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Dynamic skyline queries (DSL)
• Extension of skyline 

queries
– Given a query point q
– DSL contains points not 

dynamically dominated by 
others w.r.t q

– x dynamically dominates y 
iff x as preferable as y w.r.t. 
q in all dimensions and 
strictly more preferable
w.r.t. q in at least one

• Can be treated as static 
SL
– Transform points w.r.t. q
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Intuition (1)

• Traditional SL algorithms need to run 
anew for each DSL query

• Our idea
– Exploit results from past queries to reduce 

processing cost for future DSL queries
– Cache past queries
– Decide which queries in cache are useful
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Intuition (2)
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Intuition (2)

• 2 past DSL queries
– qa, qb

• Each query partitions
space in 4 quadrants
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Intuition (3)
• A new query q arrives
• Consider DSL for qa

– p1 is contained DSL(qa)
– p1 dominates p2, p3, p4

• p1 lies in upper right 
quadrant w.r.t. qa

• qa lies in upper right 
quadrant w.r.t. q

• p1 dominates also p2, p3,
p4 w.r.t. to q
– Exclude p2, p3, p4 from 

dominance test for DSL(q)
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• Shaded area denotes 
points dominated by p1
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Contribution in brief
• Caching past DSL queries cannot reduce 

processing cost for future ones
– We need more information about dominance 

relationships
• Introduce orthant skylines (OSL) and examine 

their relationship with DSL 
• Extend Bitmap algorithm to compute OSL in 

parallel with DSL
• Cache OSL to enhance DSL queries evaluation

– Present 3 cache replacement policies
• LRU, LFU, LPP

• Experimental evaluation of caching mechanism
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Related work
• Non-indexed methods

– Block-Nested Loops (BnL)
– Bitmap 
– Multidimensional Divide and Conquer (DnC)
– Sort First Scan (SFS)

• Index-based methods
– B-tree

• sort points according to the lowest valued coordinate
– R-tree

• Nearest neighbor based (NN)
• Branch and bound (BBS)
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Bitmap

• BnL variant
• Suitable for domains with low cardinality and 

discrete
• In brief

– Computes a bitmap representation of the points in the 
dataset

– Examines each point separately (dominance test)
• Checks whether it is contained in the skyline or not
• Exploits fast bitwise operations OR/AND
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Bitmap – Dominance test

• For each point p 
– Define A = A1 & A2 & … & Ad

• Denotes the points as good as p in all dimensions
– Define B = B1 | B2 | … | Bd

• Denotes the points strictly better than p in at least 
one dimension

– Dominance test:
• If C = A & B has all bits set to 0 then p is in SL
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Orthant skyline (OSL)
• OSL provides more information 

about dominance relationships 
than DSL
– Useful for pruning

• Given a dataset of d-
dimensional points and a 
query point q
– Space partitioned in 2d

orthants
– o-th orthant skyline (OSL) of q 

contains points of the o-th
orthant not dynamically 
dominated by others inside 
orthant o w.r.t q
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OSL and DSL relationship
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OSL and DSL relationship

• Map points from 
quadrants 1,2,3 to 
points inside quadrant 
0
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OSL and DSL relationship
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Computing orthant skylines

• Algorithm DBM
– Extends Bitmap to compute DSL and OSLs at 

the same time
• Method:

– Compute bitmap representation 
• Transform each point coordinates w.r.t. to query q

– Dominance test, point p, orthant o
• p not in OSLo and not in DSL
• p not in DSL, but in OSLo
• p in DSL and in OSLo
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Dynamic skylines Via Caching
• Cache OSLs instead of DSLs

– Query cache contains (query point qj, OSLs)
– OSLs encode by bitmaps

• Algorithm cDBM
– OSL contains information about dominance test inside orthant
– Discard points inside orthants from dominance tests

• Method:
– Compute bitmap representation
– For each point p consider its position (orthant) w.r.t. to cache 

queries qj
– If p in the same orthant o w.r.t qj as qj w.r.t. q and p not in 

OSLo(qj) then exclude it from OSLo(q), DSL(q)
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Cache Replacement Policies

• General idea
– Limited cache space
– Identify least useful query point in cache
– Replace it with new one
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Usage-based policies
• Only a few queries in 

cache are useful
• Log cache query usage
• Given a new query q

– Consider as input the query 
point cache Q

– Only query points in OSL of 
Q w.r.t. q are useful

– Update cache - remove:
• Least Recently Used (LRU) 

query point
• Least Frequently Used 

(LFU) query point
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Pruning power-based policy
• Usage-based policies do 

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can 

prune points of dataset from 
DSL computation

– Depends on
• Points dominated by query 

in an orthant j
• Points contained in the 

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning 
power (LPP)
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Experimental Evaluation
• Synthetic datasets

– Distribution types
• Independent, correlated, anti-correlated

– Number of points N
• 10k, 20k, 50k, 100k,

– Dimensionality
• d = {2,3,4,5,6} 

– Domain size for dimension
• |D| = {10,20,50}

• Compare
– Bitmap (NO-CACHE)
– cDBM with LFU,LRU,LPP cache replacement policies
– Query cache

• |Q| = {10,20,30,40,50} past query points
• Cache size is |Q|*N bits uncompressed
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Varying query cache size

• Dataset: N = 50k points, with d = 4 dimensions of |D| = 20 
domain size

• LFU,LRU cache queries not representative for future ones
• LPP caches queries with great pruning power

Anti-correlatedIndependent
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Effect of distribution parameters

• Relative improvement in running time over NO-CACHE
• Vary number of points N

– d = 4 dimensions of |D| = 20 domain size
• Vary number of dimensions d

– N = 50k, |D| = 20

Correlated vary dCorrelated vary N
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Conclusions and Future work
• Conclusions

– Introduced orthant skylines (OSLs) and discussed its 
relationship with DSL

– Extended Bitmap to compute OSLs and DSL at the 
same time (DBM algorithm)

– Proposed caching mechanism of OSLs to reduce cost
for future DSL queries

• LRU, LFU, LPP cache replacement policies
– Experimentally verified the efficiency of caching 

mechanism
• Future work

– Apply caching mechanism to index-based methods
– Further increase pruning power of cached queries
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Questions ?
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