Breaking the Curse of Cardinality on
Bitmap Indexes

K. John Wu
Kurt Stockinger
Arie Shoshani

Lawrence Berkeley National Lab
University of California

http://sdm.Ibl.qov/fastbit/

BCRKELEY LAD

Outline

Achilles Heel of Bitmap Index
Order-preserving Bin-based Clustering
Analysis

Experiment

o~

BCRKELEY LAD

Problem Definition

v Given a large (static) dataset (data warehouse)
v To answer SQL queries such as
Select |_returnflag, ...sum(l_quantity) as sum_qty,... From lineitem
Where |_shipdate <= date '1998-12-01" - interval '[DELTA]' day (3)
group by ... [TPC-H Q1]
Select cells From Flame-simulation Where temperature > 800 and
H,O, concentration > 106
v Characteristics:
Large datasets: billions of rows, terabytes of base data
Typical query may involve many different columns
Typical query results may include many rows (hit
v Objective
General: as fast as possible
Optimal in computational complexity: O(hits) time -

rereere

3 Etm(..l.(

Bitmap Indexes are Efficient for Data Warehouses

Bitmap Index vs. B-tree Index: Which and When?
by Vivek Sharma

always advisable

Understanding the proper application of each index can hays.s pact on performance.

Conventional wisdam halds pHITTAD Indexes are most appropriate for columns having low distinct values—such as

GENDE B et 2T 15, and RELATION. This ast

x1€elyavs advisaplar systems in which data is | IBM Informix Database Design and Implementation Guide
demonstrate MENE, a bitmap index on a column with 101

efficient as a B-tree index. Previous Page | Mext Page | Index

Indexes for Data-Warehousing Environments

In addition to conventional {B-tree) indexes. Extended Parallel Server provides
the following indexes that you can use to improve ad hoc query perfarmance in
data-warehousing environments

* Bitmap indexes
Optimize Data Warehouse

I know that | am prejudiced on this matter, but | would be ashamed of myself if | were nof --Mark Twain

fa Bree index. You can use a
ontain one of only a few values
h highly duplicate value, a

SB]ttr:‘}aL)J The star schema and bitmap indexes are a marriage made in heaven. |
B et Jag Singh, VP, JPM Chase

<[star schema and bitmap indexes are a marriage made in heavel>The bitmap indexes and their use
in accelerating star schema joins 15 carrently avaiaole n commercial databases only. Corollary: never -
buy a database for data warehousing that does not support star schema joins using bitmap indexes. ’\l A
recoeeer] i

4

However, There is a Catch

v The efficiency of bitmap

indexes decreases as the
number of distinct values
increases!

Definition: column cardinality

= number of distinct values of

a column in a dataset

As column cardinality
increase,

The index size increases

The query responses time

increases

~

A
h
P TR SwTRr pR T w——————ree R ' o o o o o o 8 ||||

5 CEEE=aT

Bitmap Index Size May Be Large

The size of basic index is
proportional to number of distinct
values multiplied by number of
rows

..., you should use bitmap
indexes on low cardinality
columns. On the contrary, a high
cardinality field, such as social
security number, would not be a
good candidate for bitmap
indexes.

Effective Indexes for Data
Warehouses, Roger Deng,
DB2 Magazine, Aug. 2004

v Some restrictions on using the

bitmap index include: The
indexed columns must be of low
cardinality—usually with less
than 300 distinct values.

How and when to use
Oracle9i bitmap join
indexes, Donald Burleson,
November 12, 2002

A value-based bitmap for
processing queries on low-
cardinality data. (Recommended
for up to 1,000 distinct values ...

Introduction to Adaptive
Server IQ, Ch 5, Sybase

~
J\\
rereeer ||||

6 CIETIEYsd Lam

Curse of Cardinality: Empirical Evidences

25

Size (Mbytes)
5 w B

L]
I

o]

A

1000 +

=]
Lo] =
=

10000
40000

Cardinality

1C0000 1

250000 1

500000 +

10C0000

-+ ------B-free

Bitmap

Curse of
Cardinality

v Index sides, adapted from a presentation by Hakan Jakobsson,
ORACLE, 1997 (Stanford Database Seminar)

v 1 million rows (bitmap index compressed with BBC)

v Sizes of compressed bitmap indexes increase with column
cardinality — this is generally the case, not just in ORACLE N

A
rereeer ||||

7 CIETIENs

Curse of Cardinality: Theoretical Evidences

v Analysis of total index size based on Gray Code Ordering
(optimal) by Apaydin, Tosun and Ferhatosmanoglu,

SSDBM 2008

v Number of columns: A; cardinality of column i: C,

v Notice the multiplications of column cardinalities of columns
in the dataset curse of cardinality

E(C1)+ZA: E(C|)

C.

Outline

1. Achilles’ Heel of Bitmap Index
2. Order-preserving Bin-based Clustering
3.
4,

~

A
rrreeer ‘|||
_

Ways to Improve Performance of Bitmap Indexes

v Compression
Byte-aligned Bitmap Code (BBC), used in ORACLE
Word-Aligned Hybrid (WAH) code, used in FastBit, produce optimal
bitmap indexes [Wu, et al. TODS 2006]
In the worst cases, the index sizes are still larger than B-trees

v Encoding
Many bitmap encoding schemes exist, the most compact is the
binary encoding
The binary encoded index (bit-slice index) is slower than the
projection index in the worst case

v Binning
Designed to handle high-cardinality data, but needs to scan raw
data, which makes it slower than the projection index
Solution: Order-preserving Bin-based Clustering (OrBiC)

~

I\l \
rerreecer

10 Etm(..

A Digression: Projection Index

A projection index is a projection of a column of data [O’Neil and Quass,
1997], also known as the materialized view

It answers queries by examining N values of the column, faster than
using B-Tree and other indexes in many cases

Simplest indexing data structure possible
Good yardstick to measure any indexing structure

~

rreeer ||||
1 T

Answering Queries with Binned Index

Column C (values between 0 and 1)

Two bins [0, 0.5)[0.5,1), have a bitmap B, to represent all
rows with 0 <= C < 0.5, and another B, for 0.5 <= C < 0.5

To answer a query involving the condition “C < 0.7, all
rows in B,

Rows in B, are candidates, have to examine the actual
values to decide which row satisfy “C < 0.7” — candidate
check

Rows in B, are scattered in all pages containing the
projection of C

Candidate check is as expensive as using the projection
index to answer the query condition

To reduce the cost of candidate check, cluster the values
according to bins, i.e., OrBiC

OrBiC Data Structure

OrBiC data structure is an addition

' X . Projection Starting Clustered
to a binned bitmap index of column A Bitmaps Positions Values
Let A denote the column name o1 11 ol —To o1
With the binned bitmap index 0.8 0 1=l s 0.3
shown, all rows in Bin 0 satisfies the 03 1 0 10 0.4
query condition “A < 0.7”, but rows 0'6)) ‘ 0'2
in Bin 1 are only candidates 0'7) . 0’4
Bin 1 is known as the boundary bin 0'4)) ’o.s
Without OrBiC, checking candidates 05 o) ok
needs to access the base data or a ' ’

S 0.2 1 0 0.7
projection of A

Usually reads all pages 02) ! 03

y pag , 0.4 1 0 \9.9

As least as costly as using the T 7 v

projection index T
OrBiC clusters the values needed Bin 0: [0, 0.5)

for candidate check together
Reduce the I/O cost

Bin 1: [0.5, 1)

-1
. A
rereeer ﬂ
A

13 EETEEs L.

Additional Optimization: Single-Valued Bins

If a bin contains only a single value, there is no need to
store the corresponding values in OrBiC

It is clear how to construct single-valued bins for integer
columns

It is easy to construct single-valued bins for floating-point
valued columns as well
For a bin defined as b, = A < b, , b, =b+ | b, | €is the
smallest value that is larger than b,, where ¢ is the
machine epsilon or unit round-off error

In addition to the arrays shown on the previous slide, our
implementation of binned bitmap index also stores the
actual minimal and maximal values in each bin

~

J\\

rereeer ||||
A

14 EETTEYEs L.

< < < < <

<

S1001001111

Outline

Analysis

o~

“

) \
rrreeer ‘m
aﬁni;;;;;\h

Analysis of Binned Index with OrBiC

B = number of bins

C = cardinality of the column indexed, C > B

N = number of rows in the dataset (number of bits in each bitmap)
w = number of bits in a word, typically, 32 or 64

Density of it bitmap, d; = fraction of bits that are 1, also fraction of
values fall in bin i

Number of words in bitmap i under WAH compression

Ao

Gpyesd Uy aseeeadi

Maximum Reduction
number due to
of words compression

~
) A
rereeer

16 Hﬁﬂ!;;;;;\h

Analysis ... Continued

v Size of a binned bitmap index
Size of bitmaps, sum of s,
B pointers to the bitmaps, B words

B bin boundaries, B words (may use +1 word
depending implementation)

B minimal values in each bin, B words
B maximum values in each bin, B words
Total: 4 B + sum of s,

v Size of OrBiC data structure
B+1 starting positions, B+1 words

Cluster values, N words (may be less if there are any
single-valued bins)

Total: N+B+1

Analysis ... Continued

v Query processing cost using a binned bitmap index
4B words for metadata about the index

Sum of s;involved

Read N words of the projection of the column for
candidate check (may access less words, but often
accesses every page containing the projection)

Index Sizes

For random data, WAH
compressed index sizes can be
given in closed form formulas
Zipf data, probability of the ith
value proportional to 1/i?
Uniform random data, z=0
Using OrBiC with binned indexes
increases space requirement
Choose the number of bins to
minimize the query processing
costs while keeping the index sizes
relatively small
Minimizing query processing cost
must balance two factors

Cost due to bitmaps — increases
with the number of bins

Cost due to candidates —

decreases with the number of bins

7.E+08

6.E+08 -

5.E+08

4.E+08

Index Size (|n words)

0.E+00 -

Too many bins
Avoid this

/)

¢ unbifflned W binned with OrBiC 1

Prefer this

1.E+01 1. E+02 1.E+03 1.E+04 1.E+05 1.E+06 1. E+07 1.E+08

Cardinality (or # of Bins)

N=108

~

A
rreeer ||||

19 EETTEEsE Lam

Expected Query Processing Costs on Zipf Data

The number of bins that
minimizes the average query
processing costs

Zipf exponent z = 0: 13, the
average cost is about 80MB
(1/5t of the projection index,
1/31 of a typical unbinned
bitmap index with WAH
compression)

Zipf exponentz = 1: 25
Zipf exponent z = 2: 550

Query Processing Cost [bytes]

2.5e+08

2et+08

. 7i nm
1.5e+08 lefl —

Zipf2 —
let+08
Set+07
0 .
| 100 1000 1 0000
bins

~

A
rereeer ||||
(

It Pays to Use OrBiC

v Figure on the right plots the
expected average query
processing cost against the
number of bins for uniform
random data

v The query processing costs are i:gz _
always lower with OrBiC than £ ", ¢ |
. . o = -

without OrBiC — it is always = 450408 |
better to use OrBiC with binned & 4etos |
' i 2 3.5e+08 [

bitmap indexes E Qin-ns.' a Without OrBiC —]

§ 5 50408 | 6)(with OrBiC \

S 2er08 | |

3 1.5e+08 1

© leros |]

507 ' ' '
1 10 100 1000 10000
bins

-~

. A
frreeer ‘|||

21 a:m(.-

100001111

Outline

o~

Experiment

~
i A
rerreecer

_

v

Index size [bytes]

Index size [bytes|

Test Setup

Two sets of test data are used
Synthetic Zipf data: 100 million
rows, integer values, cardinality
1 million
Astrophysics data: Supernova
explosion simulation, 110 million
rows, floating-point values,
cardinality 20 — 40 million

Test platform
Pentium 4 CPU
2GB RAM
RAID-0 with 4 IDE disks

(sustainable bandwidth
~60MB/s)

Test software: FastBit, compiled with
GCC4.1.0

Software available from
http://sdm.Ibl.gov/fastbit/

Mumber of data points

MNumber of data points

le+06 T
100000 ¢
looon F
Looo
100

- Astrophysics: density

10

1
-8 -06 04 02 0 02 04 06 08

Domain space

le+09

letO8 F 1
.r . Astrophysics: x-velocity |
lett
100000 ¢
10000 F

1000 ¢

LNV

10
0 1000 2000 3000 4000 5000 6000 7000 8000

Domain space

Sl
23 _

Indexes with OrBiC Have Modest Size
as Expected

Ty {8
12e+09 T s I £l
/\3_3:5__..--
le+09 f ﬂ%(a‘"
HeE I,+...-
6e+08 A 0 |
Z=
- A&
ot -
Base dala ——
£ Norhinning s
et | Binning =4
+ Bimning with OrfiC &=
0 [Expucln;'d: Binnina with !I R *
10 100 1000 10000
168 Number of bins
DASeHO8 | F
1.5cHIE Ef\{ z=2
: "
CASe+OEF -
TdetB \‘h{"“n‘
- 3508 I L e
13e+08 | 47
2508 | f
1.26+08 | | N b
) | obinning e
L1 Se+08 :; Binning e
1. 1e+08 _|'. Binning with OrBiC’ =g
L i bxpected: Binning with UrBil” k3
05+
10 100 1000 10000

Nurmrber of bins

[ndex size [byles]

Iniclex size [hyles]

| 2e+09
Base data P N
-5 Na hinning -----------
fer Binning - J.-’/
Binning with OrBiC ----E.....r_,-"
Se+08 -
...... '_,./"_ 1
He+08 __..—--'E" _._..*"' i
- — g e
et —
Lo | X-velocity o
gt
10 100 1000
1.fAe+09 Nu m'ml-.- of hins
LAe+09 .
denS|ty Basec data
1.2e+09 Mo binning =wess=- &
Binning o -
le+09 Binnming with OrBil == ,-""f
L
He+08 - o]
" -
‘ - o
Get+08 - |
[aressnee g
4e+08 -
ZerOE - +
B e
. 100 LS

Mumber of bins A
frreeer ‘|||

24 _

=

2 lime [

Query processing

Query processing lime [sec]

=]

Quey processing lime |

te|

2 lme [

Query processing

Response Time for Queries on Zipf Data

nnnnn g

' B .
 pmimgwanomic -1 On uniform random data, the average
" ' speed up expected was about 3

The observed speed up is 2.94

— (] e + Lh [=a} =1 o =]
T T T T T T T

e z=01 The observed speed up for Zipf
P Iy : data with z=1 is 5.50, z=2 25.62
f,»-"’f ™ v This confirms the theoretical analyses
0 - — it pays to use OrBiC
i 1 3 4 5 3] 7 8 9
Query ransc v Speedup on skewed data (z>0) is
I e T : larger than on uniform random data
35+ .': BII‘II‘III‘I._!.W'Ilh(}I'nI(‘ '''''' i
3
25 z=2
15 ¢
1
(5 .
] z ES ~
1] 2 4 4 h] 5] ! =} :]
Ouery rangs

A
rereeer ||||

25 EETIETEs Lam

Response Time for Queries on Astrophysics Data

7 . . . —
ol Binsing with OB - | v Onreal application data, the
. | speedup of using OrBiC is larger
. / L than on random data
i X-velocity
tr T T T,
A st i

[} 1 2 3 4 5 & H

[ery range

0.9

o Column | Speedup | Column | Speedup
0.

oo Binring '.Jf'ill'lnllellféii-iI(E‘ ------- | DenSity 391 X'VGIOCity 565
0.5 r J

04+ . Entro Y-velocit

04 density py 12.61 y 4.82
03 r b

U N Pressure 4.4Q | Z-velocity 4.28

0.1 L " M " L) L L
4] 2 3 4 h]] 7 B 5 ,\.l A
receeer| |

lucry range —— |

Speedup over Project Indexes

100

v On Zipf data : 355 e
T S s
Z=0: max speedup = 3 : e S—
Z=1: max speedup = 6 EE e
104
2-2: max speedup = 26 T
v On astrophysics data E i:ﬁ»—_x_ﬁ_ L — %
[x]y|z]-velocity: max ’ —

-‘_‘_'_‘—‘—-—n—
speedup = 8 e - = -
Density, entropy, pressure: 100 umberolb

= e ——

max Speedup 40 £ ,+PTE55“:E -
E) . e -:-Ii:_,_ﬂ"‘"'d
g 104: ﬁx*""”-)
g -
3 2/\
i

1

10 100 = 1000
A

Moamber of bins rr’|}| |||\|

27 \

Summary

v Order-preserving Bin-based Clustering (OrBiC) enhances
binned bitmap indexes by reducing I/O cost

v The effectiveness of OrBiC data structure has been
analyzed in theory and demonstrated in timing
measurements

v Gonclusion: Binning with OrBiC effectively break the curse
of cardinality

v Software implementation available under Lesser GNU
Public License (LGPL) from http://sdm.lbl.gov/fastbit/

~

- .
\

rereeer ||||
(

28

Ty e T—
t }:u" [r..-'-""'

Bt

Thanks!

Questions?

http://sdm.Ibl.gov/fastbit/

