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Skyline queries (SL)

e Glven a dataset of d-
dimensional points

— SL contains points not
dominated by others

— X dominates y iff x as
good as y in all
dimensions and strictly
better in at least one
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Dynamic skyline queries (DSL)

e Extension of skyline
gueries
— Given a query point g
— DSL contains points not

dynamically dominated by
others w.r.t g

— x dynamically dominates y
Iff X as preferable as y w.r.t.
g in all dimensions and
strictly more preferable
w.r.t. g in at least one

e Can be treated as static
SL

— Transform points w.r.t. g
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Intuition (1)

 Traditional SL algorithms need to run
anew for each DSL query

e Quridea

— Exploit results from past queries to reduce
processing cost for future DSL queries

— Cache past queries
— Decide which queries in cache are useful
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Intuition (2)
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Intuition (2)

e 2 past DSL queries o o
— Ua Gb ° o
 Each query partitions o
space in 4 quadrants e TR
B LY S - S

Distance from sea
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Intuition (3)

* A new query g arrives L e
« Consider DSL for q, ° - %5
_ _ Lo 1 Py P3
— p, Is contained DSL(q,) L0
— p, dominates p,, ps, P, ° i >iqa
 p, lies in upper right R T A
quadrant w.r.t. g, e
* g, liesin upper right 2l om iy o
guadrant w.r.t. g

Distance from sea

e p, dominates also p,, ps,
p, w.rt.toq area denotes

— Exclude pz’ ps, p4fr0m p0|ntS dOmIﬂated by pl
dominance test for DSL(Q)
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Contribution In brief

Caching past DSL queries cannot reduce
processing cost for future ones

— We need more information about dominance
relationships

Introduce orthant skylines (OSL) and examine
their relationship with DSL

Extend Bitmap algorithm to compute OSL in
parallel with DSL

Cache OSL to enhance DSL gqueries evaluation

— Present 3 cache replacement policies
 LRU, LFU, LPP

Experimental evaluation of caching mechanism
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Related work

 Non-indexed methods
— Block-Nested Loops (BnL)
— Bitmap
— Multidimensional Divide and Conquer (DnC)
— Sort First Scan (SFS)

* Index-based methods
— B-tree
 sort points according to the lowest valued coordinate
— R-tree
» Nearest neighbor based (NN)
 Branch and bound (BBS)
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Bitmap

e BnL variant

e Suitable for domains with low cardinality and
discrete

e |n brief

— Computes a bitmap representation of the points in the
dataset
— Examines each point separately (dominance test)

» Checks whether it is contained in the skyline or not
» Exploits fast bitwise operations OR/AND
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Bitmap — Dominance test

 For each point p

—Define A=AL& A2 & ... & A°
* Denotes the points as good as p in all dimensions
— Define B=B1|B?2| ... | B¢

* Denotes the points strictly better than p in at least
one dimension

— Dominance test:
o IfC=A&B hasall bits setto O then pisin SL
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Orthant skyline (OSL)

e QOSL provides more information
about dominance relationships
than DSL

— Useful for pruning

« Given a dataset of d-
dimensional points and a
guery point g

— Space partitioned in 24
orthants

— 0o-th orthant skyline (OSL) of g
contains points of the o-th
orthant not dynamically

dominated by others inside
orthant o w.r.t gq

July 11 SSDBM'08



Orthant skyline (OSL)

e QOSL provides more information
about dominance relationships
than DSL

— Useful for pruning

« Given a dataset of d-
dimensional points and a
guery point g

— Space partitioned in 24
orthants

— 0o-th orthant skyline (OSL) of g
contains points of the o-th
orthant not dynamically

dominated by others inside
orthant o w.r.t gq

July 11 SSDBM'08

Price

Quadrant 1 Quadrant O

@)

© o

@)

@)

o Query point q

Distance from sea

Quadrant 2

Quadrant 3



Orthant skyline (OSL)

e QOSL provides more information
about dominance relationships
than DSL

— Useful for pruning

« Given a dataset of d-
dimensional points and a
guery point g

— Space partitioned in 24
orthants

— 0o-th orthant skyline (OSL) of g
contains points of the o-th
orthant not dynamically

dominated by others inside
orthant o w.r.t gq

July 11 SSDBM'08

Price

Quadrant 1 Quadrant O

@)

© o

@)

@)

o Query point q

Distance from sea

Quadrant 2

Quadrant 3



Orthant skyline (OSL)

 OSL provides more information ~ Quadrantl Quadrant 0
about dominance relationships o § o
than DSL o o
— Useful for pruning ©
 Given a dataset of d- °1 o Query pointq
dimensional points and a § 0
query point g | Gladrant 2
— Space partitioned in 2¢ . | skyline points
orthants = o
— 0o-th orthant skyline (OSL) of g , .
contains points of the o-th Distance from sea Quadrant 2

orthant not dynamically Quadrant 3

dominated by others inside
orthant o w.r.t gq
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OSL and DSL relationship
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OSL and DSL relationship
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Computing orthant skylines

 Algorithm DBM

— Extends Bitmap to compute DSL and OSLs at
the same time

e Method:

— Compute bitmap representation
e Transform each point coordinates w.r.t. to query g

— Dominance test, point p, orthant o
e p notin OSL,and not in DSL
e p not in DSL, but in OSL
e pin DSL and in OSL
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Dynamic skylines Via Caching

e Cache OSLs instead of DSLs

— Query cache contains (query point g;, OSLs)
— OSLs encode by bitmaps

e Algorithm cDBM

— OSL contains information about dominance test inside orthant
— Discard points inside orthants from dominance tests

e Method:

— Compute bitmap representation

— For each point p consider its position (orthant) w.r.t. to cache
queries g

— If p in the same orthant o w.r.t g. as g, w.r.t. g and p not in
OSL,(q;) then exclude it from OéLo(qj, DSL(q)
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Cache Replacement Policies

 General idea
— Limited cache space
— ldentify least useful query point in cache
— Replace it with new one
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Usage-based policies

 Only afew gueries in
cache are useful

 Log cache query usage
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Usage-based policies

Redundant

: : guerigs
« Only a few queries in o /)e
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» Log cache query usage B O O
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Usage-based policies

Redqndant
 Only afew queriesin : il
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« Given a new query ¢ A =
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Usage-based policies

 Only afew gueries in
cache are useful

 Log cache query usage
« Given a new query g

— Consider as input the query

points in cache Q

— Only query points in OSL of

Q w.r.t. q are useful
— Update cache - remove:

» Least Recently Used (LRU)

guery point

» Least Frequently Used
(LFU) query point
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Pruning power-based policy

« Usage-based policies do
not indicate usefulness

« Useful cached query

— Great pruning power

« Probability that a query can a4
prune points of dataset from |
DSL computation
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e Update cache — remove
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Experimental Evaluation

e Synthetic datasets

— Distribution types
* Independent, correlated, anti-correlated

— Number of points N
« 10k, 20k, 50k, 100Kk,

— Dimensionality
- d={2,3,4,5,6}
— Domain size for dimension
- |D] = {10,20,50}
e Compare
— Bitmap (NO-CACHE)
— c¢DBM with LFU,LRU,LPP cache replacement policies

— Query cache
e |Q] ={10,20,30,40,50} past query points
» Cache size is |Q|*N bits uncompressed
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Varying query cache size

Independent
40 ‘ :
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= 10115 B
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18043 —9
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LPP —e— .
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Cache size (|Q|)

Dataset: N = 50k points, with d = 4 dimensions of |D| = 20

domain size

LFU,LRU cache gueries not representative for future ones
LPP caches queries with great pruning power
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Effect of distribution parameters

Correlated vary N Correlated vary d

40 @41% ' ] 80 g3 ' II-_RPE'_._ !
9 T ——— S —K—
Z 3¢ - R o 70 LFU —8—
% 35% (]C_)
£ 301 3% £
2 2
o 257 o
g 20 i 19% g-
® 179% 16% _____._——-'_"__;_/‘_}-_‘gg -(]_J
E 15 g&\%x e ] S
§ 10} 12 ] 2
S LPP —e— =
£ OF LFU —&— 1 E

oL | LRU —*—

10K 20 50K 100K

Data set size (N)

Dimensionality (d)

« Relative improvement in running time over NO-CACHE
* Vary number of points N

— d =4 dimensions of |D| = 20 domain size
* Vary number of dimensions d

— N =50k, D] =20
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Conclusions and Future work

e Conclusions

— Introduced orthant skylines (OSLs) and discussed its
relationship with DSL

— Extended Bitmap to compute OSLs and DSL at the
same time (DBM algorithm)

— Proposed caching mechanism of OSLs to reduce cost
for future DSL queries

 LRU, LFU, LPP cache replacement policies

— Experimentally verified the efficiency of caching
mechanism

e Future work
— Apply caching mechanism to index-based methods
— Further increase pruning power of cached queries
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Questions ?

July 11 SSDBM'08



	Caching Dynamic Skyline Queries
	Outline
	Skyline queries (SL)
	Skyline queries (SL)
	Skyline queries (SL)
	Skyline queries (SL)
	Skyline queries (SL)
	Dynamic skyline queries (DSL)
	Dynamic skyline queries (DSL)
	Dynamic skyline queries (DSL)
	Dynamic skyline queries (DSL)
	Intuition (1)
	Intuition (2)
	Intuition (2)
	Intuition (3)
	Contribution in brief
	Related work
	Related work
	Bitmap
	Bitmap – Dominance test
	Orthant skyline (OSL)
	Orthant skyline (OSL)
	Orthant skyline (OSL)
	Orthant skyline (OSL)
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	Computing orthant skylines
	Dynamic skylines Via Caching
	Cache Replacement Policies
	Usage-based policies
	Usage-based policies
	Usage-based policies
	Usage-based policies
	Usage-based policies
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Experimental Evaluation
	Varying query cache size
	Effect of distribution parameters
	Conclusions and Future work
	Questions ?

