An Ontology-based Index to Retrieve Documents with Geographic Information

Miguel R. Luaces, José R. Paramá, Oscar Pedreira, Diego Seco

Database Laboratory University of A Coruña A Coruña, Spain

Motivation

- The Database Laboratory at the University of A Coruña works in two very active research fields:
 - Geographic Information Systems (GIS)
 - EIEL Project (<u>http://www.dicoruna.es/webeiel</u>)
 - Information Retrieval (IR)
 - Galician Virtual Library (<u>http://bvg.udc.es</u>)

Retrieval of geographically and thematically relevant documents in response to a query of the form <theme, location>

Motivation

- Many of the documents stored in digital libraries and document databases include geographic references
 — Example: "...the hurricane touched land at Veracruz..."
- Few index structures or retrieval algorithms take into account these geographic references
- Some proposals have appeared recently. But...
- There are some specific particularities of geographic space that are not taken into account by these proposals:
 - Hierarchical nature of geographic space
 - Topological relationships between the geographic objects

- Motivation
- Related Work
- Architecture
- Index Structure
- Supported Query Types
- Experiments
- Conclusions and Future Work

Related Work

- Many index structures and techniques have been proposed in each area:
 - IR: Inverted Index
 - Geographic references are completely ignored
 - GIS: R-Tree
 - These structures do not take into consideration the hierarchy of space
- The combination of both types of indexes (SPIRIT project):
 - Text-First
 - Geo-First
 - They do not take into account the relationships between the geographic objects that they are indexing
- An Ontology can describe the specific characteristics of geographic space:
 - Ontologies are used in query expansion, relevance rankings, and web resource annotation
 - Nobody has ever tried to combine it with other types of indexes to have a hybrid structure

- Motivation
- Related Work
- Architecture
- Index Structure
- Supported Query Types
- Experiments
- Conclusions and Future Work

Architecture

Architecture

- Document storage workflow:
 - Keyword extraction
 - Classic IR techniques (removing stopwords, stemmers)
 - Build the index structure
 - Natural Language Processing Techniques
 - Gazetteer Service
 - Geographic Space Ontology Service
- Processing services:
 - Query solving service
 - Web Map Service (WMS)
 - Geographic information retrieval module
- User Interface:
 - Administration (manage the document collection)
 - Query

- Motivation
- Related Work
- Architecture
- Index Structure
- Supported Query Types
- Experiments
- Conclusions and Future Work

Index Structure

Index Structure

• Based on a spatial ontology

- It models both the vocabulary and the spatial structure of places for purposes of information retrieval
- Tree composed by nodes that represent place names
 - Each node:
 - Keyword (a place name)
 - Bounding box
 - Document identifiers
 - Children nodes
 - These nodes are connected by means of inclusion relationships
 - If the list of children nodes exceeds a threshold, an R-Tree is used
- Auxiliary structures:
 - Place name hash table
 - Traditional Inverted Index

Index Structure

• Advantages:

- All textual queries and spatial queries can be efficiently processed
- Queries combining textual and spatial aspects are supported
- Updates and optimizations in each index are handled independently
- Drawbacks:
 - The tree that supports the structure is possibly unbalanced
 - The structure is static

- Motivation
- Related Work
- Architecture
- Index Structure
- Supported Query Types
- Experiments
- Conclusions and Future Work

- Pure textual queries
 - "Retrieve all documents where the words hotel and sea appear"
 - How do we solve it?
 - Inverted Index
- Pure spatial queries
 - "Retrieve all documents that refer to the following geographic area"
 - How do we solve it?
 - Descend the structure + refine the result
 - The same algorithm that is used with spatial indexes

- Textual queries with place names
 - "Retrieve all documents with the word hotel that refer to Spain"
 - How do we solve it?
 - Example
 - We save some time by avoiding a tree traversal

- Textual queries over a geographic area
 - "Retrieve all documents with the word hotel that refer to the following area"
 - How do we solve it?
 - Example
 - Geographic references can be given using place names

Inverted Index

hotel	1,3,7,8,12,
sea	3,5,6,9,10,

Query Window

- Another improvement: QUERY EXPANSION
 - "retrieve all documents that refer to Spain"
 - How do we solve it?
 - The Query Evaluation Service discovers that Spain is a geographic reference
 - The *Place Name Hash Table* locates quickly the internal node that represents the geographic object *Spain*
 - All the documents associated to this node are part of the result
 - All the documents associated to the subtree are part of the result
 - The result contains not only those documents that include the term Spain, but also all documents that contain the name of a geographic object included in Spain

Demo

- Motivation
- Related Work
- Architecture
- Index Structure
- Supported Query Types
- Experiments
- Conclusions and Future Work

Experiments

• Randomly generated pure spatial queries

Ontology-based index versus R-Tree

Query area	0.001%	0.01%	0.1%	1%
Ontology-based index	0.013	0.017	0.052	0.360
R-Tree	0.010	0.016	0.057	0.370

Experiments

Ontology-based index versus R-Tree (zones of high document density)

Query area	0.001%	0.01%	0.1%	1%
Ontology-based index	0.03	0.11	1.05	9.84
R-Tree	0.07	0.22	1.64	12.85

Ontology-based index versus R-Tree (zones of low document density)

Query area	0.001%	0.01%	0.1%	1%
Ontology-based index	0.02	0.03	0.09	0.4
R-Tree	0.02	0.03	0.07	0.2

- Introduction
- Motivation
- Related Work
- Architecture
- Index Structure
- Supported Query Types
- Experiments

• Conclusions and Future Work

Conclusions

- We have defined an architecture for Geographic Information Retrieval systems
- It takes into account both textual and geographic references in the documents
- This is achieved by a new index structure that combines an inverted index, a spatial index and an ontology
- Traditional queries and new types of queries can be solved

Future Work

- Evaluate the performance of the index structure
- Explore the use of different ontologies
- Include other types of spatial relationships (e.g., adjacency)
- Improve the disambiguation process of place names
- Define algorithms to rank the retrieved documents

An Ontology-based Index to Retrieve Documents with Geographic Information

Miguel R. Luaces, José R. Paramá, Oscar Pedreira, Diego Seco

Contact: luaces@udc.es

Database Laboratory University of A Coruña A Coruña, Spain

