Searching Correlated Objects in a Long Sequence

cklee@cse.psu.edu

Ken C. K. Lee¹ Wang-Chien Lee¹ wlee@cse.psu.edu

Donna Peuquet¹ djp11@psu.edu

Baihua Zheng² bhzheng@smu.edu.sg

¹ Pennsylvania State University, University Park, PA16802, USA ² Singapore Management University, Singapore

Outline

- Overview of Correlation Query
- Related Work
- Motivation and Definition
- Challenges
- Solutions
 - Non-Index Approaches
 - Multi-Scan Algorithm (MSA)
 - One-Scan Algorithm (OSA)
 - Index-Based Approach (IBA)
- Evaluations
- Variants of Correlation Query
- Conclusion

Overview of Correlated Query

- Sequence
 - An ordered list of objects (categorized by their attributes)
 - A working example:

Object sets:

$$A=\{a_1, a_3, a_4, a_7\}, B=\{b_2, b_5, b_6\}, C=\{c_8, c_9, c_{12}\}, D=\{d_{10}, d_{11}\}$$

- Correlation Query:
 - Given a sequence of objects, find pairs of correlated object sets which has many objects closely located in the sequence.

Related Work

- **Statistics**: how are the *values* of one variable (education) related to those of another (income)?
- **Database**: how are the *occurrences* of object related to those of another (e.g. in same transactions)?

If x and y is highly correlated, f_{xy} should be high (relative to N)

	y	\bar{y}	
x	f_{xy}	$f_{x\bar{y}}$	f_x
\bar{x}	$f_{\bar{x}y}$	$f_{\bar{x}\bar{y}}$	$f_{\bar{x}}$
	f_y	$f_{ar{y}}$	N

Contingency table

Motivation

Applications

- Finding products likely to be chosen by customers, based on transaction logs.
- Event causality detection based on event log to determine what events are likely to happen after some events.
- In documents, identify word phrases (composition of words) that are often used.

Definition

- Object Closeness
 - Objects Distance
 - Based on difference between sequence positions

- Correlation Coefficient
 - How many pairs of closely located objects?
 - Based on cosine coefficient

Challenges

- Redundant Count Problem
 - Let w = 2

- Close object pairs must be disjoint
- Correlation coefficient $\Phi_w(X,Y)$ is subject to w.

Query Definition

- Correlation Query
 - Given a sequence S, a set of predefined object sets, O, and two query parameters, distance bound (w) and correlation threshold (t),
 - a correlation query Q(S, w, t) returns all pairs of object sets $(X, Y) \in OxO$ such that $\Phi_w(X, Y) > t$.
- Example

$$$$

$$A=\{a_1, a_3, a_4, a_7\},$$

$$B=\{b_2, b_5, b_6\},$$

$$C=\{c_8, c_9, c_{12}\},$$

$$D=\{d_{10}, d_{11}\}$$

343—	7
w=	Z
, ,	

XY	X	Y	$ XY _{\omega}$	$\phi_{\omega}(X,Y)$
AB	4	3	3	0.87
AC	4	3	1	0.29
AD	4	2	0	0.00
BC	3	3	1	0.33
BD	3	2	0	0.00
CD	3	2	2	0.82

Solutions

- Scan-Based Approaches (Scan S to determine /X/, /Y/, /XY/,)
 - Multi-Scan Algorithm (MSA) baseline approach
 - determine one *X Y* pair each time
 - One-Scan Algorithm:
 - determine all X Y pairs in one scan
- Index-Based Approach
 - Index-Based Algorithm (IBA)
 - Index the objects and their position based on object set
 - Determine possible X Y pairs whose $/XY/_w$ are high.

Multi-Scan Algorithm (MSA)

- Scan S for each X Y pair
- Three counters c_{x} , c_{y} and c_{xy} (initialized to zeroes)
- Sliding window W (len: w)
- Example:

always matching the oldest entry in W

$$\phi(A,B) = c_{AB}/\sqrt{c_A \times c_B} = 3/\sqrt{4 \times 3} = 0.87$$

object	W	matched	c_A	c_B	c_{AB}
$\langle \mathrm{init} \rangle$	(\perp, \perp)	-	0	0	0
a_1	(\perp,a_1)	no	1	0	0
b_2	(a_1,b_2)	$\langle a_1, b_2 \rangle$	1	1	1
a_3	(b_2, a_3)	no	2	1	1
a_4	(a_3, a_4)	no	3	1	1
b_5	(a_4, b_5)	$\langle a_3, b_5 \rangle$	3	2	2
b_6	(b_5,b_6)	$\langle a_4, b_6 \rangle$	3	3	3
a_7	(b_6, a_7)	no	4	3	3
c_8	(a_7,\perp)	no	4	3	3
c_9	(\perp,\perp)	no	4	3	3
d_{10}	(\perp, \perp)	no	4	3	3
d_{11}	(\perp,\perp)	no	4	3	3
c_{12}	(\perp,\perp)	no	4	3	3

• Time complexity: O(w/O/2/S/)

One-Scan Algorithm (OSA)

- Scan the sequence of all X Y pairs in one pass
- Maintain counters for each object set and counters for object set combinations
- Sliding Window W (len: w)
 - Entry format: (x : {y})
- Example

Each entry is associated with _ matched objects

exam	W	c_{AB}	c_{AC}	c_{BC}
$\langle \text{init} \rangle$	(\bot, \bot)	0	0	0
a_1	$(\bot, a_1:\{\})$	0	0	0
b_2	$(a_1:\{b_2\}, b_2:\{a_1\})$	1	0	0
a_3	$(b_2:\{a_1\}, a_3:\{\})$	1	0	0
a_4	$(a_3:\{\}, a_4:\{\})$	1	0	0
b_5	$(a_4:\{\}, b_5:\{a_3\})$	2	0	0
b_6	$(b_5:\{a_3\}, b_6:\{a_4\})$	3	0	0
a_7	$(b_6:\{a_4\},\underline{a_7:\{\}})$	3	0	0
c_8	$(a_7:\{c_8\}, c_8:\{a_7, b_6\})$	3	1	1
c_9	$(c_8:\{a_5,b_6\},c_9:\{\})$	3	1	1
d_{10}	$(c_9:\{\}, d_{10})$	3	1	1
d_{11}	(d_{10}, d_{11})	3	1	1
c_{12}	$(d_{11}, c_{12}: \{\})$	3	1	1

• Time complexity: O(w/S/)

Index-Based Algorithm (IBA)

- Index object positions for each object set
 - For example, $\langle a, b, a, a, b, b, a, c, c, d, d, c \rangle$

Merge-like matching function

Similar to MSA, but it skips unrelated objects in the rest _ of the sequence.

A	C	W	c_{AC}
$\langle init \rangle$	$ \langle init \rangle $	(\bot,\bot)	0
$\underline{a_1}$	c_8	(\perp,a_1)	0
$\overline{a_3}$	c_8	(\perp,a_3)	0
$\underline{a_4}$	c_8	(a_3, a_4)	0
$\underline{a_7}$	c_8	(\bot,a_7)	0
_	c_8	(a_{7},c_{8})	1
_	<u>c</u> 9	(c_8,c_9)	1
_	$\underline{c_{12}}$	(c_9, c_{12})	1

- Candidate Screening
- Group Matching
- Early Termination

- Candidate Screening
 - Estimation based on cardinalities

$$\Phi_{w}(X,Y) = \frac{|XY|_{w}}{\sqrt{|X|/|Y|}} \qquad MAX \ \Phi(X,Y) = \frac{\min(|X|, |Y|)}{\sqrt{|X|/|Y|}}$$

- If $MAX \Phi(X,Y)$ is **below** the threshold, X Y are not correlated.
- Estimation based on distribution
 - Based on range and expected distance (a, b, a, a, b, b, a, c, c, d, d, c)Range for B

 Range for D

• If ranges (extended with w) do **not** overlap, XY are not correlated.

- Assumption:
 - object separation can be modeled as normal distribution.
- We estimate the probability

i.e.,
$$P(-\omega \leq \delta_{X,Y} \leq \omega)$$
 $P(|\delta_{X,Y}| \leq \omega)$

Based on Central Limit Theorem:

$$Z = \frac{(\mu_X - \mu_Y) - \delta_{X,Y}}{\sqrt{\sigma_X^2/|X| + \sigma_Y^2/|Y|}}$$

The probability p = $P(-\infty \le Z \le z_{upper}) - P(-\infty \le Z \le z_{lower})$

where
$$z_{lower}=rac{(\mu_X-\mu_Y)-\omega}{\sqrt{\sigma_X^2/|X|+\sigma_Y^2/|Y|}}~z_{upper}=rac{(\mu_X-\mu_Y)+\omega}{\sqrt{\sigma_X^2/|X|+\sigma_Y^2/|Y|}}$$

Estimated correlation coefficient: $p \cdot \frac{\min(|X|,|Y|)}{\sqrt{|X|\cdot|Y|}}$

- Group Matching:
 - Rather than comparing two object sets each time, scan all possible pairs one pass (similar to OSA)

Termination condition:

- •Maximum coefficient < t, X Y should not be a part of the result.
- Minimum coefficient >= t, X Y is guaranteed to be a part of the result.

Performance Evaluation

- Query factors:
 - Object closeness (w): 10, 100 and 1000
 - Correlated Coefficient (t): 0.4, 0.5 and 0.6
- Datasets:
 - Synthetic datasets
 - Factors:
 - Zipf distribution skewness factor: 1.5 3.0 (default: 2.0)
 - Sequence length: 1M 5M (default: 2M)
 - Number of object sets: 20 100 (default: 60)
 - Realistic datasets
 - EARTHQUAKE (http://earthquake.usgs.gov/region/neic)
 - APRS (http://aprs.net)
- Performance Metrics:
 - elapsed time
- Platform:
 - Linux Computer with 3.2GHz CPU

Impact of w and t

• Settings:

Impact of O/ and S/

• Impact of |O|

- Impact of |S|
- Fixed S/S, S and S at 2M, 2.0 and 100, respectively. Fixed S/S, S and S/S and S/

Impact of *s*, Effectiveness of optimization techniques

- Impact of s
 - Fixed |O|, |S| and w at 60, 2M and 100, respectively.

The more skewed the sizes of object sets, the better IBA can perform

 Effectiveness of optimization techniques for IBA

Candidate screening is the most effective

Evaluation on real datasets

IBA outperform OSA

Variant Correlated Query

- Constrained Correlation Query
 - Limit the matching criteria

$$\langle a, b, a, a, b, b, a, c, c, d, d, c \rangle$$

Position Correlation Query

Correlation Spectrum Query

$$w=2$$
 $\Phi w(B,C)=0.33$
 \vdots
 $w=6$ $\Phi w(B,C)=1.00$

Conclusion

- Introduced correlation query for a sequence
- Proposed search algorithms; MSA, OSA and IBA
- Experimented with synthetic and real datasets
- IBA generally performs good, especially for small w and large t and large variation of object set sizes
- Discussed correlation query variants

Thank you

Questions?