring the top-k moving objects that has the smallest 
h function values in the road network.

Query Point

Top-3 Results
Moving Object

h = Sum

Timestamp 1
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Problem Definition

A Running Example
Q={q1,q2,q3}, k=3, and h=Sum.
Sum(p1)=Sum{d(p1,q1), d(p1,q2), d(p1,q3)}=155, 
Sum(p2)=155, Sum(p3)=255, Sum(p4)=200, Sum(p5)=288, 
and Sum(p6)=255.
The top-3 result is {p1, p2, p4}.



VLDB06: Tree-Expand-Approach

A tree expand approach for a single query point.
Expanding and Shrinking
Timestamp 1: CANN({q3},3,sum)={p2,p5,p1}



VLDB06: Tree-Expand-Approach

A tree expand approach for a single query point.
Expanding and Shrinking
Timestamp 2: CANN({q3},3,sum)={p2,p1,p5}



Our Solution: Non-Tree-Expand

The order of visiting edges – Not a Tree
A two-step approach

Step 1: Construct a Query Graph (External Structure)
Study the aggregate functions on edges.
Pre-compute as much information as possible.
Find an order of visiting edges.

Step 2: Monitoring Top-k Objects
Sequential Access
Initial result computation
Avoid re-computation



Query Graph: Functions on Edges



Query Graph: Segmentation 

Segmentation based on the aggregate 
piecewise linear function.

Start Value: 135;  End Value: 175.



Query Graph : Sorting Segments

Query Graph
(External)

Road Network
And Segments

Start Value
(Sorted)

End Value
(Not Sorted)

155

Compute in constant time



Monitoring Algorithm: Initial Result

TList: The current top-k objects in ascending 
order of their h values 
Tmax: the h value of the k-th object in TList
Sequential access
Stop condition: Tmax <= Start value of the 
next segment



Initial Result Computation
Visit S2, Kmax=Infinity (k=4)
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Initial Result Computation
Visit S6, Kmax=Infinity (k=4)
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Initial Result Computation
Visit S1, Kmax=Infinity (k=4)
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Initial Result Computation
Visit S4, Kmax=200 (k=4)
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Initial Result Computation
Visit S9, Kmax=190 (k=4), Stop, Report TList
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Naïve Monitoring Algorithm

Situation 1, Add an Object to TList: Incremental 
Update

Situation 2, Remove an Object in TList: Re-
computation

Situation 3, Otherwise: Do nothing



Naïve Monitoring Algorithm
Timestamp 1, add p10
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Naïve Monitoring Algorithm
Timestamp 1, add p10: Incremental Update
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Naïve Monitoring Algorithm
Timestamp 2, remove p8, Kmax=Infinity, Visit s10?
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Naïve Monitoring Algorithm
Timestamp 2, remove p8: Re-computation
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Naïve Monitoring Algorithm
Timestamp 3, remove p4
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Naïve Monitoring Algorithm
Timestamp 3, remove p4: Do nothing
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Bidirectional Updating Algorithm

Sequential access: forward and backward 
CList: Candidate list

A List of Objects on the visited edges but 
not in TList

Completely avoid re-computation
Situations:

Add an object to TList: backward Update
Remove an object from TList: forward Update
Otherwise: update CList if necessary



Bidirectional Updating Algorithm
Initially, Tmax=190
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Bidirectional Updating Algorithm
Timestamp 1, Remove p7, Tmax=Infinity
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Bidirectional Updating Algorithm
Timestamp 1, Remove p7, Move p4 to TList, Tmax=200
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Bidirectional Updating Algorithm
Timestamp 2, Remove p8, Tmax=Infinity
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Bidirectional Updating Algorithm
Timestamp 2, Remove p8, Forward update, visit s10, s5, Tmax=230
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Bidirectional Updating Algorithm
Timestamp 3, Add p11
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Bidirectional Updating Algorithm
Timestamp 3, Add p11:Backward Update, Tmax=200
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Experiment Setup

We use road-map extracted from US Census 
Website.
IRC: To compute the top-k results from 
scratch for every update.
MTR: The Naïve monitoring algorithm
BUA: Bidirectional updating algorithm
One Query Point (VLDB06):

IMA: Incremental monitoring algorithm
GMA: Group monitoring algorithm



Experiment Result

Distribution of queries / Distribution of Objects
U: Uniform  G: Gaussian



Experiment Result: Test Network

Vary Edges (Sec) Vary Objects (Sec)



Experiment Result: Test Query 

Vary Queries (Sec) Vary k (Sec)



Summary

Continuous Nearest Neighbor Query.
Monitor k-NN objects over a road network.
Minimize an aggregate distance function for 
multiple query points.

Query Graph can be constructed offline.
Bidirectional top-k monitoring algorithm to 
avoid re-computation.
Extensive experiments are conducted using 
real road network maps. 



Thank You!



Implementation Details



Experimental Studies



Experimental Studies
Time to construct 

query graph: 



Experimental Studies
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