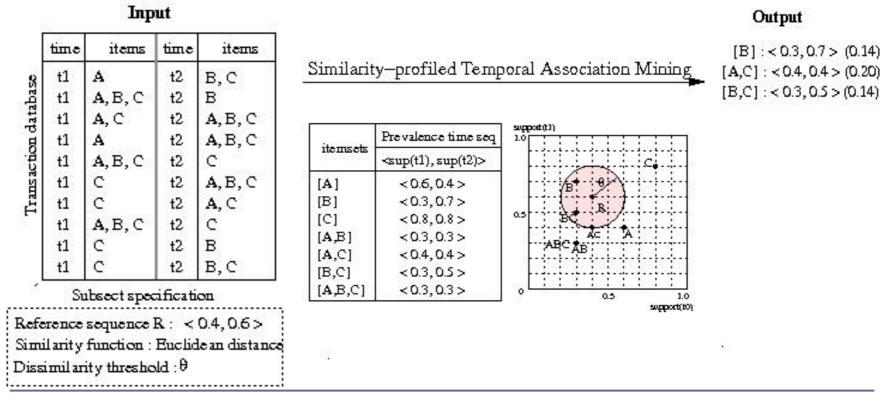
Mining Temporal Association Patterns under a Similarity Constraint


Jin Soung Yoo

J. S. Yoo¹ and S. Shekhar²

¹Indiana University-Purdue University ²University of Minnesota

Similarity-profiled Temporal Association

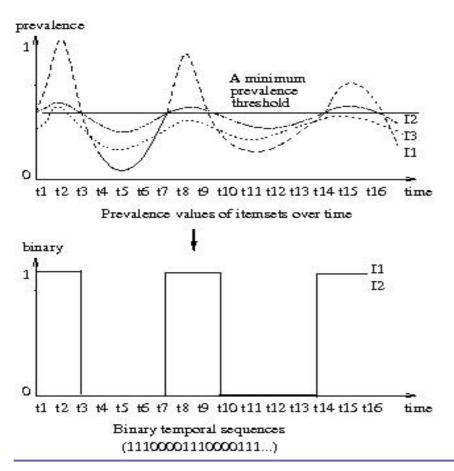
A subset of items whose prevalence variation over time is similar to a reference sequence

Motivation Examples

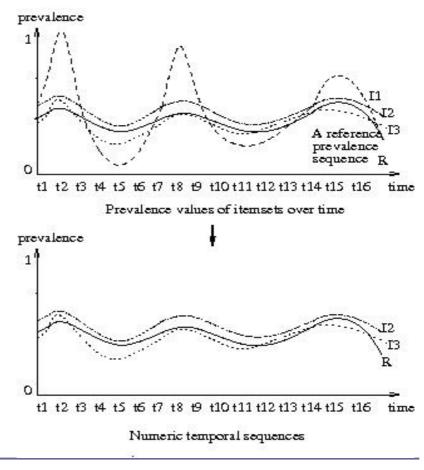
Weather-to-Sales

- Correlation between daily temperatures and merchandise sales – Walt Disney World [NOAAEconomics]
- Popular sale items during hurricane in a region Wal-Mart [FORTUNE Magazine]
 - Flashlights, generators and tarps with bottled water
 - Strawberry Pop-Tarts with bottled water
- Weather-to-Web Sites
 - Web sites depending on weather [Weather.com]

Motivation Examples


- Scientific Phenomena-to-Climates
 - Climate events correlated with El Nino
 - Low precipitation and low atmospheric carbon dioxide in Australia
- Scientific Phenomena-to-Agriculture
 - Agricultural products under the effect of El Nino
 - Wheat and other products in Australia

Related Work


- Cyclic associations [Ozden'98, Ramaswamy'94]
 - Periodically repetitive patterns for frequent itemsets
 - "Beer" and "chips" are sold together primarily between 6PM and 9PM
- Calendar based associations [Li'03]
 - □ Frequent itemsets on "15th day of a March", (*,3,15)
- User-defined temporal regulation patterns [Li'06, Bettini'98]
 - Frequent events "within 2 days" after "a rise of IBM stock"

Comparison with Related Work

Similarity patterns

Contributions

- Formulate similarity-profiled association patterns
 - User-defined temporal similarity patterns using a subset specification (i.e., a reference sequence, a similarity function, and a dissimilarity threshold)
- Explore interesting properties for efficiently mining similarity-profiled associations
- Develop the mining algorithm.
- Experimentally evaluate it with synthetic and real data sets.

Problem Definition

Given

- □ A timestamped transaction database $D=D_1 \cup ... \cup D_n$
 - D_i is a set of transactions included in time slot i
 - Each transaction $\mathbf{d} \in \mathbf{D}$ is a tuple < *timestamp*, *items*>
- A subset specification
 - A reference time sequence R=<r₁, ..., r_n>
 - A similarity function F_{similarity} (S_I, R), where S_I is a support time sequence of itemset I
 - A dissimilarity threshold θ
- Find: A set of itemsets which satisfy the given subset specification, i.e., F_{similarity} (S_I, R) ≤ θ
- Objective: A complete and correct result set while reducing the computation cost.

Background: Interest Measure

Support

□ The support of itemset I in transaction dataset D is support (I, D)=|{d ∈ D, I ⊆ d} |/ |{D}|

	tno	items
Transaction database	tno 1 2 3 4 5 6 7 8 9	A A, B, C A, C A
Trans	6 7 8 9	A, B, C C C A, B, C C C
	10	C

e.g., support ({A}, **D**)=6/10=0.6

Composite Interest Measure

- The support time sequence of itemset I in $D=D_1 \cup \ldots \cup D_n$
 - $\Box \mathbf{S}_{\mathbf{I}} = \langle support(I, \mathbf{D}_{1}), \dots, support(I, \mathbf{D}_{n}) \rangle$
- Dissimilarity distance between a support sequence S_I and a reference sequence R
 - □ L_p norm (p=1,2, ..., ∞) based distance, e.g.,
 - L₂ norm (Euclidean distance)
 - $\square D(\mathbf{R}, \mathbf{S}_{\mathbf{I}}) = (\Sigma_{t=1..n} | r_t s_t |^2)^{\square}$
 - Normalized L2 norm

D(**R**, **S**_I) = ((
$$\Sigma_{t=1..n} |r_t - s_t|^2$$
) / **n**)

Outline

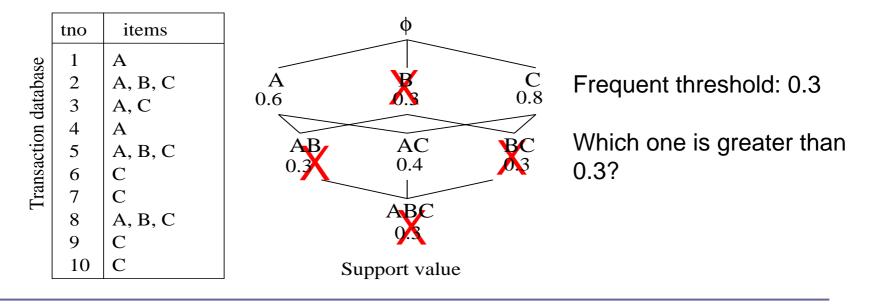
- Introduction
- Problem Definition
- Related Work
- Algorithmic Design Concept
- Algorithm
- Experimental Results
- Conclusion

Computational Challenge

Naïve Approach

Two separate phrases

- Compute the support values of all possible itemsets at each time point, and generate their prevalence sequences
- Compare the support sequences with a reference sequence, and find similar itemsets.
- Computationally expensive
 - Exponential number of itemsets with number of item types, 2ⁿ -1

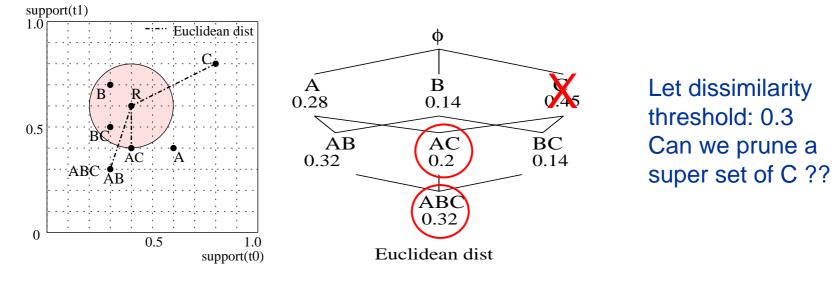

Our Questions

- Can we reduce the search space for only interesting patterns?
- How can we estimate the similarity distance of an itemset without the generation of the support sequence?

Background: Frequent Itemset Pruning

- Using the monotonicity of support
 - Support is monotonically non-increasing with the size of itemset,

i.e., $J \subseteq I$, then support $(J, \mathbf{D}) \ge$ support (I, \mathbf{D})



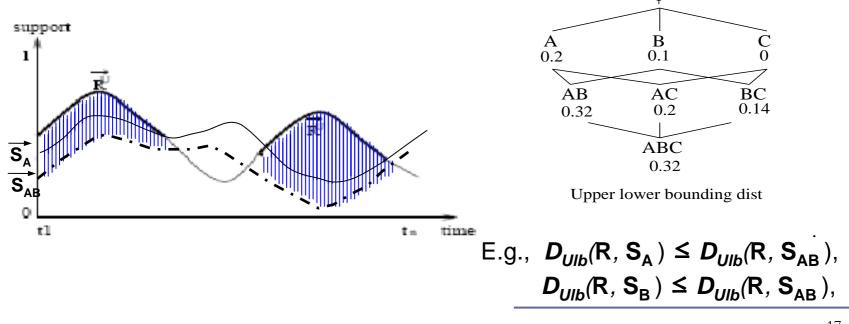
Observation

It is not easy to reduce our search space.

L_p norm based distance does not show any monotonic.

e.g., $D(R, S_{ABC}) > D(R, S_{AC})$ but $D(R, S_{AC}) < D(R, S_{C})$

July 9-11, 2006


Our Approach: Upper Lower Bounding Distance Let

- R^U=<r₁, ..., r_k> be a subsequence of a reference sequence R and S^L=<s₁, ..., s_k> be a subsequence of a support sequence S, where r_i >
- The upper lower-bounding distance between R and S, D_{UIb}(R, S_I), is D(R^U, S^L).

Monotonicity of Upper LBD

- The upper lower-bounding distance is monotonically non-decreasing with the size of the itemset.
- Proof: The support values of an itemset are monotonically non-increasing with the size of itemset at each time slot.

Prune by Upper LBD

- Let Itemsets $J \subseteq I$
- If $D_{UIb}(\mathbf{R}, \mathbf{S}_{J}) > \theta$, always $D_{UIb}(\mathbf{R}, \mathbf{S}_{I}) > \theta$
- Prune all superset of J

Our Questions

- Can we reduce the search space for only interesting patterns?
- How can we estimate the similarity distance of an itemset without the generation of the support sequence?

Upper Bound of Support Sequence

Let

□ $D=D_1 \cup ... \cup D_n$ be a set of disjoint transactions.

- □ $J = \{J_1, ..., J_k\}$ be a set of all size *k*-1 subsets of a size *k* itemset **I**.
- Upper bound support time sequence of itemset I, U₁ =< u₁, ..., u_n > is defined as
 u₁ = min {support (J₁, D₁), ..., support (J_k, D₁)}

 $\square \mathbf{u}_{n} = min \{ support (\mathbf{J}_{1}, \mathbf{D}_{n}), \dots, support (\mathbf{J}_{k}, \mathbf{D}_{n}) \}$

:	Prevalence time seq			
itemsets	<sup(t1), sup(t2)=""></sup(t1),>			
{A}	< 0.6, 0.4 >			
{B}	< 0.3, 0.7 >			
{C}	< 0.8, 0.8 >			
{A,B}	< 0.3, 0.3 >			
{A,C}	< 0.4, 0.4 >			
{B,C}	< 0.3, 0.5 >			
{A,B,C}	?			

Upper Bound of Support Sequence

Let \square **D**=**D**₁ \cup ... \cup **D**_n be a set of disjoint transactions. \Box J={J₁, ..., J_k} be a set of all size k-1 subsets of a size k itemset **I**. Lower bound support time sequence of itemset I, $L_1 = \langle I_1, \dots, I_n \rangle$ is defined as $\square \mathbf{I}_1 = max \{ (support (\mathbf{J}_1, \mathbf{D}_1) + support (\mathbf{I} - \mathbf{J}_1, \mathbf{D}_1) - 1 \}, \dots, (support (\mathbf{I} - \mathbf{J}_1, \mathbf{D}_1) - 1 \}, \dots, (support (\mathbf{I} - \mathbf{J}_1, \mathbf{D}_1) - 1 \}$ $(\mathbf{J}_{\mathbf{k}}, \mathbf{D}_{1})$ +support $(\mathbf{I}-\mathbf{J}_{\mathbf{k}}, \mathbf{D}_{1})$ -1),0 } $\square \mathbf{I}_{n} = max \{ (support (\mathbf{J}_{1}, \mathbf{D}_{n}) + support (\mathbf{I} - \mathbf{J}_{1}, \mathbf{D}_{n}) - 1 \}, \dots, (support (\mathbf{I} - \mathbf{J}_{1}, \mathbf{D}_{n}) - 1 \}, \dots, (support (\mathbf{I} - \mathbf{J}_{1}, \mathbf{D}_{n}) - 1 \}$ $(\mathbf{J}_{\mathbf{k}}, \mathbf{D}_{n})$ +support $(\mathbf{I}-\mathbf{J}_{\mathbf{k}}, \mathbf{D}_{n})$ -1),0 } Prevalence time seq itemsets \Box E.g., $L_{ABC} = < I_1, I_2 > = < 0.1, 0.1 >$ $\langle \sup(t1), \sup(t2) \rangle$ {A} < 0.6, 0.4 > $\mathbf{u}_1 = max\{(supp(\mathbf{AB}, \mathbf{D}_1) + supp(\mathbf{C}, \mathbf{D}_1) - 1),\$ {B} < 0.3, 0.7 >

	, – ,,		<i>y</i> = <i> y</i> = <i>y</i>
(supp(AC , I	D ₁) + s	ирр(В,	D ₁)-1),

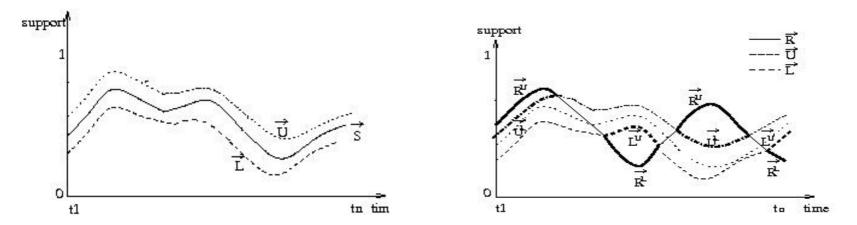
< 0.8, 0.8 >

< 0.3, 0.3 > < 0.4, 0.4 >

< 0.3, 0.5 >

?

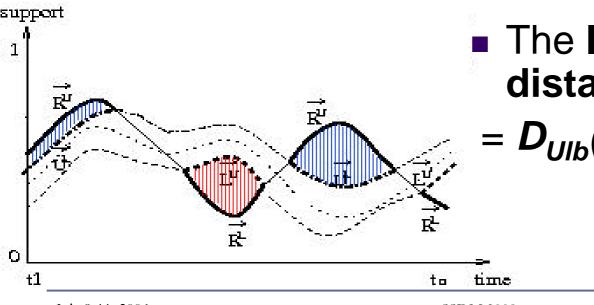
{C}


 $\{A,B\}$

 $\{A,C\}$

 $\{B,C\}$

 $\{A,B,C\}$


Subsequences for Lower Bounding Distance

- R^U=<r₁, ..., r_k> be a subsequence of R and U^L=<u₁, ..., u_k> be a subsequence of U, where r_i > u_i
- R^L=<r₁,..., r_k> be a subsequence of R and L^U=<l₁,...,
 l_k> be a subsequence of L, where r_i > l_i

Lower Bounding Distance

- The upper lower-bounding distance between R and U, $D_{UIb}(R, U)$ is defined to $D(R^U, U^L)$.
- The lower lower-bounding distance between R and L, $D_{LIb}(R, L)$ defined to $D(R^L, L^U)$.

The lower-bounding distance, D_{Ib}(R, U, L)
 = D_{UIb}(R, U)+D_{LIb}(R, L)

SSDM 2008

Prune by Lower Bounding Distance

- The lower bounding distance $D_{Ib}(\mathbf{R}, U_{\mathbf{I}}, \mathbf{L}_{\mathbf{I}})$ is always not greater than true distance $D(\mathbf{R}, S_{\mathbf{I}})$.
- So, If $D_{Ib}(\mathbf{R}, U_{\mathbf{I}}, \mathbf{L}_{\mathbf{I}}) > \theta$, $D(\mathbf{R}, S_{\mathbf{I}}) > \theta$
- Prune itemset I

Database Scan Strategy

Lattice-dominant scan Snapshot-dominant scan

Time-stamped transaction database								
time items		time	items					
=	<u>با</u>		···: . 1	D.C.				
t0	A		t1	B, C				
t0	A, B, C		t1	В				
t0	A, C		t1	A, B, C				
t0	A		t1	A, B, C				
t0	A, B, C		t1	C				
t0	C		t1	A, B, C				
t0	C		t1	A, C				
t0	A, B, C		t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1	C				
t0 t0 t0 t0 t0 t0 t0 t0 t0 t0 t0	C		t1	В				
tO	C		t 1	B, C				

Time-stamped transaction database

_	Time stamped transaction database								
	time	items	time	items					
	t0 t0 t0 t0 t0 t0 t0 t0 t0 t0 t0 t0	A	t1	B, C					
	t0	A, B, C	t1	В					
	t0	A, C	t1	A, B, C					
	t0	А	t1	A, B, C					
	t0	A, B, C	t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1	С					
	t0	С	t1	A, B, C					
	t0	С	t1	A, C					
	t0	A, B, C	t1	С					
	t0	С	t1	В					
	v t0	A A, B, C A, C A A, B, C C C A, B, C C C C	t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t	B, C					
5.5									

Time-stamped transaction database

Outline

- Introduction
- Problem Definition
- Related Work
- Algorithmic Design Concept
- ^{Cer}Algorithm
- Experimental Results
- Conclusion

Similarity-Profiled temporal Association MINing methods

Two algorithms by different database scan methods

- L-SPAMINE: Lattice-dominant SPAMINE
- S-SPAMINE: Snapshot-dominant SPAMINE

Algorithm (L-SPAMINE)

Input

- A time-stamped dataset
- A reference sequence, A similarity function, and A threshold

Procedure

- Generate size K candidate itemsets
 - Prune if any subset's D_{UIb}< threshold</p>
- Estimate upper and lower bound sequences of candidates
- Filter candidates using $D_{lb} (= D_{Ulb} + D_{Llb})$
- Scan database and generate true support sequences
- Find similar itemsets having D < threshold
- Keep size K itemsets having *D_{UIb}* < threshold
 K=K+1

L-SPAMINE Trace

	time	items	time	items
se	t1	А	t2	B, C
ıba	t1	A, B, C	t2	В
Transaction database	t1	A, C	t2	A, B, C
on c	t1	А	t2	A, B, C
ctic	t1	A, B, C	t2	С
nsa	t1	C	t2	A, B, C
Tra	t1	C	t2	A, C
	t1	A, B, C	t2	С
	t1	C	t2	В
	t1	С	t2	B, C

			Size 1						
Reference		Suppo	Support sequences						
se	quence	Α	В	C					
t1	0.4	0.6	0.3	0.8					
t2	0.6	<u>0.4</u>	0.7	0.8					
Upp	er LB dis	st: 0.20√	<mark>0.10</mark> ∕∕	0 🗸					
	True dis	t: 0.28X	0.14 🗸	0.45 X					

Dissimilarity threshold : 0.2 Similarity Function: Euclidean

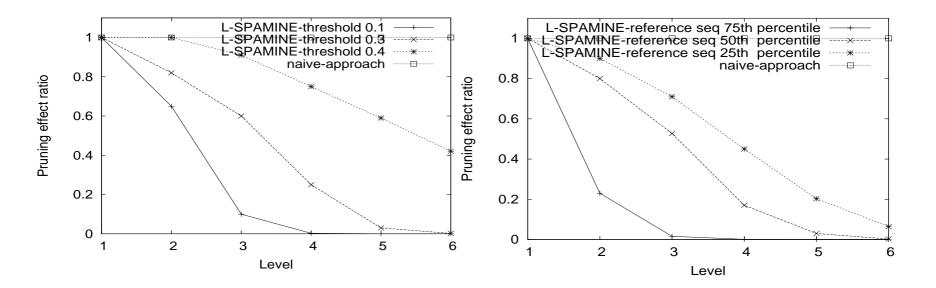
L-SPAMINE Trace

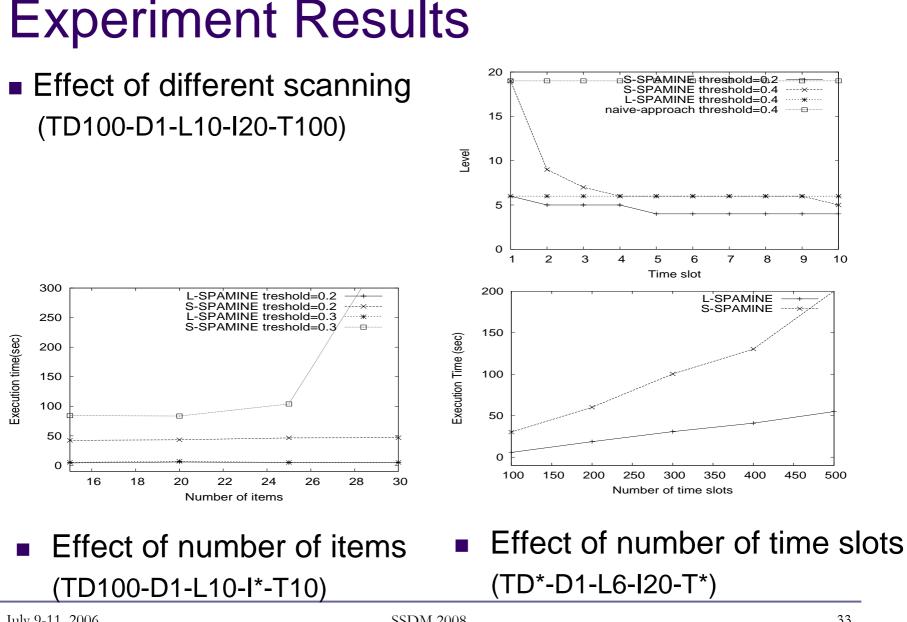
time	items	time	items				Size 2		_	Size	e 2
t1	A	t2	B, C	Re	ference	Upper b	ound seq	uences		Support se	quences
t1 t1	A, B, C A, C	t2 t2	B A, B, C	se	quence	AB,	AC	BC	\rightarrow	AC	BC
t1 t1	A A, B, C	t2 t2	A, B, C C	t1	0.4	Q.3/	0.6	0.3		0.6	0.3
t1 t1 t1 t1 t1 t1 t1 t1 t1	C C	t2 t2	A, B, C A, C	t2	0.6	<u>0:4</u>	<u>0.4</u>	0.7		<u>0.4</u>	<u>0.5</u>
t1 t1	A, B, C C	t2 t2	C B	Upp	per LB dist	t: 0.22X	0.20	0.10	Upper LB	dist: 0.20	0.14
t1	С	t2	B, C			ай на селото на селот Селото на селото на с			True	dist: 0.20√	0.14
Dissi	imilarity	thre	shold:().2		Lower b	ound seq	uences			
Simi	larity Fu	nctio	on: Euclic	lean		AB	AC	BC		Ļ	,
							0.4	0.1	_	Size	3
							0.2	0.5		A B	ç
				Lov	wer LB dis	st:	0.0	0.0			<u>``</u> `
					LB dis	st:	0.20	0.10	•	* Similar iterr {B} :<0.3., 0 {A,C}:<0.6., 0 {B,C}:<0.3., 0).7> (0.14) .4> (0.2)

Experiment

Datasets

- Synthetic datasets: a modified IBM data generator
- Real dataset: Earth Climate
- Query sequences: randomly chosen in different quintiles of supports

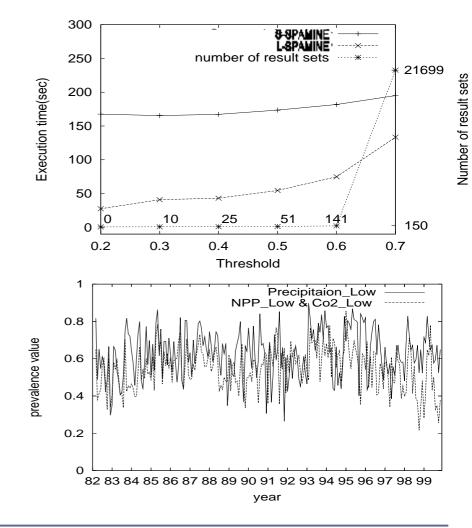

Test cases


- Effect of lower bounding distance
- Effect of database scanning method
- Effect of number of items
- Effect of number of time slots
- Experiment with a real dataset

Experiment Results

Effect of lower bounding distance pruning

- Distance TD100-D1-L10-I20-T100
- Pruning effect ratio : the number of candidate itemsets which need database scan over the total number of possible itemsets per level



Experiment with a real dataset

Dataset: Earth Climate

- □ # of items: 50,
- # of time slots: 214
- # of transaction per time slot: 2827,
- Total # of transaction: 64,978
- Reference sequences
 - SOI index
 - Normalization to 0 to 1 range.
 - Prevalence sequence of low participation

Conclusion

Summary

- Formulate the problem of mining similarity-profiled temporal association patterns
- Propose a novel algorithm
 - Substantially reduce the search space by pruning candidate itemsets using lower bounding distance and the monotonicity of upper lower bounding distance
- Experimentally evaluate the algorithm

Future Work

 Explore different similarity measures with different similarity models.