Ontology Dateroase: ar New jjeifuch ios Semantic Modeling and ans Applicaitios io Brainwaye Data

Paea LePendu ${ }^{1}$, Dejing Dou ${ }^{1}$, Gwen Frishkoff ${ }^{2}$, Jiawei Rong

${ }^{1}$ Computer and Information Science, University of Oregon
${ }^{2}$ Learning Research and Development Center, University of Pittsburgh

July, 2008 @ SSDBM '08

Outline

- Background and Related Work
- Brainwave data and pattern analysis
- The NEMO project as motivation
- Domain ontologies
- Ontology Database Methodology
- Existing, view-based technique
- New, trigger-based technique
- Benchmarking Analysis
- Discussion and Future Work

Brainwave Data

Brainwave Data

Talk about exponential growth!

Brainwave Data

- Some problems with EEG/ERP data:
- Complex dimensionality (spatial, temporal, functional)
- Data sharing
- Meta-analysis

Brainwave Ontologies

- To address these problems, ontologies are used:
- Birnlex
- NEMO (NeuroElectroMagnetic Ontologies)
- Distinct but inter-dependent models

NEMO (NeuroElectroMagnetic Ontology)

NEMO (NeuroElectroMagnetic Ontology)

Graphical View of the ER-Diagram

What are Ontologies?

- Machine processible models
- Logic-based formalisms
- Main communities:
- Knowledge Representation and Reasoning (KRR)
- Semantic Web

What does it have to do with databases?

- The problem of data scale (vs. model consistency) - Billion-triple challenge ISWC '08
- Views (Datalog) are coming back...
- But databases have since evolved!
- (e.g., Active Database technology)
- KRDB Group in Bozen-Bolzano, Italy
- Reuniting Knowledge Representation and DataBases

Ontology Databases

- A Simple Problem Example
- Some reasoning review
- Bridging the Gap
- Ontologies and Databases
- Contrast Existing and Proposed Methodology

Example: a Simple Problem

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :
Who are siblings?
$\{<x, y>\mid$ siblingOf(x, y) \}

Obviously, the answer should be :
Hilary and Lynn are siblings.
\{ <Hilary, Lynn> \}

A Goal Directed Search

Automated reasoning can solve this easily.

A Goal Directed Search

$\{\langle x, y>|$ siblingOf($x, y)\}$

A Goal Directed Search

$\{\langle x, y>|$ siblingOf($x, y)\}$
siblingOf(x, y)

A Goal Directed Search

$\{<x, y>\mid$ siblingOf($x, y)$ \}

A Goal Directed Search

$\{<x, y>\mid$ siblingOf($x, y)$ \}

A Goal Directed Search

$\{\langle x, y>|$ siblingOf($x, y)\}$
siblingOf(x, y)

A Goal Directed Search

$$
\{<x, y>\mid \text { sibling Of }(x, y)\}
$$

```
sisterOf(x,y) = siblingOf(x,y)
sisterOf(x, y)
siblingOf( \(x, y\) )
```


A Goal Directed Search

$\{<x, y>\mid$ siblingOf(x, y) \}

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$
$\overline{\operatorname{sisterOf}(x, y) \Rightarrow \operatorname{siblingOf}(x, y)} \forall_{E}\left\{x^{\prime} / x, y^{\prime} / y\right\}$
$\operatorname{siblingOf}(x, y)$
sisterOf($x, y)$ modus ponens

A Goal Directed Search

$\{<x, y>\mid$ siblingOf(x, y) \}

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$
$\frac{\overline{\text { sisterOf }(x, y) \Rightarrow \operatorname{siblingOf}(x, y)} \forall_{E}\left\{x^{\prime} \mid x, y^{\prime} y\right\}}{\overline{\operatorname{sisterOf}(x, y)}}$ unify? modus ponens

A Goal Directed Search

$$
\{<x, y>\mid \text { siblingOf(} x, y)\}
$$

$\forall x^{\prime}, y^{\prime} . \operatorname{sisterOf}\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$	sisterOf(Hilary, Lynn)
sisterOf $(x, y) \Rightarrow \operatorname{siblingOf}(x, y)$ $\forall_{E}\left\{x^{\prime} / x, y^{\prime} / y\right\}$	unify?
$\operatorname{siblerOf(x,y)}$	

A Goal Directed Search

$$
\{<x, y>\mid \text { siblingOf(} x, y)\}
$$

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$

sisterOf(x, y) $\Rightarrow \operatorname{siblingOf(x,y)}$
sisterOf(Hilary, Lynn)
$\overline{\text { sisterOf(} \mathrm{x}, \mathrm{y} \text {) }}$ unify?
siblingOf(x, y)

A Goal Directed Search

$\{<x, y>\mid$ siblingOf(x, y) \}

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$

sisterOf(x, y) $\Rightarrow \operatorname{siblingOf(x,y)}$
sisterOf(Hilary, Lynn)
unify!
sisterOf(x, y)
siblingOf(x, y)

A Goal Directed Search

$\{<x, y>\mid$ siblingOf(x, y) \}

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$

sisterOf(x, y) $\Rightarrow \operatorname{siblingOf(x,y)}$
sisterOf(Hilary, Lynn)
\{x/Hilary\}
sisterOf(x, y)
siblingOf(x, y)

A Goal Directed Search

$\{<x, y>\mid$ siblingOf(x, y) \}

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$

sisterOf(x, y) \Rightarrow sibling $\operatorname{Of}(\mathrm{x}, \mathrm{y})$
sisterOf(Hilary, Lynn)
\{x/Hilary, y/Lynn\}
sisterOf(x, y)
siblingOf(x, y)

A Goal Directed Search

$$
\{\langle x, y>| \text { siblingOf(} x, y)\}
$$

$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$

A Goal Directed Search

<Hilary, Lynn> $\in\{<x, y>\mid$ siblingOf $(x, y)\}$
$\forall x^{\prime}, y^{\prime}$. sisterOf $\left(x^{\prime}, y^{\prime}\right) \Rightarrow \operatorname{siblingOf}\left(x^{\prime}, y^{\prime}\right)$

Key Question \#1

If data storage and querying is our main goal...

Key Question \#1

...do we really need all this reasoning?

Ontology Databases

Bringing ontologies and databases together.

Ontology Databases

Class

Relation

Attribute
Datatype
keys
constraints views
triggers
tuples

Ontology Databases

Ontology Databases

Class

Relation

Property
Attribute
Datatype

Axioms
Objects
Facts

Here's an example.

Datatype
keys
constraints
views
triggers
tuples

Ontology Databases

datatype-properties

String

hasName

Person

Ontology Databases

Ontology Databases

object-properties
husbandOf

Ontology Databases

\quad Female
Id
AishaSun
HilaryMeade
LynnMeade

HusbandOf
Subject Object

MahmudReece LynnMeade

Ontology Databases

Ontology Databases

Ontology Databases

subClass axioms

Person

subClassOf subclassOf

Ontology Databases

subClass axioms

Person

Two approaches.

Ontology Databases

subClass axioms

Ontology Databases

```
CREATE VIEW v Person(id) AS
    SELECT id FROM Person
    UNION
    SFIFCI id FROM Male
```


1. View-based approach.

Ontology Databases

```
CREATE VIEW v Person(id) AS
    SELECT id FROM Person
    UNION
    SFIFCI id FROM Male
```


1. View-based approach.

Ontology Databases

```
CREATE VIEW v Person(id) AS
    SELECT id FROM Person
    UNION
    SFIFCI id FROM Male
```

\quad v_Person
Id
MahmudReece

Person

Male | Id |
| :--- |
| MahmudReece |

Person

```
Id
```

Female

Id
AishaSun
HilaryMeade
LynnMeade

Ontology Databases

```
CREATE VIEW v Person(id) AS
SELECT id FROM Person
UNION
SELECI id FROM Male
UNION
\begin{tabular}{l}
\multicolumn{1}{c}{ v_Person } \\
\hline Id \\
\hline MahmudReece \\
\hline AishaSun \\
HilaryMeade \\
LynnMeade \\
\hline
\end{tabular}
```


Person

Female

Person

ld

Female	Male
Id	Id

Ontology Databases

DLDB [Pan \& Heflin, 2003] implements the view-based approach to store and retrieve voluminous Semantic Web data.

1. View-based approach.

Ontology Databases

subClass axioms

Person

subClassOf subclassOf

Ontology Databases

subClass axioms

Ontology Databases

Person
Id

Ontology Databases

Person
Id

Ontology Databases

Ontology Databases

Ontology Databases

Person
Id
MahmudReece

Ontology Databases

Person
Id
MahmudReece

Female
Id
AishaSun

Male
Id
MahmudReece
2. Trigger-based approach.

Ontology Databases

Ontology Databases

Ontology Databases

Person
Id
MahmudReece
AishaSun

Female
Id
AishaSun

Male
Id
MahmudReece
2. Trigger-based approach.

Ontology Databases

Ontology Databases

Ontology Databases

Person
Id
MahmudReece
AishaSun
HilaryMeade

Female

Id
AishaSun
HilaryMeade

Male

Male
Id
MahmudReece

Person

2. Trigger-based approach.

Ontology Databases

Ontology Databases

Ontology Databases

Person
Id
MahmudReece
AishaSun
HilaryMeade
LynnMeade

Person

Female

Id
AishaSun
HilaryMeade
LynnMearde. Trig

Male
Id
MahmudReece
subClassOf subclassOf

Ontology Databases

subProperty axioms

2. Trigger-based approach.

Ontology Databases

subProperty axioms

(basically the same idea)
2. Trigger-based approach.

Ontology Databases

OntoDB [SSDBM '08] implements the trigger-based approach.
2. Trigger-based approach.

Ontology Databases

Class	Relation
Property	Attribute
Datatype	Datatype
Axioms	keys
Objects	constraints
Facts	triggers
	tuples

Ontology Databases

Class

Relation
Attribute
Datatype
keys
constraints
triggers
tuples

Ontology Databases

Ontology Databases

Class

Relation

Attribute
Datatype
keys
constraints
triggers
tuples

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :
Who are siblings?

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :
Who are siblings?

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

SiblingOf

This is what we want to know :
Who are siblings?

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :
Who are siblings?

SiblingOf

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

SiblingOf

Subject	Object
HilaryMeade	LynnMeade

SisterOf

Subject	Object
HilaryMeade	LynnMeade

This is what we want to know :
Who are siblings?

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :
Who are siblings?
$\{<x, y>\mid$ siblingOf($\mathrm{x}, \mathrm{y})$ \}

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :
Who are siblings?

SiblingOf

Subject	Object
HilaryMeade	LynnMeade

SisterOf

Subject	Object
HilaryMeade	LynnMeade

Obviously, the answer should be :
Hilary and Lynn are siblings.
Just look it up!

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :

Who are siblings?

Subject SiblingOf HilaryMeade Object LynnMeade	
	SisterOf
Subject	Object
HilaryMeade	LynnMeade

$\{<x, y>\mid$ siblingOf($\mathrm{x}, \mathrm{y})$ \}

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Simple Problem (revisited)

This is what we know :
All sisters are siblings.
Hilary and Lynn are sisters.

This is what we want to know :

Who are siblings?

Subject SiblingOf HilaryMeade Object LynnMeade	
	SisterOf
Subject	Object
HilaryMeade	LynnMeade

$\{<x, y>\mid$ siblingOf($\mathrm{x}, \mathrm{y})$ \}

Obviously, the answer should be :
Hilary and Lynn are siblings.

A Data-Driven Search

This process is data-driven,

 loosely based on forward chaining.
A Data-Driven Search

This process is data-driven, loosely based on forward chaining.

Clearly, we are trading space for query time.

A Data-Driven Search

This process is data-driven, loosely based on forward chaining.

Clearly, we are trading space for query time. (We eagerly propagate data.)

Key Question \#2

In eagerly propagating data, do we incur a significant load-time cost?

Key Question \#2

In eagerly propagating data, do we incur a significant load-time cost?

Probably?

Key Question \#3

Do we actually improve query time?

Key Question \#3

Do we actually improve query time?

Most likely.

Lehigh University Benchmark

A standard benchmarking suite, which includes:

- the university ontology (department, faculty, student...)
- standard dataset generator
- a set of 14 queries testing various features:
- subsumption depth
- instance checking
- meta features (subProperty, inverse)
- completeness
- stars and chains (kinds of joins)
[Lehigh University, SWAT lab, under Jeff Heflin's direction]

Lehigh University Benchmark

ParentClass	Class
AdministrativeStaff	SystemsStaff
Course	GraduateCourse
Employee	Faculty
Faculty	Lecturer
Faculty	PostDoc
Faculty	Professor
Object	Director
Object	Employee
Object	Organization
Object	Person
Object	Publication
Object	Schedule
Object	Student
Object	TeachingAssistant
Object	Work
Organization	Department
Organization	ResearchGroup
Organization	University
Person	GraduateStudent
Professor	AssistantProfessor
Professor	AssociateProfessor
Professor	FullProfessor
Publication	Software
Publication	Specification
Student	ResearchAssistant
Student	UndergraduateStudent
Work	Course
Work	Research

Property
advisor
affiliatedOrganizationOf
affiliateOf
degreeFrom
doctoralDegreeFrom
emailAddress
hasAlumnus
headOf
listedCourse
mastersDegreeFrom
member
memberOf
name
officeNumber
publicationAuthor
publicationDate
publicationResearch
researchInterest
researchProject
softwareDocumentation
softwareVersion
subOrganizationOf
takesCourse
teacherOf
teachingAssistantOf
title
undergraduateDegreeFrom
worksFor

Lehigh University Benchmark

Radial Tree View

Radial Isometric View

Lehigh University Benchmark

Load Time (1.5 million facts)
(10 Universities, 20 Departments)

Lehigh University Benchmark

In trading space, do we incur a significant load-time cost?

No!

Lehigh University Benchmark

In trading space, do we incur a significant load-time cost?

No!

(This was surprising.)

Lehigh University Benchmark

Do we actually improve query time?

Lehigh University Benchmark

Query Performance

Lehigh University Benchmark

Query Performance
(logarithmic time)

Lehigh University Benchmark

Do we actually improve query time?

Yes!

Lehigh University Benchmark

Do we actually improve query time?

Yes!

As we expected.

NEMO

NEMO

Expert queries answered 100\% correctly.
Less than 10 millisecond average response time, regardless of query complexity.

NEMO

- Show the region of interest for all ERP patterns that occur between 0 and 300ms.
- Which PCA factor do P100 patterns most often appear in?
- What is the range of intensity mean for the region of interest for N100 patterns?
- Show the patterns whose region of interest is left occipital and occurs between 220 and 300 ms .

NEMO

Main points:

NEMO

Main points:

Ontology-based Modeling

NEMO

Main points:

Ontology-based Modeling
Ontology-based Query Answering Process

NEMO

Main points:
Ontology-based Modeling
Ontology-based Query Answering Process
Cross-lab information modeling, storage and analysis

Ontology Databases

Ongoing Work

Disjunctive Logical Models Scalable T-Box Reasoning (model-based) Meta-analyses (cross-lab integration)

Thank you!

paea@cs.uoregon.edu

Ontology Databases

Questions?
paea@cs.uoregon.edu

Ontology Databases

Class	Relation
Property	Attribute
Datatype	Datatype
Axioms	keys
Objects	constraints
Facts	views
	triggers
	tuples

Ontology Databases

Class	Relation
Property	Altribute
Datatype	Datatype
Axioms	keys
Objects	constraints
Facts	views
	triggers

Ontology Databases

| Class | Relation |
| :--- | :--- | :--- |
| Property | Attribute |
| Datatype | Datatype |
| Axioms | keys |
| Objects | constraints |
| Facts | views |
| | triggers |
| | tuples |

Ontology Databases

Class	Relation
Property	Attribute
Datatype	Datatype
Axioms	keys
Objects	constraints
Facts	views
	triggers
	tuples

Ontology Databases

Class	Relation
Property	Attribute
Datatype	Datatype
Axioms	keys
Objects	constraints
Facts	views
	triggers

Ontology Databases

Ontology Databases

Class	Relation
Property	Attribute
Datatype	Datatype
Axioms	keys
Objects	constraints
Facts	views
	triggers

