
A New Approach for Optimization
of Dynamic Metric Access Methods

Using an Algorithm of Effective Deletion
Renato Bueno

Daniel S. Kaster
Agma J. M. Traina
Caetano Traina Jr

University of São Paulo – USP
São Carlos - SP - Brasil

20th International Conference on Scientific and Statistical
Database Management (SSDBM)

July 9-11, 2008, Hong Kong, China



2

Outline
• Introduction and Background

• Effective deletion algorithm

• An Overlap Reduction and
Optimization Technique for MAM

• Experiments

• Conclusions



3

Introduction
• Traditional DBMS:

– Numbers and small character strings
Ex.:Payrolls, bank accounts, etc.

• Today:

– DBMS are being increasingly required to support 
other, much more complex, data types.

Ex.: images, audio, fingerprints, time series and genetic sequences

<>? <>?
Total ordering

property

Total ordering
property



4

Introduction

Images are rarely equal...
... they are similar.

SimilaritySimilarity QueriesQueries

The usual comparison operators (=, <, >) are meaningless for 
these data.



5

Similarity queries

• Range query - Rq: • k-nearest neighbor query - k-NNq

Select the 5 
nearest neighbors

Similarity operators are much more useful:



6

Introduction
• Similarity queries

– Multimedia data comparison  usually considers some features
extracted from the data elements.

• Ex.: The definition of how to compare two images is a subjective factor.
– Visual inspection: different results.



7

Metric Spaces

• Similarity can be adequately expressed when data is 
represented in a metric space:
– only the data elements and the distances (dissimilarity) among 

them are available
– there are not geometric relations

• Furthermore, there are domains that do not have a 
dimensionality, 
– Words, genetic sequences, audio, etc.;



8

Metric Spaces
• A metric domain is defined as a pair:

M = ( S , d )
– S :  universe of valid elements

– d( ) : metric distance function

•Metric distance function properties:
1 - Simmetry: d(x, z) = d(z, x);

2 – Non-negativity: 0 < d(x, z) < ∞;  d(x, x) = 0

3 – Triangular inequality: d(x,z) ≤ d(x,y)+d(y,z)

• The triangular inequality allows pruning subtrees

avoiding 
distance 

calculations



9

Metric Access Methods (MAM)
• Several MAM have been developed to 

speed up similarity query answering:

• Initially Static:
• Vp-tree, 
• MVP-tree
• GH-tree, 
• GNAT.

• Dynamic
• M-tree
•• SlimSlim--TreeTree
• DBM-tree



10

Metric Access Methods

• Slim-Tree
– balanced and dynamic hierarchical tree structure, with the 

elements stored in the leaves

– elements are grouped around representative elements, in 
order to cluster similar elements

– grows bottom-up

– fixed size disk pages, each page corresponding to a tree 
node;



11

Metric Access Methods
Each

representative is 
the center of a

ball with a 
radius that
covers all

elements of the
subtree rooted

at it.



12

Overlap
• The division of the metric space of almost every dynamic MAM 

does not generate disjunct regions
– it reduces the ability to prune subtrees.

• The degree of overlap directly affects the query performance of
index structures



13

Overlap

• The well-known techniques to measure overlap of a 
pair of intersecting nodes cannot be used for metric
data (absence of dimensionality)

• Overlap between two nodes: the number of elements
covered by both regions divided by the number of
elements in both subtrees.

• Fat-factor: quantify the degree of overlap between the
nodes in a metric tree.



14

Our work

• In this work we proposed 
– an algorithm for the effective deletion of elements 

indexed in MAM

– Push-pull, a new technique to optimize MAM
• Removing and reinserting elements

– Smart Push-pull: automatically defines a number 
of elements to be removed in each leaf node



15

Deletion Algorithm

• The development of dynamic MAM neglected
the deletion and update of elements.

• Deletions
– can force large tree reorganizations;

– can be very expensive,



16

Deletion Algorithm

• The deletion operation is not even described in the great
majority of MAM found in literature

• However, many applications handle complex data that 
evolve over time. 
– require removing or updating elements.

• Challenges of the deletion algorithm:
– reduce the required reorganization
– maintain the height-balancing property

• not degenerate the structure

– not increase node overlap



17

m-delete (mark-as-deleted)

• In almost every hierarchical MAM, the deletion
of representative elements is performed just
marking them as removed:
– inappropriate when applications perform a large

number of deletions.
• increases the number of disk accesses and distance

calculations
– it forces comparisons with elements that do not exist

anymore



18

Effective deletion algorithm

• enables effective deletion off any indexed 
element, maintaining the height-balancing of 
the structure

• uses a set of mechanism to reduce the 
reorganization caused in the structure

• is based on importing the sibling subtrees when 
the Minimum Node Occupation (MNO) is violated;

• uses mechanisms to enforce a reduced number of 
pages in the tree, improving the query 
performance.



19

• If the Node MNO violation occurs deeper, the
algorithm attempts to import an entry from a sibling
node that will not violate the MNO:
1st  attempt: import an entry already covered by Node
2nd attempt: import the entry closest to the Node’s 

representative – increase the radius as little as possible

3rd attempt: it is not possible import - export

• If the leaf node violates the MNO property, its
remaining entries are reinserted
– Empirical results: better structure

Effective deletion algorithm

Ex.: Minimum Node Occupation = 3

this importation not increases the radius



20

An Overlap Reduction and
Optimization Technique for MAM
• We introduce a new optimization technique based

on the effective deletion algorithm

• It searches for elements that are not close to the
others on the node, thus increasing the covering
radius.

• The idea is to remove several elements in the
periphery of leaf nodes and reinsert them at once.



21

Slim-down

• When sibling leaf nodes overlap themselves, the Slim-down
performs the “migration” of the farthest element of a node into a 
sibling node that also covers the element.
– the overlap is reduced

• procedure is repeated until no element migrates between
siblings nodes

Not optimized Optimized with Slim-down



22

Slim-down

• restricts the covering radius shrinking to the
leaf nodes of the same subtree.
– when two leaf nodes rooted at different index

nodes overlap each other, no improvement is 
achieved.

Not optimized Optimized with Slim-down



23

Push-pull technique

• The elements selected to be removed are the farthest from their
representatives
– Reduction of leaf nodes covering radius

• Insertion operation tries first to reinsert elements in the nodes that do 
not increase their covering radius, or in nodes that require smaller
radius increase

• Overall overlap reduction.

•The idea is to remove several elements in the periphery
of leaf nodes and reinsert them at once.



24

Slim-down vs. Push-pull

• Slim-Down:  migration between leaf nodes linked to the same
index node

• Push-pull: migration of elements between any leaf node

Optimized with Slim-down Optimized with Push-pull



25

Push-pull

• Naïve Push-pull:  users need to provide the quantity
of elements to be removed from each node

• Experimental evaluation: the ideal percentage of
elements to be removed vary from dataset to 
dataset, but it is limited by a saturation point

• Smart Push-pull: find automatically the quantity of
elements to be removed in each node, based on
statistics measured in the tree.



26

Smart Push-pull

• H : height of the tree.

• Max_Occup : node capacity

• AVGNode: average number of accesses to 
retrieve every entry stored in each leaf node
– calculated during the computation of the tree’s 

fat-factor



27

Experiments
Datasets



28

Experiments
Effective Delete - execution time

Number of pages left in the tree after
m-delete was more than 40% larger

Very close execution time
Inserted 80% of the
dataset, and then

remoded half of elements



29

Experiments
Effective Delete – query performance

Queries after effective deletion
were always faster



30

Experiments
Push-Pull

Push-Pull Slim Down Smart Push-Pull

 2400
 2500
 2600
 2700
 2800
 2900
 3000
 3100
 3200
 3300
 3400
 3500

 0  10  20  30  40  50

Av
g.

nu
m

be
ro

fd
is

ta
nc

e
ca

lc
s.

% of removed elements per node

Letters - kNNQ, k=10

 950

 1000

 1050

 1100

 1150

 0  10  20 30 40  50

Av
g.

nu
m

be
ro

fd
is

ta
nc

e
ca

lc
s.

% of removed elements per node

ColorHisto - kNNQ, k=10

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0  10  20  30  40  50

To
ta

lt
im

e
(m

s)

% of removed elements per node

Letters - kNNQ, k=10

 5400
 5500
 5600
 5700
 5800
 5900
 6000
 6100
 6200
 6300
 6400

 0  10  20 30 40  50

To
ta

lt
im

e
(m

s)

% of removed elements per node

ColorHisto - kNNQ, k=10

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0  10  20  30  40  50

re
la

tiv
e

Fa
tf

ac
to

r

% of removed elements per node

Letters

 0.062
 0.064
 0.066
 0.068

 0.07
 0.072
 0.074
 0.076
 0.078

 0.08
 0.082
 0.084

 0  10  20 30 40  50

re
la

tiv
e

Fa
tf

ac
to

r

% of removed elements per node

ColorHisto

0.045

 0.05

0.055

 0.06

0.065

 0.07

0.075

0 10 20 30 40 50

re
la

tiv
e

Fa
tf

ac
to

r

% of removed elements per node

Cities

54

56

58

60

62

64

66

68

70

72

 0 10 20 30 40 50

To
ta

lt
im

e
(m

s)

% of removed elements per node

Cities - kNNQ, k=10

95

100

105

110

115

120

 125

0 10 20 30 40 50

Av
g.

nu
m

be
ro

fd
is

ta
nc

e
ca

lc
s.

% of removed elements per node

Cities - kNNQ, k=10
•Saturation point

•Smart Push-pull achieved results always
near to the best case of naïve Push-pull



31

Experiments
Smart Push-pull – execution time

Between 60% and 77% 
of the time to build

the original tree



32

Experiments
Smart Push-pull - query performance

•190% faster than not-optimized trees
•150% faster than trees optimized
with Slim-down



33

Conclusions

• This work proposed
– an algorithm for the effective deletion of elements indexed

in MAM, allowing to delete any element

– Push-pull, a new technique to optimize MAM

– Smart Push-pull: automatically defines a number of
elements to be removed in each leaf node

trees optimized by the Smart Push-pull tend to answer queries
up to 150% faster than trees optimized by Slim-down.

queries were always faster after the application of the proposed
algorithm, compared to the previous algorithm use



Renato Bueno
Daniel S. Kaster

Agma J. M. Traina
Caetano Traina Jr

University de São Paulo – USP
São Carlos - SP – Brasil

rbueno@icmc.usp.br

SSDBM 2008

Thanks

A New Approach for Optimization
of DynamicMetric Access Methods

Using an Algorithm of Effective Deletion


	A New Approach for Optimization �of Dynamic Metric Access Methods �Using an Algorithm of Effective Deletion�
	Outline
	Introduction
	Introduction
	Similarity queries
	Introduction
	Metric Spaces
	Metric Spaces
	Metric Access Methods (MAM)
	Metric Access Methods
	Metric Access Methods
	Overlap
	Overlap
	Our work
	Deletion Algorithm
	Deletion Algorithm
	m-delete (mark-as-deleted)
	Effective deletion algorithm
	Effective deletion algorithm
	An Overlap Reduction and Optimization Technique for MAM
	Slim-down
	Slim-down
	Push-pull technique
	Slim-down vs. Push-pull
	Push-pull
	Smart Push-pull
	Experiments�Datasets
	Experiments�Effective Delete - execution time
	Experiments�Effective Delete – query performance
	Experiments�Push-Pull
	Experiments�Smart Push-pull – execution time
	Experiments�Smart Push-pull - query performance
	Conclusions
	A New Approach for Optimization �of DynamicMetric Access Methods �Using an Algorithm of Effective Deletion�

