
Per Svensson

Swedish Defence Research 
Agency

The evolution of 
vertical database 
architectures – a 
historical review



Outline
Modern RDBMS design rules
Transposed files
The Decomposed Storage Model (DSM)
The impact of modern processor architecture
MonetDB’s radix cluster algorithm for hash join
Data compression
Compression techniques
Compressed, fully transposed, ordered files (CFTOF)
Querying CFTOF data
Experiment 1: Cantor vs. Mimer (1988)
Experiment 2: SkyServer performance using MonetDB (2007)
Vectorization in MonetDB/X100
The vectorized data-flow execution model
Conclusion



Reference
Per Svensson, Peter Boncz, Milena Ivanova, 
Martin Kersten, Niels Nes: 
Emerging “vertical” database systems in 
support of scientific data
in Arie Shoshani & Doron Rotem (eds.):
Scientific Data Management: Challenges, 
Existing Technology, and Deployment. 
Taylor & Francis, in press.



Modern RDBMS design rules
Transactional databases:

Store data row-wise to update records 
by single write operations whenever 
possible

Small disk pages to minimize data 
transferred, as well as size of locked 
part of the disk

Index few attributes to avoid locking 
entire index structures 
Not profitable to compress data due to 
mix of data types in each row
Adding or deleting attributes and 
indexes likely to be expensive
Attribute updates likely to be costly 
since entire row must be read and 
rewritten

“Complex analytics” databases:
Use of column-wise storage makes it 
possible to avoid touching pages not 
affected by query
Commonly accessed columns tend to stay in 
the cache
Process attributes sequentially, store data in 
large pages => many relevant items retrieved 
in single read => higher overall hit ratio
Few concurrent users => version 
management can replace record-wise 
locking techniques => queries see 
consistent database => very few locks
Possible but seldom necessary to index 
every attribute 
CPU time “investment” in storage structures 
likely to be profitable
Data compression profitable also because 
data are likely to be homogeneous
Adding, deleting or updating attributes likely 
to be relatively cheap

Adapted from (MacNicol et al., VLDB04)



Transposed files
P1 P2 P3 P200…Object ID

0
1
2

.

.

.

109

108 

.

.

.

0

1

2

.

.

.

108 

.

.

.

V0,1 V0,2 V0,3

109

V1,1 V1,2 V1,3

V0,1 V0,2 V0,3 …

V1,1 V1,2 V1,3 …

P1
V0,1

V1,1

V2,1

.

.

.

P2
V0,2

V1,2

V2,2

.

.

.

P3
V0,3

V1,3

V2,3

.

.

.

P200

…

Fig. 11.1(a): large table Fig. 11.1(b): horizontal layout Fig. 11.1(a): vertical layout

Transposed files were popular in the ’70s for use in SSDBs
(RM, TOD, RAPID, ALDS,…). The first relational system 
using transposed files may have been Cantor.



The Decomposed Storage 
Model (DSM)

Introduced by Copeland & Khoshafian 1985
A DSM is a “[fully] transposed storage model with 
surrogates [TIDs] included”
Each column of a relational table stored in separate 
binary association table (BAT), as array of two-field 
records (TID, value) 
Two copies of each BAT are stored, one clustered / 
sorted on each of the attributes (TID, value)
Used in MonetDB, C-Store and other systems



The impact of modern processor 
architectures

Optimal use of cache memory becomes ever more critical 
as CPU speed increases outpace DRAM latency 
improvements 
It is no longer appropriate to think of the main memory as 
“random access” memory
DBMSs have become compute and memory bound due to 
sophisticated techniques used for hiding I/O latency 
MonetDB’s radix cluster algorithm for hash join is a good
example of ”cache-conscious” DBMS algorithms



Partitioned hash-join in MonetDB
Divide each operand relation into a sequence H 
of clusters using multiple passes
Radix-cluster on lower B bits of the hash value. 
Requires P sequential passes, Σ1P BP = B
A radix-clustered relation is ordered on radix-bits
Perform a merge step on the radix-bits of both
radix-clustered relations to get the pairs to be 
hash-joined together



Partitioned hash-join in MonetDB II

partitioned-hashjoin(L, R, H)
radix-cluster(L, H)
radix-cluster(R, H)
FOREACH cluster c IN [1..H]

hash-join(L[c], R[c])
end



81

06

92

47

03

96

20

37

66
75

17
57 57

17

03

81

96
75

66

92

20
37

47

06

00 1

00 1

01 1

11 1

10 0

00 1

10 0
11 0

00 0

10 1

01 0

01 1

00

01

10

11

96
57

17

81

75

0

1

0 66

031

92
20

37

06

47

0

1

0

1

96
32

17

10

02
66

35
03

20
47

96

32

17

10

02

03

35

66

96
32

17
10
02

66
03
35

47
20 20

47

01 1

00 1
01 0
00 0

00 0
01 0

01 1
11 1

10 0
01 0

00

01

10

11

0

1

0

0

1

1

00 0

00 1

01 0

01 1

10 0

11 1

I II

II I

L

R

6-partitioned 

2-pass radix-cluster hash-join 2-pass radix-cluster



Data compression
Compression improves I/O performance by:

1. reducing disc seek times 
2. reducing I/O transfer times 
3. increasing buffer hit rate 

CPU overhead of (de)compression compensated by 
reduced I/O 
Storing columns in multiple sort orders may improve 
query performance 



Compression techniques
Dictionary schemes code literal attribute values in fewer 
bits
Huffman encoding may be used for text, requires varying 
length codes
Frame of reference encoding (FOR): values in a block of 
data stored as differences from a “frame of reference”
value
Run length encoding (RLE): repeats of the same element 
stored as (value, run-length) pairs – best effect together 
with sorting



Compression techniques II
In Cantor’s testbed (1979), four alternatives were 
repeatedly evaluated during sequence write 
operations:

1) use minimum common byte length for subsequence, 
store byte length in header (FOR, “bit packing”)

2) use minimum common byte length for difference
subsequence, store first element and byte length in 
header (FOR-delta)

3) if subsequence is run of equal values, store value and 
length in header (RLE)

4) if subsequence is run of equal differences, store first 
element, difference, and length in header (delta-RLE)



Compression techniques III

A dynamic programming, branch-and-bound algorithm 
determined how to store a given integer sequence of 
length n in minimal space given the constraints
The sequence was subdivided into subsequences, each 
characterized by storage alternative, byte size, 
cardinality, and size of header
The problem was solved in time O(n)



Compressed, fully transposed, 
ordered files

Batory (VLDB 1978, TODS 1979) showed that search 
algorithms for transposed files could outperform index-
based ones in a large proportion of cases
Svensson (VLDB 1979) showed that conjunctive 
queries may be evaluated even faster by use of a 
compressed, fully transposed ordered file (CFTOF) 
storage structure 
The performance of a test-bed was compared with a 
commercial database system and an analytical model
Results showed that order-of-magnitude performance 
gains could be achieved



Querying CFTOF data
Let the relation R have three key attributes, v1, v2, v3.
After sorting we may have:

v1 v2 v3 TID
1 1 1 1
1 1 2 2
1 4 1 3
2 2 2 4
2 2 5 5
2 3 3 6
2 5 2 7
3 2 2 8
3 2 4 9
5 2 5 10
5 3 2 11



Querying CFTOF data II
RLE-compressing each column gives 

(respecting hierarchy):
f1 f2 f3
(3)1 (2)1 (1)1 
(4)2 (1)4 (1)2
(2)3 
(2)5 (2)2 (1)1 

(1)3 (1)2
(1)5 (1)5
(2)2
(1)2 (1)3
(1)3 (1)2

(1)2
(1)4
(1)5
(1)2



Querying ordered, run-length 
compressed data III

Assume we have the conjunctive search predicate:

(2 <= v1 <= 3) & (v2 >= 3) & (v3 >= 2)
p1 & p2 & p3

1. Scan f1 w r t p1, leaves ((4)2, (2)3) ->T4-9
2. Scan f2 | T4-9 w r t p2, leaves ((1)3, (1)5) -> T6-7
3. Scan f3 | T6-7 w r t p3, leaves ((1)3, (1)2) -> T6-7



CFTOF search performance
Seven random

files of different
size were drawn
from [1..10]4

Range queries with
different selectivity
were evaluated
against each file



Experiment 1: Mimer vs. Cantor
(SSDBM 1988)

Query
% hits

Q1
0.1 %

Q2
1.0 %

Q3
10 %

Q4
50 %

File size
12 ktup

0.10 0.51 3.2 7.9

File size
20 ktup

0.16 0.82 3.6 8.8

Table of CPU-timeMimer / CPU-timeCantor



Experiment 2: SkyServer
benchmark using MonetDB

(SSDBM 2007)
Table 
scan 

1.5GB

Index 
scan 

1.5GB

Table 
scan 

150GB

Index 
scan 

150GB
Row-
store

6.6 0.4 245 24

Column-
store

0.4 0.47 53 16



Vectorization in MonetDB/X100
Use of vector operators (vectorization) in query evaluation 
aims at distributing interpretation overhead over many 
CPU operations 
A vectorized prototype query processor called X100 was 
recently built and evaluated by the MonetDB developers
The goals of MonetDB/X100 are to:

1. execute high-volume queries at high CPU efficiency
2. be extensible to application domains like data mining and 

multi-media retrieval
3. scale with the size of the lowest storage hierarchy (disc)



To achieve these goals, MonetDB/X100 manages 
bottlenecks throughout the architecture:
Disc. The I/O subsystem is oriented towards efficient 
sequential data access
Uses vertical storage layout sometimes enhanced with 
lightweight data compression
RAM. RAM access carried out by explicit memory-to-
cache routines with platform-specific optimizations
The same data layout as used on disc is employed in 
RAM to save space and bandwidth

Vectorization II



Cache. Vertical chunks (e.g., 1000 values), “vectors”, 
are units of operation
In CPU, cache bandwidth does not matter, therefore 
(de)compression occurs on boundary between RAM 
and cache
CPU. Vectorized primitives show compiler that 
processing a tuple is independent of previous and 
subsequent tuples
The X100 design strives to achieve vectorization also 
for other operators than projections (e.g., aggregation)

Vectorization III



Data-flow execution model 
Karasalo and Svensson (SSDBM 1986) survey 
methods used in Cantor for network 
generation, i.e., translating the syntax tree of 
a parsed query into an execution plan
The execution plan consists of one or more 
hierarchies of vectorized dataflow networks
Network generation is followed by an execution 
phase which proceeds in two stages, buffer 
allocation and network evaluation



Initially all but upstream boundary buffer nodes
are empty
Network evaluation executes operator nodes 
in some order until all downstream boundary 
buffer nodes contain a value
An operator node may execute whenever none 
of its inbuffer nodes is empty, and none of its 
outbuffer nodes is full

Data-flow execution model II



Data-flow execution example
Given data:

BASERELATION Sales ((dept:LITERAL, item: INTEGER), 
vol: INTEGER);
BASERELATION Location((dept:LITERAL), floor: 
INTEGER);

Compute the set of items sold by all depts on 2nd floor!
VIEW ndep2 <-CARDINAL(Location WHERE [floor=2]);
VIEW dep2itms <- *(s:Sales, l:Location) WHERE 
[(s.dept=l.dept) AND (l.floor=2)] .[dept:s.dept, item:s.item];
VIEW ndepitm <- dep2itms BY [item:item] 
COMPUTE .[item:item, ndeps:CARDINAL];
VIEW itmfl2 <- ndepitm WHERE [ndeps=ndep2][item];



Data-flow execution example II

B
B

B

C

WHERE CARDINAL C

Root level net of first hierarchy generated for itmfl2



C

C

B B
B

B
BOX SEARCH BLIST AGGR

Data-flow execution example III

WHERE subnet CARDINAL subnet



B
B

B
B

B

C B B

B

BB

B

BB

C BB

WHERE WHERE

WHERE

COMPUTE

GENER

PROJ

BYBY 
AGGR

GENER

PROJ

Root level net of second hierarchy generated for itmfl2



SEQ 
READ

VRUN-
TO-
IRUN

APPEND APPEND

PART

STREAM

AGGR

S S

S RB

B B

BY-AGGREGATE subnet



Conclusion
Modified RDBMS design rules have recently been proposed for “complex 
analytics” applications (MacNicol et al., VLDB04)
The Decomposed Storage Model (1985) has lately become a cornerstone of 
“vertical” relational database design
But transposed files were used successfully already in the early ´70s
Modern CPU architecture properties calls for unconventional, benchmark-
supported design solutions and new query processing algorithms
Data compression is becoming an important class of approaches in vertical 
RDBMS 
But was exploited, also in search and join algorithms, in CFTOF (1979)
Vectorization and data-flow execution are important ways to further improve 
vertical RDBMS performance
Benchmarks show greatly improved performance in data warehousing using 
vertical RDBMS solutions
The ill-founded consensus around the superiority of the n-ary storage model
is now, albeit belatedly, making room for a more balanced view
Cantor did not include separate indexes because of clearly demonstrated 
CFTOF search advantages. Would that decision still stand?


	Outline
	Reference
	Modern RDBMS design rules
	Transposed files
	The Decomposed Storage Model (DSM)
	The impact of modern processor architectures
	Partitioned hash-join in MonetDB
	Partitioned hash-join in MonetDB II
	Data compression 
	Compression techniques
	Compression techniques II
	Compression techniques III
	Compressed, fully transposed, ordered files
	Querying CFTOF data
	Querying CFTOF data II
	Querying ordered, run-length compressed data III
	CFTOF search performance
	Experiment 1: Mimer vs. Cantor (SSDBM 1988)
	Experiment 2: SkyServer benchmark using MonetDB (SSDBM 2007)
	Vectorization in MonetDB/X100
	Vectorization II
	Vectorization III
	Data-flow execution model 
	Data-flow execution model II
	Data-flow execution example
	Data-flow execution example II
	Data-flow execution example III
	Conclusion

