
Efficiently Discovering Recent
Frequent Items in Data Streams

Nishad Manerikar
Ferry Irawan Tantono

Themis Palpanas

University of Trento, Italy

Motivation

Examples of applications

● Financial: stocks that are traded the most in a stock market

● Networking: monitoring of frequency of packets travelling
between specific nodes

● E-Commerce: click-stream analysis of users for online
advertising

More pertinent problem: determining the recent frequent items in
the stream

Outline

● Problem formulation
● TiTiCount approach
● TiTiCount+ improvement
● Experimental evaluation
● Related work
● Conclusions

Problem Definition: 1

Data stream S, consisting of a stream of integers

N – current length of the stream
φ – support: user-defined threshold in [0.0,1.0]

Frequent Item – an item whose frequency is at least φ.N

First
Transaction

N: Latest
Transaction

Problem Definition: 2

Our focus is on Recent Frequent Items

w = [wmin, wmax]: a window in the history of the stream such that,
(N – wmax) << wmin

|w| = (wmax – wmin): window width

An item is frequent in w if it occurs at least φ.|w| times within w

First
Transaction

N: Latest
Transaction

wmin wmax

w

Proposed Approach

Stream Sketch + Tilted Time Windows

● Preliminary tests to evaluate existing algorithms for finding
frequent items in streaming data

● We selected one of the existing sketch-based algorithms –
hCount (Jin et al '03)

● Use of other sketch-based algorithms possible

● The hCount sketch is combined with an implementation of Tilted
Time Windows (Gianella et al '02) to store information at
different time granularities

hCount

h

m

Item1

Item2

Item3

 Collision

Data Stream

Hash table

+1

+1

+1

+1 +1

+1

+1 +1

+1 +1

+1

+1+1

+1

+1 +1+2

Tilted Time Windows

C2 C3 C4 C5C1

BATCHES
n n-3 n-7

COUNTERS

n-1 n-15

C0

LATEST OLDEST

Tilted Time Windows

Logarithmic Tilted Time Windows

e.g. With batch size 1000, we require just 11 windows to store 106
transactions

If linear windows were used, 1000 windows would be required

Algorithm Skeleton
Let N := current transaction number

B := batch size

UPDATE(new item Tn)

Determine counters in hCount sketch corresponding to Tn

Update each counter

If (N mod B == 0) shift the tilted time windows

QUERY(item Q, wmin, wmax)

Determine counters in hCount sketch corresponding to Q

Determine windows which encompass [wmin, wmax]

Determine and return frequency of Q

TiTiCount

1-10
Initial

1-10After 10
Transactions

11-2021-30 1-20After 20
Transactions

31-4021-30 1-20After 30
Transactions

31-40 1-20 1-40After 40
Transactions

51-6041-50 1-20 1-40After 50
Transactions

41-50

10 10 20 40

TiTiCount

Query answering

eg. Assume required window is [15, 55]

Frequency Count =

C[0] + weighted fractions of C[0] and C[3]

51-6041-50 1-20 1-40

C[0] C[1] C[2] C[3]

TiTiCount+
A different shifting mechanism to make use of redundant data

while answering queries

1-10Initial

11-20 1-10After 10
Transactions

11-2021-30 1-20After 20
Transactions

31-40 21-30 1-20After 30
Transactions

31-4041-50 21-40 1-40After 40
Transactions

51-60 1-4041-50 21-40After 50
Transactions

TiTiCount+

With this method of shifting, we have the following desirable
properties:

Lemma1: If two window intervals overlap, then the smaller
window interval is completely contained in the larger one

Lemma2: All window intervals that overlap have one common
boundary, and this common boundary is the most recent edge of
these intervals.

These properties are useful in answering queries...

TiTiCount+
Answering queries:

● Split into sub-queries
● Subtract contents of overlapping windows wherever applicable

Example: tilted windows after 990 transactions, batch size 100.
Query (100, 950)

1 800

401
601

801
900

901 990

w
4

w
3

w
2w
1

w
0

q
1

q
2

q
3 q

4
q

5

(100,950)

OLDEST LATEST

Experimental Evaluation

Algorithms implemented in C, compiled using gcc under Linux
Fedora Core 5; on a dual Intel Xeon 2.8 GHz machine.

Datasets used:
● Synthetic:

● zipfian distributions
● Real:

● kosarak
● retail

Algorithms tested for Recall, Precision and processing Time

Test Cases

N = 50000 N = 60000 N = 70000
(5000, 45000) (5000, 55000) (20000, 45000)
(35000, 45000) (35000, 55000) (40000, 55000)
(25000, 40000) (5000, 50000) (40000, 65000)

Performance over different categories of queries:

● Old/new transactions
● Small/large transaction intervals
● Varying/non-varying distributions

Synthetic data sets were used. Queries were posed at different
points during the data stream.

Test Cases - Results

Test Cases - Results

Query Width – Synthetic Data

30 queries were randomly generated, after every 100,000
transactions

For comparison:

● Linear – Use linear windows, unbounded memory
● LinearCons – Use linear windows, bounded memory

(compensated by increasing batch size)

Query Width – Synthetic Data

Scalability

Synthetic data. Update time for upto 100 million items.

Related Work

Time-decaying approximations:
● Time series summarizations [WS01, BS03]
● Streaming data clustering [AHW+03]
● Data warehousing [CDH+02]

Frequent itemsets over streaming data [CY03]

Recent frequent itemsets:
● Sliding windows [LCW+05]
● Tilted time windows [GHP+02]

Summary and Conclusion

● Novel algorithm that addresses the problem of finding Recent
Frequent Items in streaming data

● ad hoc queries – to find the frequency of an item in any given
interval

● More than just frequent items – we have a sketch of the stream
with temporal information

● Experimental validation of proposed approach using synthetic
and real data

● Achieves high quality approximation using limited space and
time resources

Thank You!

nd.manerikar@studenti.unitn.it

