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l "Data Rich” Scientific Applications

= Scientists need to routinely
process hundreds Of GBs or TBs Growth of GenBank
Of da.'.a ) (1982 - 2005)

= Biology, cosmology, climate 4

= Public science data grow rapidly

= E.g., GenBank size grows > 5 orders
of magnitude in last 2 decades
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] Scientific Web Services

= Increasingly popular to address data growth

= Efficient sharing of
= public data repository
= high-end computing resources

= Hiding parallel job management overhead
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) New Scheduling Context

= Characteristics of scientific requests
= Compute-intensive: require processing on multiple processors
= Data-intensive: accessing GBs to TBs of data

= Related scheduling studies
= Content serving cluster web server: focusing on data-locality

= Space sharing parallel job scheduling: focusing on parallel
efficiency

= Needs computation- and data-aware scheduling
algorithms
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l Our Contributions

= Two-level adaptive scheduling framework for
scientific web services
= Goal: to improve average request response time

= Takes into account both data-locality and parallel
efficiency

= Automatically adapts to system loads and request
patterns

» Case study: genomic sequence similarity search
(BLAST) web server

= Performance evaluation on real cluster
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‘ Road Map

» Introduction

= Background

s Scheduling design
s Experiment results
s Conclusions
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J BLAST

= Routinely used in many biomedical researches

= Search similarities between query sequences and
those in sequence database
= Predict structures and functions of new sequences

= Verify experiment and computation results

= Analogous to web search engines (e.g. Google)

Web Search Engine

BLAST

Input

Key word(s)

Query sequence(s)

Search space

Internet

Known sequence database

Output Related web pages DB sequences similar to
the query
Sorted by Closeness & rank Score (Similarity)
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‘ Parallel BLAST

= Partition large DBs across multiple processors
= mpiBLAST [Darling03, Lin05, Gardner06, Lin08]

Worker Nodes

> Results

Master node
merges results

Query is tree

broadcast to workers Results sent to

| master node
Modes query DB,
generate results
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‘ Road Map

s Infroduction

s Background

= Scheduling algorithm design
s Experiment results

s Conclusions
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l System Architecture

= Front end node

= Receives request and making scheduling decision
= Backend nodes

= Perform parallel BLAST jobs
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l Overview

= Scheduling problem: find partition of cluster to service
request
= How many processors to allocate?
= And on which processors?
= Which database fragment(s) to search on each processor?

= Scheduling techniques
= Efficiency-oriented scheduling
= Data-oriented scheduling

= Challenge: to automatically adapt to system loads and query
patterns
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) Efficiency-Oriented Scheduling

= Response time = wait time + service time

= Intuition
= Partition size grows => speedup increases, efficiency decreases
= When load light, use large partition size -> reduce service time
= When load heavy, use small partition size -> reduce wait time

= MAP [Dandamudi99]

= Compute partition size
= S: number of jobs being serviced
= f: adjustable parameter (0 <= f <= 1)

total  processors

partition _size = Max(1, ceil(
queue length+1+ f *S
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, Our Solution: RMAP

= Define a range of partition sizes [P,,, P,..x] for each DB
= P, smallest # procs whose aggregate memory can hold the
database
= P, saturation point of speedup curve
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l Data-Oriented Scheduling

= Given partition size p, which processors should search
hext query?

= Nadive approach
= FA (First Available): similar to batch job scheduling
= Orders processors by rank, pick first pidle processors
= Does not consider data locality

= LARD algorithm for cluster web servers [Pai98]

= Intuition: assigns object request to processor that recently
serviced it

= Considers both data locality and load balance
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, Data-Oriented Scheduling (cont.)

= What's new here?
= Servicing a query requires co-scheduling of multiple nodes
= A processor can only serve one query at a fime

s Our solution: PLARD
= Multiple queues and processor pools
= Per-database basis
= Query assignment and load balancing among processor pools
= Assign and migrate processors in groups
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"J PLARD + RMAP

= Two-level scheduling decisions
= Inter-DBPool: dynamically adjusting DB pool sizes guided by RMAP on

global statss

= Inner-DBPool: RMAP on local (per DB) stats
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‘ Road Map

s Introduction

s Background

s Scheduling design
= Experiment results
s Conclusions
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) Experiment Setup

= Input data
= 5 NCBI sequence databases
= Synthesized query trace, Poisson arrivals
= 1000 randomly sampled query sequences (proportional to DB size)
= Backend cluster
= 32 Xeon procs, Linux OS, Gigabit Ethernet

DB Name | Type | Raw Size Formatted Pin Pray
Size
env_nr P 1.7GB 2.5GB 2 32
nr P 2.6GB 3.06B 4 32
est_mouse N 2.8GB 2.06B 2 16
nt N 21GB 6.5GB 8 32
gss N 16GB 9.1GB 8 32
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" PLARD Impacts
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l PLARD Impacts (cont.)

= Count # of searched queries on each processor
= PLARD results in more ba

anced loads across processors
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) Adaptive to Fixed Arrival Rates

= Static policies work well for certain workload
= RMAP wins across the board
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] Adaptive to Mixed Arrival Rates

= Two traces with mixed arrival rates
= Tracel:02+04+06+0.8
= Trace2:02+08+04+10
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‘ Road Map

s Introduction

s Background

s Scheduling design
s Experiment results
= Conclusions
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l Conclusions

s Scientific web service request scheduling not
well studied

= "Moldable jobs" realized

= Two-level adaptive scheduling framework

= RMAP: parallel efficiency aware
= PLARD: data locality aware

= Combined adaptive policy autonomically adapts to
system loads and query patterns
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] Thank You

= Questions?
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