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Similarity-profiled Temporal Association

m A subset of items whose prevalence variation
over time Is similar to a reference sequence
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‘ Motivation Examples

m \Weather-to-Sales

o Correlation between daily temperatures and
merchandise sales — walt Disney World [NOAAEconomics]

o Popular sale items during hurricane in a region -
Wal-Mart [FORTUNE Magazine]

= Flashlights, generators and tarps with bottled water
= Strawberry Pop-Tarts with bottled water

m \Weather-to-Web Sites
2 Web sites depending on weather — [Weather.com]

July 9-11, 2006 SSDM 2008 3



‘ Motivation Examples

m Scientific Phenomena-to-Climates

o Climate events correlated with EI Nino

= Low precipitation and low atmospheric carbon dioxide in
Australia

s Scientific Phenomena-to-Agriculture

o Agricultural products under the effect of EI Nino
= Wheat and other products in Australia
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‘ Related Work

m Cyclic associations [0zden’98, Ramaswamy’94]
o Periodically repetitive patterns for frequent itemsets
o “Beer” and “chips” are sold together primarily between
6PM and 9PM
m Calendar based associations [Li'03]
o Frequent itemsets on “15" day of a March”, (*,3,15)
m User-defined temporal regulation patterns
[LiI'06, Bettini’98]

o Freguent events “within 2 days” after “a rise of IBM
stock”
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‘ Comparison with Related Work

m Regulation patterns
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‘ Contributions

s Formulate similarity-profiled association patterns

0 User-defined temporal similarity patterns using a
subset specification (i.e., a reference sequence,
a similarity function, and a dissimilarity threshold)

m EXxplore interesting properties for efficiently
mining similarity-profiled associations

m Develop the mining algorithm.

s Experimentally evaluate it with synthetic and real
data sets.
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‘ Problem Definition

m Glven

o A timestamped transaction database D=D, U ... UD
= D, is a set of transactions included in time slot i
= Each transaction d €D is a tuple < timestamp, items>
o A subset specification
= A reference time sequence R=<r,, ..., r,>

= Asimilarity function Fg 4y (S15 R), where S, is a support time
sequence of itemset |

= A dissimilarity threshold &

s Find: A set of itemsets which satisfy the given subset
specification, i.e., Fqinijariey (S, R) = 6

n

s Objective: A complete and correct result set while
reducing the computation cost.
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‘ Background: Interest Measure

m Support
o The support of itemset | in transaction dataset D is
support (I, D)=|{d €D, I c d} |/ {D}|

Transaction database

tno

items
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e.g., support ({A}, D)=6/10=0.6
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‘ Composite Interest Measure

m The support time sequence of itemset | In
D=D, U ... UD,
a S, = <support (I, D)), ...., support (I, D,)>

m Dissimilarity distance between a support
sequence Sl and a reference sequence R
o L, norm (p=1,2, ..., =) based distance, e.g.,
= L, norm (Euclidean distance)
a D(R, )= (L nlri—s¢ 19~
= Normalized L2 norm
a DR, $))= ((Lg nlre—s¢I?) I n)~
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‘ Outline

= Introduction

= Problem Definition

= Related Work

< Algorithmic Design Concept
= Algorithm

= Experimental Results

= Conclusion
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‘ Computational Challenge

= Nailve Approach

o Two separate phrases

= Compute the support values of all possible itemsets at
each time point, and generate their prevalence
seguences

= Compare the support sequences with a reference
sequence, and find similar itemsets.
o Computationally expensive

= EXxponential number of itemsets with number of item
types, 2*|n -1]
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‘ Our Questions

s Can we reduce the search space for only
Interesting patterns?

s How can we estimate the similarity distance
of an itemset without the generation of the
support sequence?
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Background: Freqguent ltemset Pruning

= Using the monotonicity of support

o Support is monotonically non-increasing with the
size of itemset,

l.e., J c |, then support (J, D) 2support (I, D)

tno

items

Transaction database
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‘ Observation

m |t IS not easy to reduce our search space.

o L, norm based distance does not show any

monotonic.
e.g., D(R, Siapqy) > D(R, Siagy) but D(R, Saqy) < D(R, Sgy)

support(tl)
O T Budlidean dist

RS RN Let dissimilarity
osl i Nadli) o5 threshold: 0.3

R R St Can we prune a

CABCRg super set of C ??

0 ....0..5....1.0 i i
support(t0) Euclidean dist
15

July 9-11, 2006 SSDM 2008



Our Approach:
Upper Lower Bounding Distance

m Let
o RY=<r,, ..., r,>be a subsequence of a reference
sequence R and St=<s,, ... ,s,>bea

subsequence of a support sequence S, where r; >
= The upper lower-bounding distance between
R and S, Dyp(R, S), is D(RY, S*).

1|

B
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Monotonicity of Upper LBD

s The upper lower-bounding distance is monotonically
non-decreasing with the size of the itemset.

= Proof: The support values of an itemset are
monotonically non-increasing with the size of itemset at

each time slot. o

il A B C
1 0.2 0.1 0
-y N——

AB AC BC

0.32 0.2 0.14

S
ABC

0.32

Upper lower bounding dist

E.g., Dyp(R, Sp) = Dyp(R, SAé)’
Du(R, Sg) = Dyjp(R, Spp),
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'Prune by Upper LBD

m Let ltemsets J c |
= Prune all superset of J
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‘ Our Questions

s Can we reduce the search space for only
Interesting patterns?

<=~How can we estimate the similarity distance
of an itemset without the generation of the
support sequence?
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‘ Upper Bound of Support Sequence

m Let
o D=D, U ... UD,be a set of disjoint transactions.
o J={J,, ..., J, } be a set of all size k-1 subsets of a size k itemset I.

m Upper bound support time sequence of
itemset I, U, =<uy,, ..., u, >is defined as
a u, = min {support (J,, D,), ...., support (J,., D)}
a u,=min {support (J,, D,), ...., support (J,., D,)}

itemsets

Prevalence time seq

<sup(t1), sup(t2)>

{A}
{B}
{C}
{AB}
{AC}
{B.C}
{A,B,C}

<0.6,04>
<03,0.7>
<0.8,08>
<03,03>
<04,04>

<03,05>
?

o E.g., Upgc=<uy u,>=<0.3, 0.3>

U, = r)r}in{supp(AB, D,), supp(AC, D,), supp(BC,
Dl

U, = rﬁin{supp(AB, D,), supp(AC, D,), supp(BC,
D2
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‘ Upper Bound of Support Sequence

m Let
o D=D, U ... UD,be a set of disjoint transactions.
a J={J,, ..., I, } be a set of all size k-1 subsets of a size k itemset I.

m Lower bound support time sequence of
itemset |, L,=<1,, ..., | >is defined as
a |, = max {(support (J,, D;)+support (I-J,, D,)-1), ..., (support
(Jy, Dy)+support (I-J,, D;)-1),0 }
o |, = max {(support (J,, D,))+support (I-J,, D,)-1), ..., (Support

(J\, D,)+support (I-J,, D,)-1),0 }

temsets ZZZ,?E?,CEJ;?I;T‘* a E.g., Lage=<Iy; |,>=<0.1,0.1>

S| Sosors u, = max{(supp(AB, D) +supp(C, D,)-1),

by | 05 0ss (supp(AC, D,) +supp(B, D,)-1),

o | aoe (supp(BC, D,) +supp(A, D,)-1),

{A,B,C} ? ﬂ}
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Subseguences for Lower Bounding
Distance

suppert]
1 1 e iy

m RY=<r,, ..., r,>Dbeasubsequence of R and Ut=<u,, ...

u,> be a subsequence of U, where r; > u,

m Rt=<r,, ..., r,>be asubsequence of R and LY=<I,, ...

> be a subsequence of L, where r; > |,
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‘ Lower Bounding Distance

s The upper lower-bounding distance between
R and U, D,,,(R, U) is defined to D(RY, U").

m The lower lower-bounding distance between
RandL, D (R, L) defined to D(R}, LY).

.| s The lower-bounding
distance, D, (R, U, L)

=~ = Dup(Ry UMD (R, L)

o thme=
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‘ Prune by Lower Bounding Distance

m The lower bounding distance D, (R, U,, L)) Is
always not greater than true distance D(R,S, ).

m So, IfD(R,U,L,) >6 DR,S)>6
m Prune itemset |
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‘ Database Scan Strategy

m Lattice-dominant scan = Snapshot-dominant scan

Time—stamped transaction database Time—-stamped transaction database
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‘ Outline

= Introduction

= Problem Definition

= Related Work

= Algorithmic Design Concept
< Algorithm

= Experimental Results

= Conclusion
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Similarity-Profiled temporal Association

MINIng methods
= Two algorithms by different database scan

methods
o L-SPAMINE: Lattice-dominant SPAMINE
0 S-SPAMINE: Snapshot-dominant SPAMINE

July 9-11, 2006 SSDM 2008
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Algorithm (L-SPAMINE)

= Input
o A time-stamped dataset
o A reference sequence, A similarity function, and A threshold

s Procedure
o Generate size K candidate itemsets —

= Prune if any subset’s D ,,< threshold
o Estimate upper and lower bound sequences of candidates

o Filter candidates using D,, (=D, + D},
o Scan database and generate true support sequences

o Find similar itemsets having D < threshold

o Keep size K itemsets having D, < threshold
o K=K+1

July 9-11, 2006 SSDM 2008 28




Transaction database

L-SPAMINE Trace

time| items |time| items Size 1

A 2 1B,C Reference Support sequences

t1 [ABC| 2 |B sequence

t1 |AC t2 |AB,C A B C
A ©2 |AB,C

tt |ABC| & |c t1| 0.4 0.6 0.3 0.8

t1 | C 2 |ABC | | ot e s
1 |c 2 | A t21 0.6 0.4 0.7 0.8
t1 [ABC|t2|C .

i lc o B Upper LB dist: 0.20,/ 010/ 0 V
M 2 |8C Truedist: 028X 014y 0.45X

Dissimilarity threshold : 0.2
Similarity Function: Euclidean
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Transaction database

L-SPAMI

NE Trace

: : : : Size 2 Size 2
time items | time items
A . t; B,C Reference Upper bound sequences Support sequences
t1 | A B, t B \ /
tl |AC 2 |AB,C sequence v AB’ AC BC AC BC
t|A 2 |AB,C
4 |asc|e|c t1| 0.4 93" 06 03 06 03
----------- \/___ [, [, [, [,
t1 [C 2 |AB,C
n|c 2 |AC t2] 0.6 0N 04 0.7 04 05
tl A, B,C t2 C . . / R . . ZW O 14¢
1 e o e Upper LB dist: 0.22X  0.20/  0.10/ Upper LB dist: O. :
djc 2 |BC True dist: 0.20 0.1V
Dissimilarity threshold : 0.2 Lower bound sequences
Similarity Function: Euclidean A B AC BC . 1 )
0.4 0.1 Qize 3
________________________ N7
0.2 0.5 AB\C
\\
Lower LB dist: 0.0 0.0 J .
_ * Similar itemsets:
LB dist: 0.20v/  0.10v/ {B} :<0.3.,0.7>(0.14)
{A,C}:<0.6., 0.4> (0.2)
{B,C}:<0.3., 0.5> (0.14)
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‘ Experiment

m Datasets
o Synthetic datasets: a modified IBM data generator
0 Real dataset: Earth Climate

0 Query sequences: randomly chosen in different
guintiles of supports

m [est cases
a Effect of lower bounding distance
o Effect of database scanning method
o Effect of number of items
o Effect of number of time slots
0 Experiment with a real dataset
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Pruning effect ratio

Experiment Results

m Effect of lower bounding distance pruning
o TD100-D1-L10-120-T100

o Pruning effect ratio : the number of candidate itemsets which
need database scan over the total number of possible itemsets

per level
L-SPAMINE-threshold 0.1 —+— L-SPAMINE-reference seq 75th percentlle —
o e = SPAMINE-tRreshold 0.8 === e 1 x| -SPAMINE-refererite seq 50tH percentilg === S e
“L-SPAMINE-threshold 0.4 - L= SPAMQ\IE reference seq 25th percentile - Hooee
nalve approach =] - N naive-approach =]
0.8 | o ‘ 1o e
h s
0.6 % g
- =
(¢b]
0.4 ¥ £
=
a
0.2 Tx
. ,
0 \>\<7 ““““““““““““ TS F
1 > 6 a4 5 6
Level
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‘ Experiment Results

: : 20 S L S SPAMINE threshold=8:2 —&—
n ect of different scanning S-SPAMINE threshold=0.4 <
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g 10
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. Number of time slots
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s Effect of number of items = Effect of number of time slots
(TD100-D1-L10-1*-T10) (TD*-D1-L6-120-T*)
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‘ Experiment with a real dataset

300

m Dataset: Earth Climate ==
2 # of items: 50,
o # of time slots: 214 125 150 \M
o # of transaction per time  § o] y
slot: 2827, R
o Total # of transaction: R N P
64.978 02 03 04 o5 o8 or
m Reference sequences """" nep_Cow B TOw
o SOl index 5 ol by
= NormalizationtoOto1  § [/ /11!
range. 2 I
a Prevalence sequence of i
low participation
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‘ Conclusion

B Summary

o Formulate the problem of mining similarity-profiled
temporal association patterns

o Propose a novel algorithm

= Substantially reduce the search space by pruning
candidate itemsets using lower bounding distance and
the monotonicity of upper lower bounding distance

0 Experimentally evaluate the algorithm

m Future Work

o Explore different similarity measures with different
similarity models.
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