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Introduction
• Traditional DBMS:

– Numbers and small character strings
Ex.:Payrolls, bank accounts, etc.

• Today:

– DBMS are being increasingly required to support 
other, much more complex, data types.

Ex.: images, audio, fingerprints, time series and genetic sequences

<>? <>?
Total ordering

property

Total ordering
property
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Introduction

Images are rarely equal...
... they are similar.

SimilaritySimilarity QueriesQueries

The usual comparison operators (=, <, >) are meaningless for 
these data.
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Similarity queries

• Range query - Rq: • k-nearest neighbor query - k-NNq

Select the 5 
nearest neighbors

Similarity operators are much more useful:
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Introduction
• Similarity queries

– Multimedia data comparison  usually considers some features
extracted from the data elements.

• Ex.: The definition of how to compare two images is a subjective factor.
– Visual inspection: different results.
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Metric Spaces

• Similarity can be adequately expressed when data is 
represented in a metric space:
– only the data elements and the distances (dissimilarity) among 

them are available
– there are not geometric relations

• Furthermore, there are domains that do not have a 
dimensionality, 
– Words, genetic sequences, audio, etc.;



8

Metric Spaces
• A metric domain is defined as a pair:

M = ( S , d )
– S :  universe of valid elements

– d( ) : metric distance function

•Metric distance function properties:
1 - Simmetry: d(x, z) = d(z, x);

2 – Non-negativity: 0 < d(x, z) < ∞;  d(x, x) = 0

3 – Triangular inequality: d(x,z) ≤ d(x,y)+d(y,z)

• The triangular inequality allows pruning subtrees

avoiding 
distance 

calculations
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Metric Access Methods (MAM)
• Several MAM have been developed to 

speed up similarity query answering:

• Initially Static:
• Vp-tree, 
• MVP-tree
• GH-tree, 
• GNAT.

• Dynamic
• M-tree
•• SlimSlim--TreeTree
• DBM-tree
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Metric Access Methods

• Slim-Tree
– balanced and dynamic hierarchical tree structure, with the 

elements stored in the leaves

– elements are grouped around representative elements, in 
order to cluster similar elements

– grows bottom-up

– fixed size disk pages, each page corresponding to a tree 
node;
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Metric Access Methods
Each

representative is 
the center of a

ball with a 
radius that
covers all

elements of the
subtree rooted

at it.
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Overlap
• The division of the metric space of almost every dynamic MAM 

does not generate disjunct regions
– it reduces the ability to prune subtrees.

• The degree of overlap directly affects the query performance of
index structures



13

Overlap

• The well-known techniques to measure overlap of a 
pair of intersecting nodes cannot be used for metric
data (absence of dimensionality)

• Overlap between two nodes: the number of elements
covered by both regions divided by the number of
elements in both subtrees.

• Fat-factor: quantify the degree of overlap between the
nodes in a metric tree.
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Our work

• In this work we proposed 
– an algorithm for the effective deletion of elements 

indexed in MAM

– Push-pull, a new technique to optimize MAM
• Removing and reinserting elements

– Smart Push-pull: automatically defines a number 
of elements to be removed in each leaf node
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Deletion Algorithm

• The development of dynamic MAM neglected
the deletion and update of elements.

• Deletions
– can force large tree reorganizations;

– can be very expensive,
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Deletion Algorithm

• The deletion operation is not even described in the great
majority of MAM found in literature

• However, many applications handle complex data that 
evolve over time. 
– require removing or updating elements.

• Challenges of the deletion algorithm:
– reduce the required reorganization
– maintain the height-balancing property

• not degenerate the structure

– not increase node overlap
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m-delete (mark-as-deleted)

• In almost every hierarchical MAM, the deletion
of representative elements is performed just
marking them as removed:
– inappropriate when applications perform a large

number of deletions.
• increases the number of disk accesses and distance

calculations
– it forces comparisons with elements that do not exist

anymore
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Effective deletion algorithm

• enables effective deletion off any indexed 
element, maintaining the height-balancing of 
the structure

• uses a set of mechanism to reduce the 
reorganization caused in the structure

• is based on importing the sibling subtrees when 
the Minimum Node Occupation (MNO) is violated;

• uses mechanisms to enforce a reduced number of 
pages in the tree, improving the query 
performance.
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• If the Node MNO violation occurs deeper, the
algorithm attempts to import an entry from a sibling
node that will not violate the MNO:
1st  attempt: import an entry already covered by Node
2nd attempt: import the entry closest to the Node’s 

representative – increase the radius as little as possible

3rd attempt: it is not possible import - export

• If the leaf node violates the MNO property, its
remaining entries are reinserted
– Empirical results: better structure

Effective deletion algorithm

Ex.: Minimum Node Occupation = 3

this importation not increases the radius
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An Overlap Reduction and
Optimization Technique for MAM
• We introduce a new optimization technique based

on the effective deletion algorithm

• It searches for elements that are not close to the
others on the node, thus increasing the covering
radius.

• The idea is to remove several elements in the
periphery of leaf nodes and reinsert them at once.
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Slim-down

• When sibling leaf nodes overlap themselves, the Slim-down
performs the “migration” of the farthest element of a node into a 
sibling node that also covers the element.
– the overlap is reduced

• procedure is repeated until no element migrates between
siblings nodes

Not optimized Optimized with Slim-down
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Slim-down

• restricts the covering radius shrinking to the
leaf nodes of the same subtree.
– when two leaf nodes rooted at different index

nodes overlap each other, no improvement is 
achieved.

Not optimized Optimized with Slim-down
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Push-pull technique

• The elements selected to be removed are the farthest from their
representatives
– Reduction of leaf nodes covering radius

• Insertion operation tries first to reinsert elements in the nodes that do 
not increase their covering radius, or in nodes that require smaller
radius increase

• Overall overlap reduction.

•The idea is to remove several elements in the periphery
of leaf nodes and reinsert them at once.
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Slim-down vs. Push-pull

• Slim-Down:  migration between leaf nodes linked to the same
index node

• Push-pull: migration of elements between any leaf node

Optimized with Slim-down Optimized with Push-pull
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Push-pull

• Naïve Push-pull:  users need to provide the quantity
of elements to be removed from each node

• Experimental evaluation: the ideal percentage of
elements to be removed vary from dataset to 
dataset, but it is limited by a saturation point

• Smart Push-pull: find automatically the quantity of
elements to be removed in each node, based on
statistics measured in the tree.
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Smart Push-pull

• H : height of the tree.

• Max_Occup : node capacity

• AVGNode: average number of accesses to 
retrieve every entry stored in each leaf node
– calculated during the computation of the tree’s 

fat-factor
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Experiments
Datasets
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Experiments
Effective Delete - execution time

Number of pages left in the tree after
m-delete was more than 40% larger

Very close execution time
Inserted 80% of the
dataset, and then

remoded half of elements
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Experiments
Effective Delete – query performance

Queries after effective deletion
were always faster
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Experiments
Push-Pull

Push-Pull Slim Down Smart Push-Pull
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•Saturation point

•Smart Push-pull achieved results always
near to the best case of naïve Push-pull
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Experiments
Smart Push-pull – execution time

Between 60% and 77% 
of the time to build

the original tree
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Experiments
Smart Push-pull - query performance

•190% faster than not-optimized trees
•150% faster than trees optimized
with Slim-down
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Conclusions

• This work proposed
– an algorithm for the effective deletion of elements indexed

in MAM, allowing to delete any element

– Push-pull, a new technique to optimize MAM

– Smart Push-pull: automatically defines a number of
elements to be removed in each leaf node

trees optimized by the Smart Push-pull tend to answer queries
up to 150% faster than trees optimized by Slim-down.

queries were always faster after the application of the proposed
algorithm, compared to the previous algorithm use
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