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Motivation

Examples of applications
e Financial: stocks that are traded the most 1in a stock market

* Networking: monitoring of frequency of packets travelling
between specific nodes

e E-Commerce: click-stream analysis of users for online
advertising

More pertinent problem: determining the recent frequent items in
the stream



Outline

e Problem formulation

e T1iT1Count approach

e TiTiCount+ improvement
e Experimental evaluation
e Related work

e Conclusions



I Data stream S, consisting of a stream of integers

Problem Definition: 1

N — current length of the stream
¢ — support: user-defined threshold 1n [0.0,1.0]

First N: Latest
Transaction Transaction

Frequent Item — an 1tem whose frequency 1s at least .N



Problem Definition: 2

Our focus 1s on Recent Frequent Items

w = [wmin, wmax]: a window in the history of the stream such that,
(N — wmax) << wmin

First N: Latest
Transaction Transaction

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A w A

wmin

wmax

'w| = (wmax — wmin): window width

An item 1s frequent in w 1f it occurs at least ¢.|w| times within w



Proposed Approach

Stream Sketch + Tilted Time Windows

e Preliminary tests to evaluate existing algorithms for finding
frequent items in streaming data

* We selected one of the existing sketch-based algorithms —
hCount (Jin et al '03)

» Use of other sketch-based algorithms possible
e The hCount sketch 1s combined with an implementation of Tilted

Time Windows (Gianella et al '02) to store information at
different time granularities
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Tilted Time Windows
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Tilted Time Windows

Logarithmic Tilted Time Windows

e.g. With batch size 1000, we require just 11 windows to store 10°
transactions

If linear windows were used, 1000 windows would be required



Algorithm Skeleton

Let N current transaction number
B := batch size

UPDATE(new item Tn)
Determine counters in hCount sketch corresponding to Tn
Update each counter
If (N mod B == 0) shift the tilted time windows

QUERY(item Q, wmin, wmax)
Determine counters in hCount sketch corresponding to Q
Determine windows which encompass [wmin, wmax]
Determine and return frequency of Q



TiTiCount

10 10 20 40
Initial 1-10
After 10_ 1-10
Transactions
After 20 21-30 || 11-20 1-20
Transactions
After 30 21-30 31-40 1-20
Transactions
After 40 41-50 31-40 1-20 1-40
Transactions
After 50 41-50 || 51-60 1-20 1-40
Transactions




TiTiCount

Query answering

eg. Assume required window 1s [135, 55]

C[0] C[1] C[2] C[3]

41-50 51-60 1-20 1-40

t1 t

Frequency Count =

C[0] + weighted fractions of C[0] and C[3]




TiTiCount+

A different shifting mechanism to make use of redundant data
while answering queries

Initial 1-10

After 10 11-20

Transactions 1-10

After 20 21-30 11-20 1-20
Transactions

After 30 31-40 21-30 1-20
Transactions

After 40 41-50 31-40 21-40 1-40
Transactions

After 50 51-60 41-50 21-40 1-40
Transactions




TiTiCount+

With this method of shifting, we have the following desirable
properties:

Lemmal: If two window intervals overlap, then the smaller
window interval 1s completely contained in the larger one

Lemma2: All window intervals that overlap have one common
boundary, and this common boundary 1s the most recent edge of
these intervals.

These properties are useful in answering queries...



TiTiCount+

Answering queries:

e Split into sub-queries
e Subtract contents of overlapping windows wherever applicable

Example: tilted windows after 990 transactions, batch size 100.
Query (100, 950)
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I Algorithms implemented in C, compiled using gcc under Linux

Experimental Evaluation

Fedora Core 5; on a dual Intel Xeon 2.8 GHz machine.

Datasets used:
e Synthetic:
e zipfian distributions
e Real:
e kosarak
e retail

Algorithms tested for Recall, Precision and processing Time



Test Cases

Performance over different categories of queries:

e Old/new transactions
e Small/large transaction intervals
e Varying/non-varying distributions

Synthetic data sets were used. Queries were posed at different
points during the data stream.

N = 50000 N = 60000 N = 70000
(5000, 45000) (5000, 55000) (20000, 45000)
(35000, 45000) (35000, 55000) (40000, 55000)
(25000, 40000) (5000, 50000) (40000, 65000)




Precision %

Test Cases - Results

Precision:Time Varying Data
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Recall %

Test Cases - Results

Recall:Time Varying Data
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Query Width — Synthetic Data

30 queries were randomly generated, after every 100,000
transactions

For comparison:
e Linear — Use linear windows, unbounded memory

e LinecarCons — Use linear windows, bounded memory
(compensated by increasing batch size)



Recall %

Query Width — Synthetic Data

Synthetic Data - Effect of Query Width: Recall
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Scalability

Synthetic data. Update time for upto 100 million items.

Scalability
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Related Work

Time-decaying approximations:
e Time series summarizations [WS01, BS03]
e Streaming data clustering [AHW+03]
e Data warehousing [CDH+02]

Frequent itemsets over streaming data [CY 03]
Recent frequent itemsets:

e Sliding windows [LCW+05]
e Tilted time windows [GHP+02]



Summary and Conclusion

e Novel algorithm that addresses the problem of finding Recent
Frequent Items 1n streaming data

e ad hoc queries — to find the frequency of an item in any given
interval

e More than just frequent items — we have a sketch of the stream
with temporal information

e Experimental validation of proposed approach using synthetic
and real data

e Achieves high quality approximation using limited space and
time resources
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