
Monitoring Aggregate k-NN
Objects in Road Networks

Lu Qin, Jeffrey Xu Yu, Bolin Ding , Yoshiharu Ishikawa

Outline

Introduction
Problem Definition
Existing Solution
A Novel Approach
Experimental Studies
Summary

Introduction
Emergency Center Nearest Path

Moving Car Car in Danger

Introduction
Our Problem: Monitoring k-NN objects over a road network to minimize
(or maximize) an aggregate distance function for multiple query points.

VLDB 2006 TKDE 2005 Our Problem

Continuous Query? Yes No Yes
Object Points Can Move? Yes No Yes
Query Points Can Move? Yes No No
Multiple Query Points? No Yes Yes

TKDE 2005 Our Problem

VLDB 2006
Monitoring k-NN
objects for a single
fixed query point

Problem Definition
Continuous Nearest Neighbor Query CANN(Q,k,h):

Q: a set of fixed query points over a road network.
k: a positive integer.
h: an aggregate function (e.g. Sum, Min, Max).

Defined on points in Q
Variables are moving objects
Network distance

Result: monitoring the top-k moving objects that has the smallest
h function values in the road network.

Query Point

Top-3 Results
Moving Object

h = Sum

Timestamp 1

Problem Definition
Continuous Nearest Neighbor Query CANN(Q,k,h):

Q: a set of fixed query points over a road network.
k: a positive integer.
h: an aggregate function (e.g. Sum, Min, Max).

Defined on points in Q
Variables are moving objects
Network distance

Result: monitoring the top-k moving objects that has the smallest
h function values in the road network.

Query Point

Top-3 Results
Moving Object

h = Sum

Timestamp 2

Problem Definition

A Running Example
Q={q1,q2,q3}, k=3, and h=Sum.
Sum(p1)=Sum{d(p1,q1), d(p1,q2), d(p1,q3)}=155,
Sum(p2)=155, Sum(p3)=255, Sum(p4)=200, Sum(p5)=288,
and Sum(p6)=255.
The top-3 result is {p1, p2, p4}.

VLDB06: Tree-Expand-Approach

A tree expand approach for a single query point.
Expanding and Shrinking
Timestamp 1: CANN({q3},3,sum)={p2,p5,p1}

VLDB06: Tree-Expand-Approach

A tree expand approach for a single query point.
Expanding and Shrinking
Timestamp 2: CANN({q3},3,sum)={p2,p1,p5}

Our Solution: Non-Tree-Expand

The order of visiting edges – Not a Tree
A two-step approach

Step 1: Construct a Query Graph (External Structure)
Study the aggregate functions on edges.
Pre-compute as much information as possible.
Find an order of visiting edges.

Step 2: Monitoring Top-k Objects
Sequential Access
Initial result computation
Avoid re-computation

Query Graph: Functions on Edges

Query Graph: Segmentation

Segmentation based on the aggregate
piecewise linear function.

Start Value: 135; End Value: 175.

Query Graph : Sorting Segments

Query Graph
(External)

Road Network
And Segments

Start Value
(Sorted)

End Value
(Not Sorted)

155

Compute in constant time

Monitoring Algorithm: Initial Result

TList: The current top-k objects in ascending
order of their h values
Tmax: the h value of the k-th object in TList
Sequential access
Stop condition: Tmax <= Start value of the
next segment

Initial Result Computation
Visit S2, Kmax=Infinity (k=4)

p1

p2

p8

p4

p7

p9 p6
p5

p3

Not In Memory

In TList

Visited Segment

Initial Result Computation
Visit S3, Kmax=Infinity (k=4)

p1

p2

p8

p4

p7

p9 p6
p5

p3

Not In Memory

In TList

Visited Segment

Initial Result Computation
Visit S6, Kmax=Infinity (k=4)

p1

p2

p8

p4

p7

p9 p6
p5

p3

Not In Memory

In TList

Visited Segment

Initial Result Computation
Visit S1, Kmax=Infinity (k=4)

p1

p2

p8

p4

p7

p9 p6
p5

p3

Not In Memory

In TList

Visited Segment

Initial Result Computation
Visit S4, Kmax=200 (k=4)

p1

p2

p8

p4

p7

p9 p6
p5

p3

Not In Memory

In TList

Visited Segment

Initial Result Computation
Visit S9, Kmax=190 (k=4), Stop, Report TList

p1

p2

p8

p4

p7

p9 p6
p5

p3

Not In Memory

In TList

Visited Segment

Naïve Monitoring Algorithm

Situation 1, Add an Object to TList: Incremental
Update

Situation 2, Remove an Object in TList: Re-
computation

Situation 3, Otherwise: Do nothing

Naïve Monitoring Algorithm
Timestamp 1, add p10

p1

p2

p8

p4

p7

p9 p6
p5

p3

p10

Not In Memory

In TList

Visited Segment

Naïve Monitoring Algorithm
Timestamp 1, add p10: Incremental Update

p1

p2

p8

p4

p7

p9 p6
p5

p3

p10

Not In Memory

In TList

Visited Segment

Naïve Monitoring Algorithm
Timestamp 2, remove p8, Kmax=Infinity, Visit s10?

p1

p2

p8

p4

p7

p9 p6
p5

p3

p10

Not In Memory

In TList

Visited Segment

Naïve Monitoring Algorithm
Timestamp 2, remove p8: Re-computation

p1

p2
p4

p7

p9 p6
p5

p3

p10

Not In Memory

In TList

Visited Segment

Naïve Monitoring Algorithm
Timestamp 3, remove p4

p1

p2
p4

p7

p9 p6
p5

p3

p10

Not In Memory

In TList

Visited Segment

Naïve Monitoring Algorithm
Timestamp 3, remove p4: Do nothing

Not In Memory

In TListp1

p2 Visited Segment

p7

p9 p6
p5

p3

p10

Bidirectional Updating Algorithm

Sequential access: forward and backward
CList: Candidate list

A List of Objects on the visited edges but
not in TList

Completely avoid re-computation
Situations:

Add an object to TList: backward Update
Remove an object from TList: forward Update
Otherwise: update CList if necessary

Bidirectional Updating Algorithm
Initially, Tmax=190

p1

p2

p8

p4

p7

p9 p6
p5

p3

In CList

In TList

Visited Segment

Not in memory

Bidirectional Updating Algorithm
Timestamp 1, Remove p7, Tmax=Infinity

p1

p2

p8

p4

p7

p9 p6
p5

p3

In CList

In TList

Visited Segment

Not in memory

Bidirectional Updating Algorithm
Timestamp 1, Remove p7, Move p4 to TList, Tmax=200

In CList

In TListp1

p2

p8

p4 Visited Segment

p9 p6
p5

p3

In CList

In TList

Visited Segment

Not in memory

Bidirectional Updating Algorithm
Timestamp 2, Remove p8, Tmax=Infinity

In CList

In TListp1

p2

p8

p4 Visited Segment

p9 p6
p5

p3

In CList

In TList

Visited Segment

Not in memory

Bidirectional Updating Algorithm
Timestamp 2, Remove p8, Forward update, visit s10, s5, Tmax=230

In CList

In TListp1

p2
p4 Visited Segment

p9 p6
p5

p3

In CList

In TList

Visited Segment

Not in memory

Bidirectional Updating Algorithm
Timestamp 3, Add p11

In CList

In TListp1

p2
p4 Visited Segment

p9 p6
p5

p3

p11

In CList

In TList

Visited Segment

Not in memory

Bidirectional Updating Algorithm
Timestamp 3, Add p11:Backward Update, Tmax=200

In CList

In TListp1

p2
p4 Visited Segment

p9 p6
p5

p3

p11

In CList

In TList

Visited Segment

Not in memory

Experiment Setup

We use road-map extracted from US Census
Website.
IRC: To compute the top-k results from
scratch for every update.
MTR: The Naïve monitoring algorithm
BUA: Bidirectional updating algorithm
One Query Point (VLDB06):

IMA: Incremental monitoring algorithm
GMA: Group monitoring algorithm

Experiment Result

Distribution of queries / Distribution of Objects
U: Uniform G: Gaussian

Experiment Result: Test Network

Vary Edges (Sec) Vary Objects (Sec)

Experiment Result: Test Query

Vary Queries (Sec) Vary k (Sec)

Summary

Continuous Nearest Neighbor Query.
Monitor k-NN objects over a road network.
Minimize an aggregate distance function for
multiple query points.

Query Graph can be constructed offline.
Bidirectional top-k monitoring algorithm to
avoid re-computation.
Extensive experiments are conducted using
real road network maps.

Thank You!

Implementation Details

Experimental Studies

Experimental Studies
Time to construct

query graph:

Experimental Studies

	Monitoring Aggregate k-NN Objects in Road Networks
	Outline
	Introduction
	Introduction
	Problem Definition
	Problem Definition
	Problem Definition
	VLDB06: Tree-Expand-Approach
	VLDB06: Tree-Expand-Approach
	Our Solution: Non-Tree-Expand
	Query Graph: Functions on Edges
	Query Graph: Segmentation
	Query Graph : Sorting Segments
	Monitoring Algorithm: Initial Result
	Initial Result Computation
	Initial Result Computation
	Initial Result Computation
	Initial Result Computation
	Initial Result Computation
	Initial Result Computation
	Naïve Monitoring Algorithm
	Naïve Monitoring Algorithm
	Naïve Monitoring Algorithm
	Naïve Monitoring Algorithm
	Naïve Monitoring Algorithm
	Naïve Monitoring Algorithm
	Naïve Monitoring Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Bidirectional Updating Algorithm
	Experiment Setup
	Experiment Result
	Experiment Result: Test Network
	Experiment Result: Test Query
	Summary
	Implementation Details
	Experimental Studies
	Experimental Studies
	Experimental Studies

