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Approximate Graph Mining



Why approximate graph mining

Incomplete or inaccurate data

biological data are known to be inaccurate, e.qg.,
gene expression profiles, protein interaction
networks, metabolic pathways.

human social interactions can be difficult to
define.

In procedure dependency graphs, inaccuracy
exists with missing paths, conditions, and cases in
the field of software engineering



What is approximate graph mining?

Given a database of 3 graphs, and a minimum support of 2:
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Basics

Support (Y) — occurrences of pattern in
database

Variability () — maximum edges that can be
missing from a match

Tolerance (@) — maximum times an edge can
be missing from the match set



Candidate Graph:
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Defining aFG

Labeled graph G={V, E, 2, 2, L.}
V: Vertices
E: Edges
2,: Vertex labels
2 Edge labels
L. :mapsVandEto X, and 2



B edge isomorphism
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B edge subgraph isomorphism

G - G’
if thereisa G"” < G’ where G” o G



DB graph (G’):
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Defining aFG

Given 3 =1, what a
is the support for:

In database:



Defining aFG

Given 3 =1, what a
is the support for:

In database:



Defining aFG

Counting of edges: |[E (e)| = 4

Edge e Graph g



A graph g is B edge Y frequent if:

Support(D, g, B)[ 2 Y
Each edge e in g occurs |E (e)| times in the

elements of S
S < Support(D, g, B)
S| 2Yy-a



Why is the Tolerance(a) necessary?

Given B=1, y=3, 2
without
considering 4 : 3

In database graph 1, 2,3, the matches are:

the pattern will be considered as
frequent.



Problem defined: find all connected graphs
which are 3 edge Y frequent

Any questions so far?



Properties of aFG

Possible absence of exact match

Maximal representation - 3 edge Y frequent —
maximal graph is meaningful

Apriori Property



Possible absence of exact match




Maximal representation

Maximal Representation:
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Apriori Property

For a frequent approximate graph g, any
subgraph of g is also an approximate frequent
pattern




The basic algorithm

Find all approximately frequent edges by
enumeration (support 2y —q)

Find a maximal approximately frequent tree.

Add edges inside the tree to find a maximal

aFGs.
Use tree canonical forms for frequent trees,

and canonical matrix for aFGs.



Finding Candidate Trees

Combine edges together to “"grow” tree
How to find the new tree (g + e, by u) is still a
aFG?
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Finding Candidate Graphs

Add edge w/o vertex into maximal tree
How to find the new tree (g+e ) is still an aFG?
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Drawbacks of the Basic Algorithm

In approximate graph mining, taking edge
relaxation into account, the average size of
maximal frequent approximate pattern grows.
Consequently, the number of non-maximal

frequent approximate graphs is even larger.
The calculation of graph canonical forms is

time consuming.



Hashing Graphs

Instead of using canonical forms, we use a
hash value to distinct FAGs.

Polynomial time calculation, O(2) lookup
RAM uses 6 functions, for a 6-D hash table



Hash Functions

Requirements:

Isomorphic graphs must have the same feature
set

Minimize the number of patterns which may share
the same feature values.

The feature can be calculated in polynomial time.



Hash Functions (cont’d)

Use different properties for each one:
Sums and Products, modulo prime number

Edge and vertex counts, minimum spanning trees,
shortest paths between nodes, degrees.

What happens if two graphs share the same
hash vectors?



RAM: Randomized Mining

RAM does lose patterns.
Minimize losses with multiple runs
Confidence: 80% in 1 run— 99% with 3 runs

1 —p9 with p confidence and q runs



Results:Metabolic dataset

Efficiency and effectiveness of RAM compared with basic

algorithm.
(v, 3, o)|Exe. Time of Algorithm RAM|Basic Algorithm
(25.1,2) 9s 25s
(25.2.2) 54 s 126 s
(35.1,2) 8s 17 s
(35.2,2) 45s 104 s
(v, 3, )| No. of Max. Patterns of RAM|Basic Algorithm
(25.1,2) 123 123
(25.2,2) 461 467
(35.1,2) 107 107
(35.2,2) 431 431

B=2,a=1, V=25 RAM found 123 maximal patterns, and
the largest approximate pattern contained 14 edges and
14 vertices. The exact graph mining method only found 24
maximal patterns, and the average edge and vertex count
of the exact patterns were 10 and g, respectively.



Results: synthetic dataset

Efficiency and effectiveness of RAM
compared with basic algorithm.
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Results: synthetic dataset

Efficiency and effectiveness of RAM
compared with the basic algorithm.
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Challenges

Complexity of B-edge subgraph isomorphism
testing
Possibility of missing less connected aFGs:
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Questions?

Overview of approximate graph mining
Defining frequent approximate subgraphs
(aFQG)

Elements of the mining algorithm
Challenges

Questions?






Overview of Presentation

Overview of approximate graph mining
Defining frequent approximate subgraphs
(aFQG)

Elements of the mining algorithm
Challenges



Overview of Presentation

Overview of approximate graph mining
Defining frequent approximate subgraphs
(aFQG)

Elements of the mining algorithm
Challenges



Finding Candidate Trees

We are to find:

Variability :

whether there are no less than y database graphs which contain at least
one embedding of g and a vertex v’ with label L(v). If each embeddingin
a database graph has exactly B edge difference from g, and none of them
are connected to v’ with label L(e ), this database graph is not effective.

Tolerance:

whether there are no less than y-a database graphs which contain at
least one embedding of g and a vertex v’ with label L(v). If none of the
embeddings are connected to v' with label L(e ), and exactly contain all
the edges of the same type of e, this database graph is not effective.

uv/



Finding Candidate Graphs

We are to find:

Variability :

whether there are no less than y database graphs which contain at least
one embedding of g with corresponding vertices u’ and v'. If each
embedding in a database graph has exactly B edge difference from g,
and u’ and v’ are not connected with label L(e ), this database graph is
not effective.

Tolerance:

whether there are no less than y-a database graphs which contain at
least one embedding of g with corresponding vertices u” and v'. If in none
of the embeddings contain all the edges of the same type of e, this
database graph is not effective.

uv/



