
July 11 SSDBM'08

Caching Dynamic Skyline
Queries

D. Sacharidis1, P. Bouros1, T. Sellis1,2

1National Technical University of Athens
2Institute for Management of Information Systems – R.C. Athena

July 11 SSDBM'08

Outline

• Introduction
– Skyline (SL) and dynamic skyline queries (DSL)

• Related work
• Evaluating dynamic skyline queries

– Computing orthant skylines (OSL)
– Computing dynamic skyline via caching

• LRU, LFU, LPP cache replacement policies

• Experimental evaluation
• Conclusions and Future work

July 11 SSDBM'08

Skyline queries (SL)

• Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

July 11 SSDBM'08

Skyline queries (SL)

• Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

• Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

July 11 SSDBM'08

Skyline queries (SL)

• Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

• Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

Skyline points

July 11 SSDBM'08

Skyline queries (SL)

• Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

• Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

Skyline points

p1

July 11 SSDBM'08

Skyline queries (SL)

• Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

• Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

Skyline points

p1p2

July 11 SSDBM'08

Dynamic skyline queries (DSL)
• Extension of skyline

queries
– Given a query point q
– DSL contains points not

dynamically dominated by
others w.r.t q

– x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

• Can be treated as static
SL
– Transform points w.r.t. q

July 11 SSDBM'08

Dynamic skyline queries (DSL)
• Extension of skyline

queries
– Given a query point q
– DSL contains points not

dynamically dominated by
others w.r.t q

– x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

• Can be treated as static
SL
– Transform points w.r.t. q

• Example
– User defines “ideal”

hotel q

Distance from sea

P
ric

e

Query point q

July 11 SSDBM'08

Dynamic skyline queries (DSL)
• Extension of skyline

queries
– Given a query point q
– DSL contains points not

dynamically dominated by
others w.r.t q

– x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

• Can be treated as static
SL
– Transform points w.r.t. q

• Example
– User defines “ideal”

hotel q

Distance from sea

P
ric

e

Dynamic
Skyline points

q

July 11 SSDBM'08

Dynamic skyline queries (DSL)
• Extension of skyline

queries
– Given a query point q
– DSL contains points not

dynamically dominated by
others w.r.t q

– x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

• Can be treated as static
SL
– Transform points w.r.t. q

• Example
– User defines “ideal”

hotel q

Distance from sea

P
ric

e

Dynamic
Skyline points

q

p4

p5

July 11 SSDBM'08

Intuition (1)

• Traditional SL algorithms need to run
anew for each DSL query

• Our idea
– Exploit results from past queries to reduce

processing cost for future DSL queries
– Cache past queries
– Decide which queries in cache are useful

July 11 SSDBM'08

Intuition (2)

Distance from sea

P
ric

e

July 11 SSDBM'08

Intuition (2)

• 2 past DSL queries
– qa, qb

• Each query partitions
space in 4 quadrants

Distance from sea

P
ric

e

qa

qb

July 11 SSDBM'08

Intuition (3)
• A new query q arrives
• Consider DSL for qa

– p1 is contained DSL(qa)
– p1 dominates p2, p3, p4

• p1 lies in upper right
quadrant w.r.t. qa

• qa lies in upper right
quadrant w.r.t. q

• p1 dominates also p2, p3,
p4 w.r.t. to q
– Exclude p2, p3, p4 from

dominance test for DSL(q)

Distance from sea

P
ric

e

qa

qb

p1

p2

p3

p4

q

• Shaded area denotes
points dominated by p1

July 11 SSDBM'08

Contribution in brief
• Caching past DSL queries cannot reduce

processing cost for future ones
– We need more information about dominance

relationships
• Introduce orthant skylines (OSL) and examine

their relationship with DSL
• Extend Bitmap algorithm to compute OSL in

parallel with DSL
• Cache OSL to enhance DSL queries evaluation

– Present 3 cache replacement policies
• LRU, LFU, LPP

• Experimental evaluation of caching mechanism

July 11 SSDBM'08

Related work
• Non-indexed methods

– Block-Nested Loops (BnL)
– Bitmap
– Multidimensional Divide and Conquer (DnC)
– Sort First Scan (SFS)

• Index-based methods
– B-tree

• sort points according to the lowest valued coordinate
– R-tree

• Nearest neighbor based (NN)
• Branch and bound (BBS)

July 11 SSDBM'08

Related work
• Non-indexed methods

– Block-Nested Loops (BnL)
– Bitmap
– Multidimensional Divide and Conquer (DnC)
– Sort First Scan (SFS)

• Index-based methods
– B-tree

• sort points according to the lowest valued coordinate
– R-tree

• Nearest neighbor based (NN)
• Branch and bound (BBS)

July 11 SSDBM'08

Bitmap

• BnL variant
• Suitable for domains with low cardinality and

discrete
• In brief

– Computes a bitmap representation of the points in the
dataset

– Examines each point separately (dominance test)
• Checks whether it is contained in the skyline or not
• Exploits fast bitwise operations OR/AND

July 11 SSDBM'08

Bitmap – Dominance test

• For each point p
– Define A = A1 & A2 & … & Ad

• Denotes the points as good as p in all dimensions
– Define B = B1 | B2 | … | Bd

• Denotes the points strictly better than p in at least
one dimension

– Dominance test:
• If C = A & B has all bits set to 0 then p is in SL

July 11 SSDBM'08

Orthant skyline (OSL)
• OSL provides more information

about dominance relationships
than DSL
– Useful for pruning

• Given a dataset of d-
dimensional points and a
query point q
– Space partitioned in 2d

orthants
– o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

July 11 SSDBM'08

Orthant skyline (OSL)
• OSL provides more information

about dominance relationships
than DSL
– Useful for pruning

• Given a dataset of d-
dimensional points and a
query point q
– Space partitioned in 2d

orthants
– o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

Query point q

July 11 SSDBM'08

Orthant skyline (OSL)
• OSL provides more information

about dominance relationships
than DSL
– Useful for pruning

• Given a dataset of d-
dimensional points and a
query point q
– Space partitioned in 2d

orthants
– o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

Query point q

July 11 SSDBM'08

Orthant skyline (OSL)
• OSL provides more information

about dominance relationships
than DSL
– Useful for pruning

• Given a dataset of d-
dimensional points and a
query point q
– Space partitioned in 2d

orthants
– o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

Query point q

Quadrant 2
skyline points

July 11 SSDBM'08

OSL and DSL relationship

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

• Map points from
quadrants 1,2,3 to
points inside quadrant
0

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

• Map points from
quadrants 1,2,3 to
points inside quadrant
0

• Compute DSL w.r.t. q

original point
mapped point
dynamic skyline point
quadrant skyline point

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

• Map points from
quadrants 1,2,3 to
points inside quadrant
0

• Compute DSL w.r.t. q
• Union of all OSLs is

superset of DSL w.r.t.
to q

original point
mapped point
dynamic skyline point
quadrant skyline point

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

• Map points from
quadrants 1,2,3 to
points inside quadrant
0

• Compute DSL w.r.t. q
• Union of all OSLs is

superset of DSL w.r.t.
to q

original point
mapped point
dynamic skyline point
quadrant skyline point

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

p1

p2

July 11 SSDBM'08

OSL and DSL relationship

• Map points from
quadrants 1,2,3 to
points inside quadrant
0

• Compute DSL w.r.t. q
• Union of all OSLs is

superset of DSL w.r.t.
to q

original point
mapped point
dynamic skyline point
quadrant skyline point

Quadrant 2Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

p3

p2

July 11 SSDBM'08

Computing orthant skylines

• Algorithm DBM
– Extends Bitmap to compute DSL and OSLs at

the same time
• Method:

– Compute bitmap representation
• Transform each point coordinates w.r.t. to query q

– Dominance test, point p, orthant o
• p not in OSLo and not in DSL
• p not in DSL, but in OSLo
• p in DSL and in OSLo

July 11 SSDBM'08

Dynamic skylines Via Caching
• Cache OSLs instead of DSLs

– Query cache contains (query point qj, OSLs)
– OSLs encode by bitmaps

• Algorithm cDBM
– OSL contains information about dominance test inside orthant
– Discard points inside orthants from dominance tests

• Method:
– Compute bitmap representation
– For each point p consider its position (orthant) w.r.t. to cache

queries qj
– If p in the same orthant o w.r.t qj as qj w.r.t. q and p not in

OSLo(qj) then exclude it from OSLo(q), DSL(q)

July 11 SSDBM'08

Cache Replacement Policies

• General idea
– Limited cache space
– Identify least useful query point in cache
– Replace it with new one

July 11 SSDBM'08

Usage-based policies
• Only a few queries in

cache are useful
• Log cache query usage
• Given a new query q

– Consider as input the query
point cache Q

– Only query points in OSL of
Q w.r.t. q are useful

– Update cache - remove:
• Least Recently Used (LRU)

query point
• Least Frequently Used

(LFU) query point

July 11 SSDBM'08

Usage-based policies
• Only a few queries in

cache are useful
• Log cache query usage
• Given a new query q

– Consider as input the query
point cache Q

– Only query points in OSL of
Q w.r.t. q are useful

– Update cache - remove:
• Least Recently Used (LRU)

query point
• Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

July 11 SSDBM'08

Usage-based policies
• Only a few queries in

cache are useful
• Log cache query usage
• Given a new query q

– Consider as input the query
point cache Q

– Only query points in OSL of
Q w.r.t. q are useful

– Update cache - remove:
• Least Recently Used (LRU)

query point
• Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

Redundant
queries

July 11 SSDBM'08

Usage-based policies
• Only a few queries in

cache are useful
• Log cache query usage
• Given a new query q

– Consider as input the query
points in cache Q

– Only query points in OSL of
Q w.r.t. q are useful

– Update cache - remove:
• Least Recently Used (LRU)

query point
• Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

Redundant
queries

July 11 SSDBM'08

Usage-based policies
• Only a few queries in

cache are useful
• Log cache query usage
• Given a new query q

– Consider as input the query
points in cache Q

– Only query points in OSL of
Q w.r.t. q are useful

– Update cache - remove:
• Least Recently Used (LRU)

query point
• Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

Redundant
queries

July 11 SSDBM'08

Pruning power-based policy
• Usage-based policies do

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can

prune points of dataset from
DSL computation

– Depends on
• Points dominated by query

in an orthant j
• Points contained in the

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

July 11 SSDBM'08

Pruning power-based policy
• Usage-based policies do

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can

prune points of dataset from
DSL computation

– Depends on
• Points dominated by query

in an orthant j
• Points contained in the

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:2
4

5:2
4

3:2
4

74:2
4

July 11 SSDBM'08

Pruning power-based policy
• Usage-based policies do

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can

prune points of dataset from
DSL computation

– Depends on
• Points dominated by query

in an orthant j
• Points contained in the

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
4

5:7
4

3:4
4

74:88
4

July 11 SSDBM'08

Pruning power-based policy
• Usage-based policies do

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can

prune points of dataset from
DSL computation

– Depends on
• Points dominated by query

in an orthant j
• Points contained in the

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
176

5:7
4

3:4
4

74:88
4

July 11 SSDBM'08

Pruning power-based policy
• Usage-based policies do

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can

prune points of dataset from
DSL computation

– Depends on
• Points dominated by query

in an orthant j
• Points contained in the

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
176

5:7
20

3:4
21

74:88
222

July 11 SSDBM'08

Pruning power-based policy
• Usage-based policies do

not indicate usefulness
• Useful cached query

– Great pruning power
• Probability that a query can

prune points of dataset from
DSL computation

– Depends on
• Points dominated by query

in an orthant j
• Points contained in the

antisymetric orthant of j
• Update cache – remove

– Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
176

5:7
20

3:4
21

74:88
222

July 11 SSDBM'08

Experimental Evaluation
• Synthetic datasets

– Distribution types
• Independent, correlated, anti-correlated

– Number of points N
• 10k, 20k, 50k, 100k,

– Dimensionality
• d = {2,3,4,5,6}

– Domain size for dimension
• |D| = {10,20,50}

• Compare
– Bitmap (NO-CACHE)
– cDBM with LFU,LRU,LPP cache replacement policies
– Query cache

• |Q| = {10,20,30,40,50} past query points
• Cache size is |Q|*N bits uncompressed

July 11 SSDBM'08

Varying query cache size

• Dataset: N = 50k points, with d = 4 dimensions of |D| = 20
domain size

• LFU,LRU cache queries not representative for future ones
• LPP caches queries with great pruning power

Anti-correlatedIndependent

July 11 SSDBM'08

Effect of distribution parameters

• Relative improvement in running time over NO-CACHE
• Vary number of points N

– d = 4 dimensions of |D| = 20 domain size
• Vary number of dimensions d

– N = 50k, |D| = 20

Correlated vary dCorrelated vary N

July 11 SSDBM'08

Conclusions and Future work
• Conclusions

– Introduced orthant skylines (OSLs) and discussed its
relationship with DSL

– Extended Bitmap to compute OSLs and DSL at the
same time (DBM algorithm)

– Proposed caching mechanism of OSLs to reduce cost
for future DSL queries

• LRU, LFU, LPP cache replacement policies
– Experimentally verified the efficiency of caching

mechanism
• Future work

– Apply caching mechanism to index-based methods
– Further increase pruning power of cached queries

July 11 SSDBM'08

Questions ?

	Caching Dynamic Skyline Queries
	Outline
	Skyline queries (SL)
	Skyline queries (SL)
	Skyline queries (SL)
	Skyline queries (SL)
	Skyline queries (SL)
	Dynamic skyline queries (DSL)
	Dynamic skyline queries (DSL)
	Dynamic skyline queries (DSL)
	Dynamic skyline queries (DSL)
	Intuition (1)
	Intuition (2)
	Intuition (2)
	Intuition (3)
	Contribution in brief
	Related work
	Related work
	Bitmap
	Bitmap – Dominance test
	Orthant skyline (OSL)
	Orthant skyline (OSL)
	Orthant skyline (OSL)
	Orthant skyline (OSL)
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	OSL and DSL relationship
	Computing orthant skylines
	Dynamic skylines Via Caching
	Cache Replacement Policies
	Usage-based policies
	Usage-based policies
	Usage-based policies
	Usage-based policies
	Usage-based policies
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Pruning power-based policy
	Experimental Evaluation
	Varying query cache size
	Effect of distribution parameters
	Conclusions and Future work
	Questions ?

