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OLAP

Product Region Date Sales

VCR USA

Canada

Mexico

USA

Mexico

USA

Canada

Jan 3

VCR Feb 6

VCR Jan 2

PC Jan 4

PC Feb 4

TV Jan 5

TV Feb 3

… … …

OLAP: On-Line Analytical Processing
Fast Analysis of Large Multidimensional Data
– TV Sales in USA for Jan
– Total TV Sales in North America for Jan-Mar
– Variance of TV Sales in North America

VCR
TV Jan

Feb
Mar

Apr

USA
Canada
Mexico

By Region

By Region & Product

By Date & Product

By Region & Date

By Product
By Date

Jan

(point queries)
(range aggregate queries)

(more complex queries)
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OLAP challenges
Large multi-dimensional data
– Scalability

Fast response time
– Fast exact, Approximate, or Progressive

Aggregation
– Pre-aggregation/transformation

Ad-hoc ranges
– Online computation

Updates/Appends
– Avoid re-doing

More complex queries
– Covariance, correlation, …

VCR
TV Jan

Feb
Mar

Apr

USA
Canada
Mexico

By Region

By Region & Product

By Date & Product

By Region & Date

By Product
By Date

Jan
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Discrete Wavelet Transform (Example)

80 70 60 90 37 67 50 50 a

75 75 52 50 5 -15 -15 0

75 51 0 1

63 12

63 12 5 -15 -15 00 1 â

* We normalize our filters from {1/2, 1/2} and {1/2, -1/2} to {1/√2, 1/√2} and {1/√2, -1/√2}

{1/2, -1/2}{1/2, 1/2}

=DWT(a)â

75 75 60 90 36 66 50 50 a’

=Waâ

63 63 63 63 63 6363 6375 75 51 51 51 5175 7575 75 52 52 50 5075 7580 70 37 67 50 5060 90

Multi-resolution view:Compression!

63 12 -15 -15
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Multidimensional DWT
Series of one-dimensional 
transformations along each dimension 
with the order not being important
Wx: matrix transformations along x
Wy: matrix transformations along y
DWT of a multidimensional D

WxDWyWxD
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80 70 60 90 37 67 50 50 178.1933.94 7.07 -21.21-21.21 00 2

WOLAP Example

80 70 60 90 37 67 50 50 178.1933.94 7.07 -21.21-21.21 00 2

Original Wavelet*

1 1 1 1 1 1 1 1 2.83 0 0 0 0 0 0 0

Result=504

0 0 1 1 1 1 1 0

Result=304

80 70 60 90 37 67 50 50

Result=178.19*2.83=504

1.73 -.35 -1 .5 0 0 0 .71

Result=178.19*1.73+33.94*(-.35)+2*.5

178.1933.94 7.07 -21.21-21.21 00 2

=304

* Let’s normalize our filters from {1/2, 1/2} and {1/2, -1/2} to {1/√2, 1/√2} and {1/√2, -1/√2}

a â

(Parseval Theorem)

(Parseval Theorem)

O(N) O(log N)<<

~303 (99% accuracy!)
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0 1.4 1.4 1.4 1.4 1.4 1.4 0.7

1.0 2.0 2.0 1.5

2.1 2.5

3.3 -.3

0 0 0 0 0 0 0 0.7

-1 0 0 0.5

-.7 0.4

Aggregation Complexity is O(log N) 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

3.3 -.3 -.7 0.4 -1 0 0 0.5 0 0 0 0 0 0 0 0.7

Worst case: 2 non-zeros at each level
Theorem:
– If Size(Q)=N,       has O(log N) non-zero values O(log N) retrievals
– Query Transformation is O(log N) by computing only on the boundaries:

• Lazy Wavelet Transform
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Range Group-by Query

agg()
1

2

3

x     

Range Group-by Query

Select x,sum(value)
From Table
Where x<4 and y<5
Group by x;

Table

1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4

x y D
1 
2 
3 
4 
1 
2 
3 
4
1 
2 
3 
4 
1
2 
3

agg()

Range Aggregate Query

Select sum(D)
From Table
Where x<4 and y<5;

Table

1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4

x y D
1 
2 
3 
4 
1 
2 
3 
4
1 
2 
3 
4 
1
2 
3

Summarize how a measure 
value varies as one or more 
attributes change.
Show the behavior of data
Output:
– Pivot Tables
– New datacubes
– Charts/Plots

Product

1 2 3 4

1 18 40 72 17

2 12 30 30 18

3 16 50 29 15

4 15 20 13 10

Time
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2-d Example

Time Product Sales
1 1 3

1 2 6

1 3 2

1 4 4

2 1 4

2 2 5

2 3 3

… … …

{(1,11),(2,12),(3,17),(4,16)}

Data: a 2-dimensional dataset with product, and time as the dimensions 
and sales as the measure attribute. 
Range: product<=3 and time<=4
Query: Total Sales vs. Time
– Time: Grouping dimension
– Total: Aggregate function

Result:
– Aggregation of 3 products per day

Grouping dimension (x)

Aggregating dimension (y)

x

y

Time Sales
1 11

2 12

3 17

4 16

11 12 17 16
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Challenge

Requirements:
– Low-maintenance
– Approximate/Progressive

Set of individual queries
– No I/O sharing
– Approximation of individuals

Single Query
– One-pass algorithm
– Approximation of the entire set

Output of a range group-by query
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Query Definition :

Query (Definition)
x: grouping dimension with the range of [lx,hx] 
y: aggregating dimension with the range of [ly,hy] 
Query Definition:

lx hx

ly

hy

G=

D=

1
1
1
0Q=

Query Vector:

Dot product of <the x column of D> and <Q>:

Dot product of their wavelet-transform:

G(x)

D(x,y)
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Dot product (Example)

3

6

2

4

4

5

3

2

4 5 5 7

5 4 6 6

4 6 2 1

2 3 4 2

8

6

3

3

6

5

5

2

1

1

1

0

Query vector (Q) Data vector (Dx) Data (D)

3

6

2

4

4

5

3

2

8

6

3

3

6

5

5

2

11 12 17 16G= DWT

1.5

0.5

0

0.7

11 12 17 16G= 

7.5

1.5

-2.1

-1.4

7.0

2.0

-0.7

0.7

10

4.0

1.4

0

9.0

2.0

0.7

2.1

DWT

O(N)

O(log N)
7.5 7.0 4 7.5 8.5 8.010 9.0

1.5 2.0 5 1.5 2.5 5.04.0 2.0

-2.1 -0.7 4 -0.7 -0.7 0.71.4 0.7

-1.4 0.7 2 1.4 -1.4 -0.70 2.1

DWT (Wy)

y-Transformed Data (WyD)

: the x column of WyD
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Algorithm: 
– Step1 (reconstruction):

– Step2 (aggregation):

Not efficient
– D is Large Online computation of WyD is costly!

We store     , not WyD
Because: grouping dimensions are selected on-the-fly

– We must store WyD and WxD
– O(2d) for a d-dimensional dataset

Solution: Online computation of WyD from

Reconstruction + Aggregation

(                                    )

reconstruction

aggregation
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Aggregation + Reconstruction
We interchange the equations to 
push the aggregation down to the 
wavelet domain:

Efficient plot query processing:

reconstruction

aggregation
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Complete Example

23.5 .2 .4 .7-2.3

6.5 .2 -.4 1.4-1.3

-.3 -.3 -1.0 0.5 -1.0 -1.0-2.5 0.0

1.0 0.0 -1.5 -1.5

-1.1

1.1

-.5

.4

-1.8

-.5-1.4

0.0

-3.0

2.8

1.5

0.5

0

0.7 39.2 .35 -.71 .71 -1.4 -.71-5.0 0.5

13 15 13 1411 12 17 16
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Progressiveness

23.5 .2 .4 .7-2.3

6.5 .2 -.4 1.4-1.3

1.0 0.0 -1.5 -1.5-1.4

1.5

0.5

0.7 39.2 .35 -.71 .71-5.0

11 12 17 16

Favoring Aggregation
1. First-B on Aggregating
2. Highest-B on Aggregating

Favoring Reconstruction
3. First-B on aggregating
4. Highest-B on aggregating

Hybrid
5. First-B on both aggregating and grouping
6. Highest-B on aggregating and First-B on grouping
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Progressive Output (Example)
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d-dimensional Query
Consider a d-dimensional dataset with a1,…,ad as its 
dimensions and D(a1,…,ad ) as its measure. 
Let the query range be [li,hi] for each dimension i
Let the first g dimensions be the grouping dimensions
SQL statement:

a1 … ag … ad D

grouping

Query is defined as:

aggregating

x y D

=W1 …WgW g+1 …WdD

Wx Wy
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Performance Evaluation

Experimental Datasets
Query Performance
Effect of Grouping Dimensions
Progressiveness
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Experimental Datasets
LH
– Monthly production and injection history data for a waterflood oil reservoir 

for 57 years 
– Dimensions: well ID and time
– Measure: oil production
– Size: 1 GB

GPS 
– Profiles of atmospheric water vapor pressure with resolution of about a 

kilometer, derived from radio occultation data for 9 months
– Dimensions: latitude, longitude, pressure level, and time 
– Measure: water vapor pressure
– Size: 2 GB

AIRS
– Earths atmospheric temperature profiles at a very high rate for one year
– Dimensions: latitude, longitude, pressure level, and time
– Measure: temperature
– Size: 320 GB
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Query Performance
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Effect of Grouping Dimensions
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Progressive Processing
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Summary and Future Work
Summary:
– We addressed an important class of queries, “range group-

by query”
– We employ wavelets to support exact, approximate, and 

progressive range group-by queries on large 
multidimensional datasets, while keeping update costs 
relatively low

– An efficient range group-by query processing allows 
scientists to generate meaningful plots on large 
multidimensional datasets for arbitrary settings

Future Work:
– Including having into the range group-by query
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Progressiveness

23.5 .2 .4 .7-2.3

6.5 .2 -.4 1.4-1.3

1.0 0.0 -1.5 -1.5-1.4

1.5

0.5

0.7 39.2 .35 -.71 .71-5.0

11 12 17 161

2

3

1 2 3 4 5

1

3

2

Grouping dimension (x):
– Lowered frequencies are preferred (First-B ordering)

Aggregating dimension (y):
– Lower frequencies are preferred (First-B ordering)
– Higher values of Q are preferred (Highest-B ordering)

FFH

0.5

0.7
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