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Similarity-profiled Temporal Association 

A subset of items whose prevalence variation 
over time is similar to a reference sequence
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Motivation Examples

Weather-to-Sales
Correlation between daily temperatures and 
merchandise sales – Walt Disney World  [NOAAEconomics]

Popular sale items during hurricane in a region –
Wal-Mart [FORTUNE Magazine]

Flashlights, generators and tarps with bottled water
Strawberry Pop-Tarts with bottled water

Weather-to-Web Sites
Web sites depending on weather – [Weather.com]
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Motivation Examples

Scientific Phenomena-to-Climates
Climate events correlated with  El Nino 

Low precipitation and low atmospheric carbon dioxide in 
Australia 

Scientific Phenomena-to-Agriculture
Agricultural products under the effect of El Nino 

Wheat and other products in Australia 
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Related Work

Cyclic associations [Ozden’98, Ramaswamy’94]
Periodically repetitive patterns for frequent itemsets
“Beer” and “chips” are sold together primarily between 
6PM and 9PM

Calendar based associations [Li’03]
Frequent itemsets on “15th day of a March”, (*,3,15) 

User-defined temporal regulation patterns 
[Li’06, Bettini’98]

Frequent events “within 2 days” after “a rise of IBM 
stock”
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Comparison with Related Work

Regulation patterns Similarity patterns 
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Contributions

Formulate similarity-profiled association patterns
User-defined temporal similarity patterns using a 
subset specification (i.e., a reference sequence,          
a similarity function, and a dissimilarity threshold)

Explore interesting properties for efficiently 
mining similarity-profiled associations
Develop the mining algorithm.
Experimentally evaluate it with synthetic and real 
data sets.
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Problem Definition
Given

A timestamped transaction database D=D1 ∪ … ∪Dn
Di is a set of transactions included in time slot i
Each transaction d ∈D is a tuple < timestamp, items> 

A subset specification 
A reference time sequence R=<r1 , … , rn>
A similarity function Fsimilarity (SI , R), where SI is a support time 
sequence of itemset I
A dissimilarity threshold θ

Find: A set of itemsets which satisfy the given subset 
specification, i.e., Fsimilarity (SI , R) ≤ θ

Objective: A complete and correct result set while 
reducing the computation cost.
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Background: Interest Measure

Support 
The support of itemset I in transaction dataset D is
support (I, D)=|{d ∈D, I ⊆ d} |/ |{D}|

e.g., support ({A}, D)=6/10=0.6
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Composite Interest Measure

The support time sequence of itemset I in
D=D1 ∪ … ∪Dn

SI = <support (I, D1), …., support (I, Dn)>
Dissimilarity distance between a support 
sequence SI and a reference sequence R

Lp norm (p=1,2, …,∞) based distance, e.g.,  
L2 norm (Euclidean distance) 

D(R, SI )= (∑t=1..n |rt – st |2)
Normalized L2 norm 

D(R, SI )= ((∑t=1..n |rt – st |2 ) / n)
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Outline

Introduction
Problem Definition
Related Work
Algorithmic Design Concept
Algorithm
Experimental Results
Conclusion
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Computational Challenge

Naïve Approach  
Two separate phrases

Compute the support values of all possible itemsets at  
each time point, and generate their prevalence 
sequences
Compare the support sequences with a reference 
sequence, and find similar itemsets.

Computationally expensive  
Exponential number of itemsets with number of item 
types, 2^|n -1|
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Our Questions

Can we reduce the search space for only 
interesting patterns? 
How can we estimate the similarity distance 
of an itemset without the generation of the 
support sequence? 
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Background: Frequent Itemset Pruning

Using the monotonicity of support
Support is monotonically non-increasing with the 
size of itemset, 
i.e., J ⊆ I, then support (J, D) ≥support (I, D) 

Frequent threshold: 0.3

Which one is greater than 
0.3?
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Observation

It is not easy to reduce our search space.
Lp norm based distance does not show any 
monotonic.
e.g., D(R, S{ABC} ) > D(R, S{AC} ) but D(R, S{AC} ) < D(R, S{C} )

.
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Our Approach: 
Upper Lower Bounding Distance

Let
RU=<r1 , … , rk> be a subsequence of a reference 
sequence R and SL=<s1 , … , sk> be a 
subsequence of a support sequence S, where ri > 
siThe upper lower-bounding distance between 

R and S, DUlb(R, SI ), is D(RU, SL ).
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Monotonicity of Upper LBD
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E.g.,  DUlb(R, SA ) ≤ DUlb(R, SAB ), 
DUlb(R, SB ) ≤ DUlb(R, SAB ),

Proof: The support values of an itemset are 
monotonically non-increasing with the size of itemset at 
each time slot.

The upper lower-bounding distance is monotonically 
non-decreasing with the size of the itemset. 
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Prune by Upper LBD

Let Itemsets J ⊆ I
If DUlb(R, SJ ) > θ, always DUlb(R, SI ) > θ
Prune all superset of J
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Our Questions

Can we reduce the search space for only 
interesting patterns? 
How can we estimate the similarity distance 
of an itemset without the generation of the 
support sequence? 
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Upper Bound of Support Sequence
Let

D=D1 ∪ … ∪Dn be a set of disjoint transactions.
J={J1 , …, Jk } be a set of all size k-1 subsets of a size k itemset I.

Upper bound support time sequence of 
itemset I, U1 =< u1, … , un > is defined as

u1 = min {support (J1, D1), …., support (Jk , D1)}
un = min {support (J1, Dn), …., support (Jk , Dn)}

{B}
{C}
{A,B}
{A,C}
{B,C}
{A,B,C}

{A}

<sup(t1), sup(t2)>

< 0.8, 0.8 >

< 0.4, 0.4 >
< 0.3, 0.5 >

< 0.3, 0.7 >

       ?

< 0.6, 0.4 >

< 0.3, 0.3 >

Prevalence time seq
itemsets E.g., UABC =< u1, u2 >=< 0.3, 0.3>

u1 = min{supp(AB, D1), supp(AC, D1), supp(BC, 
D1)}

u2 = min{supp(AB, D2), supp(AC, D2), supp(BC, 
D2)} 
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Upper Bound of Support Sequence
Let

D=D1 ∪ … ∪Dn be a set of disjoint transactions.
J={J1 , …, Jk } be a set of all size k-1 subsets of a size k itemset I.

Lower bound support time sequence of 
itemset I, L1 =< l1, … , ln > is defined as

l1 = max {(support (J1, D1)+support (I-J1, D1)-1), …, (support
(Jk, D1)+support (I-Jk, D1)-1),0 }

ln = max {(support (J1, Dn)+support (I-J1, Dn)-1), …, (support 
(Jk, Dn)+support (I-Jk, Dn)-1),0 }
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(supp(AC, D1) +supp(B, D1)-1), 
(supp(BC, D1) +supp(A, D1)-1), 
0}
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Subsequences for Lower Bounding 
Distance

RU=<r1 , … , rk> be a subsequence of R and UL=<u1 , … , 
uk> be a subsequence of U, where ri > ui

RL=<r1 , … , rk> be a subsequence of R and LU=<l1 , … , 
lk> be a subsequence of L, where ri > li
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Lower Bounding Distance

The upper lower-bounding distance between 
R and U, DUlb(R, U ) is defined to D(RU, UL ).
The lower lower-bounding distance between 
R and L, DLlb(R, L ) defined to D(RL, LU ).

The lower-bounding 
distance, Dlb(R, U, L ) 

= DUlb(R, U )+DLlb(R, L ) 
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Prune by Lower Bounding Distance

The lower bounding distance Dlb(R, UI, LI) is 
always not greater than true distance D(R,SI ).
So, If Dlb(R, UI, LI )  > θ,  D(R,SI) > θ
Prune itemset I
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Database Scan Strategy
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Outline

Introduction
Problem Definition
Related Work
Algorithmic Design Concept
Algorithm
Experimental Results
Conclusion
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Similarity-Profiled temporal Association 
MINing methods

Two algorithms by different database scan 
methods

L-SPAMINE: Lattice-dominant SPAMINE
S-SPAMINE: Snapshot-dominant SPAMINE
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Algorithm (L-SPAMINE)
Input 

A time-stamped dataset
A reference sequence, A similarity function, and A threshold

Procedure
Generate size K candidate itemsets

Prune if any subset’s DUlb< threshold
Estimate upper and lower bound sequences of candidates
Filter candidates using Dlb (=DUlb + DLlb)
Scan database and generate true support sequences
Find similar itemsets having D < threshold
Keep size K itemsets having DUlb < threshold
K=K+1
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L-SPAMINE Trace
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L-SPAMINE Trace
Size 2
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Experiment

Datasets
Synthetic datasets: a modified IBM data generator 
Real dataset:  Earth Climate
Query sequences: randomly chosen in different 
quintiles of supports

Test cases
Effect of lower bounding distance
Effect of database scanning method
Effect of number of items
Effect of number of time slots
Experiment with a real dataset
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Experiment Results
Effect of lower bounding distance pruning

TD100-D1-L10-I20-T100
Pruning effect ratio : the number of candidate itemsets which 
need database scan over the total  number of possible itemsets
per level
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Experiment Results

Effect of number of items
(TD100-D1-L10-I*-T10)
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Experiment with a real dataset
Dataset: Earth Climate

# of items: 50,  
# of time slots: 214
# of transaction per time 
slot: 2827,    
Total # of transaction: 
64,978

Reference sequences
SOI index

Normalization to 0 to 1 
range.
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Conclusion

Summary
Formulate the problem of mining similarity-profiled 
temporal association patterns
Propose a novel algorithm 

Substantially reduce the search space by pruning 
candidate itemsets using lower bounding distance and 
the monotonicity of upper lower bounding distance

Experimentally evaluate the algorithm
Future Work

Explore different similarity measures with different 
similarity models.
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