Ontology Database: a New Method for Semantic Modeling and an Application to Brainwaye Data

Paea LePendu¹, Dejing Dou¹, Gwen Frishkoff², Jiawei Rong¹

¹Computer and Information Science, University of Oregon ²Learning Research and Development Center, University of Pittsburgh

July, 2008 @ SSDBM '08

Outline

- Background and Related Work
 - Brainwave data and pattern analysis
 - The NEMO project as motivation
 - Domain ontologies
- Ontology Database Methodology
 - Existing, view-based technique
 - New, trigger-based technique
- Benchmarking Analysis
- Discussion and Future Work

Brainwave Data

Brainwave Data

Talk about exponential growth!

Brainwave Data

- Some problems with EEG/ERP data:
 - Complex dimensionality (spatial, temporal, functional)
 - Data sharing
 - Meta-analysis

Brainwave Ontologies

- To address these problems, ontologies are used:
 - Birnlex
 - NEMO (NeuroElectroMagnetic Ontologies)
- Distinct but inter-dependent models

NEMO (NeuroElectroMagnetic Ontology)

NEMO (NeuroElectroMagnetic Ontology)

Graphical View of the ER-Diagram

What are Ontologies?

- Machine processible models
- Logic-based formalisms
- Main communities:
 - Knowledge Representation and Reasoning (KRR)
 - Semantic Web

What does it have to do with databases?

- The problem of data scale (vs. model consistency)
 - Billion-triple challenge ISWC '08
- Views (Datalog) are coming back...
 - But databases have since evolved!
 - (e.g., Active Database technology)
- KRDB Group in Bozen-Bolzano, Italy
 - Reuniting Knowledge Representation and DataBases

- A Simple Problem Example
 - Some reasoning review

- Bridging the Gap
 - Ontologies and Databases
- Contrast Existing and Proposed Methodology

Example: a Simple Problem

This is what we know:

All sisters are siblings.

Hilary and Lynn are sisters.

This is what we want to know:

Who are siblings?

 $\{ <x,y> | siblingOf(x,y) \}$

Obviously, the answer should be:

Hilary and Lynn are siblings.

{ <Hilary, Lynn> }

Automated reasoning can solve this easily.

 $\{ \langle x,y \rangle \mid siblingOf(x,y) \}$

{ <x,y> | siblingOf(x,y) }

 $sisterOf(x,y) \Rightarrow siblingOf(x,y)$

sisterOf(x, y)

modus ponens

siblingOf(x,y)

{ <x,y> | siblingOf(x,y) }

$\forall x',y'. sisterOf(x',y') \Rightarrow siblingOf(x',y')$	sisterOf(Hilary, Lynn)
$\forall_{E} \{x'/x, y'/y\}$	unify?
$sisterOf(x,y) \Rightarrow siblingOf(x,y)$	sisterOf(x, y)
siblingOf(x,y)	modus ponens

{ <x,y> | siblingOf(x,y) }

$\forall x',y'. sisterOf(x',y') \Rightarrow siblingOf(x',y')$	sisterOf(Hilary, Lynn)
$\forall_{F} \{x'/x, y'/y\}$	unify?
$sisterOf(x,y) \Rightarrow siblingOf(x,y)$	sisterOf(x, y)
	——— modus ponens

siblingOf(x,y)

{ <x,y> | siblingOf(x,y) }

$\forall x',y'. sisterOf(x',y') \Rightarrow siblingOf(x',y')$	sisterOf(Hilary, Lynn)
$\forall_{\vdash} \{x'/x, y'/y\}$	unify!
$sisterOf(x,y) \Rightarrow siblingOf(x,y)$	sisterOf(x, y)
	modus ponens

siblingOf(x,y)

{ <x,y> | siblingOf(x,y) }

$\forall x',y'. sisterOf(x',y') \Rightarrow siblingOf(x',y')$	sisterOf(Hilary, Lynn)
$\forall_{\vdash} \{x'/x, y'/y\}$	{x/Hilary}
$sisterOf(x,y) \Rightarrow siblingOf(x,y)$	sisterOf(x, y)
	modus ponens

siblingOf(x,y)

25

{ <x,y> | siblingOf(x,y) }

$\forall x',y'. sisterOf(x',y') \Rightarrow siblingOf(x',y')$	cictorOf(Hilary Lypn)
VX, y : Sister $Or(X, y) \rightarrow Sibirrig Or(X, y)$	sisterOf(Hilary, Lynn)
$\forall_{E} \{x'/x, y'/y\}$	{x/Hilary, y/Lynn}
$sisterOf(x,y) \Rightarrow siblingOf(x,y)$	sisterOf(x, y)
	modus ponens

siblingOf(x,y)

{ <x,y> | siblingOf(x,y) }

siblingOf(Hilary, Lynn)

```
<Hilary, Lynn> \in \{ < x,y > | siblingOf(x,y) \}
```

siblingOf(Hilary, Lynn)

Key Question #1

If data storage and querying is our main goal...

Key Question #1

...do we really need all this reasoning?

Bringing ontologies and databases together.

Class

Property

Datatype

Axioms

Objects

Facts

How do we bridge these?

Relation

Attribute

Datatype

keys

constraints

views

triggers

tuples

Class

Property

Datatype

Axioms

Objects

Facts

Here's an example.

Relation

Attribute

Datatype

keys

constraints

views

triggers

tuples

datatype-properties

object-properties

Female

Id

AishaSun

HilaryMeade

LynnMeade

HusbandOf

Subject Object

MahmudReece LynnMeade

Male

MahmudReece

ld

husbandOf

Female

Male

subClass axioms

subClass axioms

subClass axioms

1. View-based approach.

```
CREATE VIEW v_Person(id) AS

SELECT id FROM Person

UNION

SELECT id FROM Male
```



```
CREATE VIEW v_Person(id) AS
SELECT id FROM Person
UNION
SELECT id FROM Male
```



```
CREATE VIEW v Person (id)
                             AS
     SELECT id FROM Person
     UNION
     SELECT id FROM Male
                                  v Person
                              Id
                               MahmudReece
                                   Person
                               ld
Person
                            Female
                                             Male
                        ld
                                        Id
     subclassOf
                                        MahmudReece
                        AishaSun
                        HilaryMeade
                        LynnMeade
                               1. View-based approach.
             Male
```

Female

```
CREATE VIEW v Person (id)
                SELECT id FROM Person
                UNION
                SELECT id FROM Male
                                             v Person
                UNION
                                          Id
                SELECT id FROM Female
                                          MahmudReece
                                          AishaSun
                                          HilaryMeade
                                          LynnMeade
                                              Person
                                          ld
           Person
                                       Female
                                                        Male
                                   ld
                                                   Id
     subClassOf subclassOf
                                                   MahmudReece
                                   AishaSun
                                    HilaryMeade
                                   LynnMeade
                                          1. View-based approach.
Female
                        Male
```

DLDB [Pan & Heflin, 2003] implements the view-based approach to store and retrieve voluminous Semantic Web data.

1. View-based approach.

subClass axioms

subClass axioms

2. Trigger-based approach.

Male

Female

Male

Female

subProperty axioms

subProperty axioms

(basically the same idea)

OntoDB [SSDBM '08] implements the trigger-based approach.

Class

Property

Datatype

Axioms

Objects

Facts

Relation

Attribute

Datatype

keys

constraints

triggers

tuples

Class

Property

Datatype

Axioms

Objects

Facts

Now we have bridged these.

Relation

Attribute

Datatype

keys

constraints

triggers

tuples

Class

Property

Datatype

Axioms

Objects

Facts

So what?

Relation

Attribute

Datatype

keys

constraints

triggers

tuples

This is what we know:

All sisters are siblings.

Hilary and Lynn are sisters.

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

This is what we know:

SiblingOf

Subject

Object

All sisters are siblings.

Hilary and Lynn are sisters.

Subject SisterOf Object

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

<u>This is what we know:</u>

All sisters are siblings.

Hilary and Lynn are sisters.

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

This is what we know:

All sisters are siblings.

Hilary and Lynn are sisters.

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

This is what we know:

All sisters are siblings.

Hilary and Lynn are sisters.

SiblingOf

Subject Object

HilaryMeade LynnMeade

SisterOf

Subject Object

HilaryMeade LynnMeade

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

This is what we know:

All sisters are siblings.

Hilary and Lynn are sisters.

SiblingOf

Subject Object

HilaryMeade LynnMeade

SisterOf

Subject Object

HilaryMeade LynnMeade

This is what we want to know:

Who are siblings?

 $\{ \langle x,y \rangle \mid siblingOf(x,y) \}$

Obviously, the answer should be:

This is what we know:

All sisters are siblings.

Hilary and Lynn are sisters.

SiblingOf

Subject Object

HilaryMeade LynnMeade

SisterOf

Subject Object

HilaryMeade LynnMeade

This is what we want to know:

Who are siblings?

 $\{ \langle x,y \rangle \mid siblingOf(x,y) \}$

Obviously, the answer should be:

Hilary and Lynn are siblings.

Just look it up!

<u>This is what we know:</u>

All sisters are siblings.

Hilary and Lynn are sisters.

SiblingOf Subject Object HilaryMeade LynnMeade SisterOf Subject Object

HilaryMeade

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

Hilary and Lynn are siblings.

Just look it up!

LynnMeade

<u>This is what we know:</u>

All sisters are siblings.

Hilary and Lynn are sisters.

SiblingOf Subject Object HilaryMeade LynnMeade SisterOf Subject Object HilaryMeade LynnMeade

This is what we want to know:

Who are siblings?

Obviously, the answer should be:

Hilary and Lynn are siblings.

A Data-Driven Search

This process is data-driven, loosely based on forward chaining.

A Data-Driven Search

This process is data-driven, loosely based on forward chaining.

Clearly, we are trading space for query time.

A Data-Driven Search

This process is data-driven, loosely based on forward chaining.

Clearly, we are trading space for query time.

(We eagerly propagate data.)

In eagerly propagating data, do we incur a significant load-time cost?

In eagerly propagating data, do we incur a significant load-time cost?

Probably?

Do we actually improve query time?

Do we actually improve query time?

Most likely.

A standard benchmarking suite, which includes:

- the university ontology (department, faculty, student...)
- standard dataset generator
- a set of 14 queries testing various features:
 - subsumption depth
 - instance checking
 - meta features (subProperty, inverse)
 - completeness
 - stars and chains (kinds of joins)

[Lehigh University, SWAT lab, under Jeff Heflin's direction]

ParentClass	Class
AdministrativeStaff	SystemsStaff
Course	GraduateCourse
Employee	Faculty
Faculty	Lecturer
Faculty	PostDoc
Faculty	Professor
Object	Director
Object	Employee
Object	Organization
Object	Person
Object	Publication
Object	Schedule
Object	Student
Object	TeachingAssistant
Object	Work
Organization	Department
Organization	ResearchGroup
Organization	University
Person	GraduateStudent
Professor	AssistantProfessor
Professor	AssociateProfessor
Professor	FullProfessor
Publication	Software
Publication	Specification
Student	ResearchAssistant
Student	UndergraduateStudent
Work	Course
Work	Research
etc	

Property
advisor
affiliatedOrganizationOf
affiliateOf
degreeFrom
doctoralDegreeFrom
emailAddress
hasAlumnus
headOf
listedCourse
mastersDegreeFrom
member
memberOf
name
officeNumber
publicationAuthor
publicationDate
publicationResearch
researchInterest
researchProject
softwareDocumentation
softwareVersion
subOrganizationOf
takesCourse
teacherOf
teachingAssistantOf
title
undergraduateDegreeFrom
worksFor
etc

Radial Tree View

Radial Isometric View

Load Time (1.5 million facts) (10 Universities, 20 Departments)

In trading space, do we incur a significant load-time cost?

No!

In trading space, do we incur a significant load-time cost?

No!

(This was surprising.)

Do we actually improve query time?

Query Performance

Query Performance (logarithmic time)

Do we actually improve query time?

Yes!

Do we actually improve query time?

Yes!

As we expected.

Expert queries answered 100% correctly.

Less than 10 millisecond average response time, regardless of query complexity.

- Show the region of interest for all ERP patterns that occur between 0 and 300ms.
- Which PCA factor do P100 patterns most often appear in?
- What is the range of intensity mean for the region of interest for N100 patterns?
- Show the patterns whose region of interest is left occipital and occurs between 220 and 300ms.

Main points:

Main points:

Ontology-based Modeling

Main points:

Ontology-based Modeling

Ontology-based Query Answering Process

Main points:

Ontology-based Modeling

Ontology-based Query Answering Process

Cross-lab information modeling, storage and analysis

Ongoing Work

Disjunctive Logical Models
Scalable T-Box Reasoning (model-based)
Meta-analyses (cross-lab integration)

Thank you!

paea@cs.uoregon.edu

Questions?

paea@cs.uoregon.edu

Property
Datatype
Axioms
Objects
Facts
Relation
Attribute

Datatype

keys
constraints
views
triggers
tuples

Property

Datatype

Axioms
Objects
Facts

Relation

Attribute

Datatype

keys
constraints
views
triggers
tuples

Class
Property
Object-property
Attribute
Datatype
Axioms
Objects
Facts
Relation
Attribute

Datatype
tiggers
tuples

