

A General Framework for Increasing the Robustness of PCA-based Correlation Clustering Algorithms

Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek

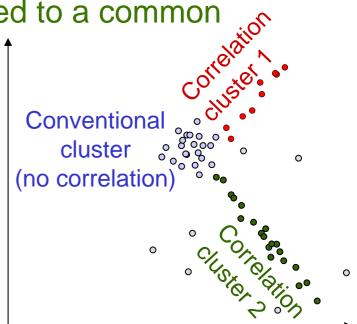
Ludwig-Maximilians-Universität München Munich, Germany www.dbs.ifi.lmu.de

Presenter: Matthias Renz

- Motivation
- Increasing the Robustness of PCA for Correlation Clustering
- Evaluation
- Summary

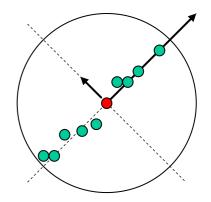
- Motivation
- Increasing the Robustness of PCA for Correlation Clustering
- Evaluation
- Summary

- Correlation Clustering aims at finding groups of *d*dimensional points that are associated to a common
 - lower-dimensional
 - arbitrarily oriented
 - hyperplane
- => points exhibit a common correlation among a subset of attributes

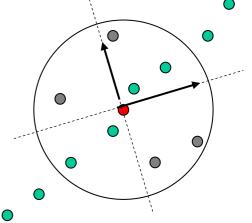


- Extends the problem of subspace/projected clustering from axis-parallel to arbitrarily oriented subspace clusters
- Prominent sample methods: ORCLUS, 4C, ERiC, ...

- Challenge of correlation clustering algorithms
 - To find the subspace, a set of cluster members need to be known
 => apply PCA on these cluster members
 - To assign cluster memberships and determine noise/outliers, the subspaces of the clusters need to be known
 - => assignment based on the eigensystem of the cluster
- Most correlation clustering algorithm use the following *locality assumption*
 - The local neighbors of cluster members or cluster representatives (e.g. centers) reflect the subspace of the cluster



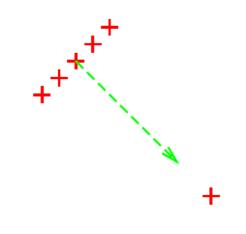
- Challenge of correlation clustering algorithms
 - To find the subspace, a set of cluster members need to be known
 => apply PCA on these cluster members
 - To assign cluster memberships and determine noise/outliers, the subspaces of the clusters need to be known
 - => assignment based on the eigensystem of the clusters
- Most correlation clustering algorithm use the following locality assumption
 - The local neighbors of cluster members or cluster representatives (e.g. centers) reflect the subspace of the cluster
 - But in high-dimensional spaces, it is likely that the local neighborhood contains noise points!!!!



- Motivation
- Increasing the Robustness of PCA for Correlation Clustering
- Evaluation
- Summary

Problem Analysis

- Impacts of the locality assumption on PCA
 - 1. PCA is very sensitive to noise/outliers
 - Eigenvector with the largest eigenvalue of 6 points

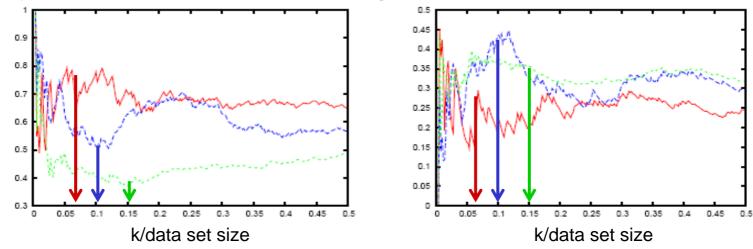


=> only one point flips the eigenvector into a wrong direction

- Consequence: learning the correct subspace from local neighbors is misled by noise
- NOTE: noise/outliers cannot be eliminated because we need to know the correct subspaces of the cluster before

Problem Analysis

- 2. A different number of neighbors (of cluster members) are sufficient to represent the correct subspace for different clusters
 - Relative strength of the first two eigenvectors of sample points in a 3D toy data set w.r.t. k = number of neighbors considered for PCA



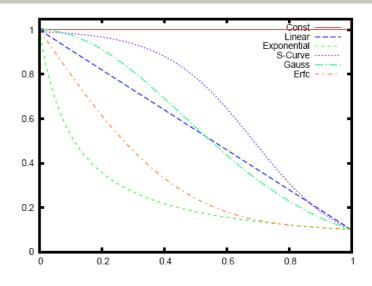
- Red: point of a 1D cluster; k = 7% of data set size is the perfect choice (80% of the variance is explained by the first eigenvector)
- Blue: point of a 2D cluster; k = 10% of data set size is the perfect choice (45% of the variance is explained by the first two eigenvectors)
- Green: point of noise; k = 15% of the data set size is the perfect choice

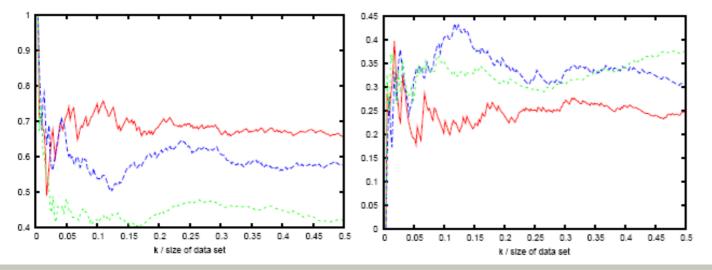
Aim of this work

- Problem summary
 - PCA is very sensitive to noise/outliers
 - A different number of neighbors should be taken for different points/cluster representatives
- In this work
 - We do not overcome the locality assumption
 - But we try to ease the effects of the locality assumption on the PCA and, thus, on the quality of the clustering results
 - Tackle the above described problems in a general way
 - Show how these concepts can be integrated into correlation clustering algorithms (partitioning-based ORCLUS and density-based ERiC)

Solution 1: Weighting

- Ease the impact of outliers
 - Give weights to all neighbors
 - Close neighbors are more likely to be cluster members than far neighbors
 - Use any distance-based weighting function
 - Compute weighted covariance matrix and apply PCA on that weighted matrix
 - Effect on the relative strength of the first two eigenvectors





Observations:

Sudden drops have disappeared

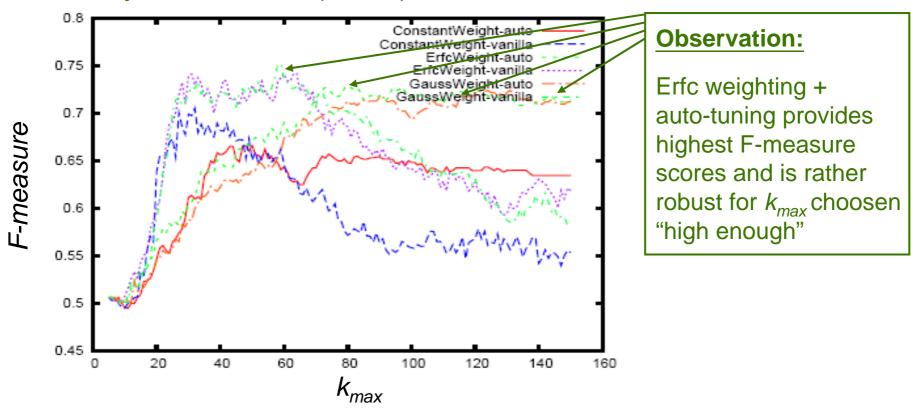
Generally, choosing k "high enough" works fine

- Choose an individual number of neighbors to be considered for determining the subspace by PCA
 - Use a globally fixed number of k_{max} neighbors and choose individually for each point/cluster representative the best *k* neighbors
 - Do **NOT** test all possible $O(2^{k_{\text{max}}})$ subsets
 - Rather test for all $k \le k_{max}$ the $O(k_{max})$ subsets containing the k nearest neighbors
 - Evaluate the goodness of the particular selections of k by
 - Using a sliding window for dimensionality filtering
 - Averaging the explained variance of the largest eigenvalues (see details in the paper)

- Motivation
- Increasing the Robustness of PCA for Correlation Clustering
- Evaluation
- Summary

- Test Bed
 - Quality measurement
 - Pair-counting F-Measure
 - Clustering methods
 - ERiC (density-based)
 - ORCLUS (partitioning-based)
 - Competitors
 - 1. Original method
 - 2. Weighting function
 - 3. Auto-tuning of numbers of neighbors
 - 4. All combinations of 1. 2. and 3.

• 10D Synthetic data (ERiC)



- (Erfc-)weighting seems to be very important
- Auto-tuning still gives some benefit

• 10D Synthetic data (ORCLUS, 100 randomly initialized runs)

Variant	Average F-measure	Standard Deviation
ORCLUS	0.667	0.046
ORCLUS + Gauss weight	0.684	0.055
ORCLUS + Exponential weight	0.676	0.054
ORCLUS + Erfc weight	0.683	0.061
ORCLUS + Linear weight	0.686	0.056
ORCLUS + Auto	0.751	0.070
ORCLUS + Auto + Gauss	0.763	0.069
ORCLUS + Auto + Exponential	0.754	0.075
ORCLUS + Auto + Erfc	0.754	0.075
ORCLUS + Auto + Linear	0.771	0.078

- Auto-tuning seems to be very important
- Weighting still gives some benefit

- Results of ERiC using autotuning and Erfc weighting on NBA
 - player stats data (15 dimensions)
 - Four meaningful clusters
 - Several players classified as noise

cluster ID	\dim	Description
1	4	"go-to-guys"
2	4	guards
3	4	reserves
4	5	small forwards

 Results of ERiC using auto-tuning and Erfc weighting on Metabolic Screening data (containing metabolite concentrations – 43 dimensions)

- Newborns are labeled with metabolic disorders
- Five pure clusters of newborns suffering
 PKU and healthy newborns
- Several newborns classified as noise

cluster ID	\dim	Description
1	10	PKU
2	10	controll
3	11	PKU
4	12	PKU
5	13	PKU

- Motivation
- Increasing the Robustness of PCA for Correlation Clustering
- Evaluation
- Summary

- A general framework for increasing the robustness of PCAbased correlation clustering algorithms
 - Locality assumption is still there
 - But it's negative effects on PCA and, thus, final result is decreased
- Main ideas
 - Weighting: Impact of neighbors are weighted such that close neighbors have higher impact than far neighbors
 - Auto-tuning: Number of neighbors on which PCA is applied is locally optimized (i.e. for each point/cluster representative separately)
- Integration into any existing PCA-based correlation clustering algorithm (see paper for details)
- Experimental results show the benefit of these concepts; none of the two concepts is the clear winner

The last slide

Any questions

Just please mail me

kroegerp@dbs.ifi.lmu.de

A General Framework for Increasing the Robustness of PCA-based Correlation Clustering Algorithms