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Sensor-based Applications



Problem Overview
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Resource Budget (C) = 8
{T1},{T2},{T3},{T1,T3},{T2,T3}

How can the quality of a query be maximized by probing under 
limited resource constraints?

{T4} (c4 > C), {T1,T2}(c1+c2>C)…

probe
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System Architecture



Uncertain Data Model
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Probabilistic Queries
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Definition: Probabilistic Range Query (PRQ). Given a closed interval         , 
where               and         ,  a PRQ returns a set of tuples , where      is 
the non-zero probability that                  .
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Idea: Quality Score
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“T4 satisfies Q” “T4 does not satisfy Q”



The entropy of Ti for satisfying a PRQ is 
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Quality Score (Example)
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Larger H implies lower quality

H equals to zero if the result is precise (pi = 0 or pi = 1)

No need to probe objects that leads to precise results

Only needs to consider objects that satisfy the query with )1,0(∈ip
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Expected Quality
To decide the sets of sensor(s) to probe, we choose 
the set that results in the best expected quality
The set of sensors being probed can have different 
possible values.

Q may then have different results: r1, r2,…
with corresponding probabilities p(r1), p(r2),…
each result has a quality score H1, H2,…

The expected quality of probing this set 
p(r1)*H1 + p(r2)*H2 + …



Resource Budget
Important resources for wireless sensor networks

power consumption
network bandwidth

no. of transmitted messages
as a way for measuring these costs
also the probing cost in this paper 

each query Q has a resource budget C
max. # of transmitted messages allowed for improving H

each item, Ti has a cost ci

# of transmitted messages spent for probing Ti



Problem Modeling

Given 
a query Q
a set of data objects {T1,…,Tn} each of which is 
attached with a resource cost ci

a method for calculating quality score H
a resource budget C,

How to maximize the expected quality, i.e. 
obtain lowest H, with probing cost under C? 



Brute-force Solution
Brute-force solution

generate every subset of {T1,…,Tn} whose costs are not 
larger than C
calculate the expected quality of probing this subset
select the one with the best expected quality

Exponentially expensive in both computation and 
memory cost



Efficient Computation of 
Expected Quality Improvement
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The expected quality improvement is exactly the entropy of the probed items.
e.g.  expected quality improvement of probing {T3,T4} = g3+g4

The qualification probability for a probed data value is either 0 or 1.

0'
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Probing reduces the uncertainty of objects to zero



The Single Query Problem (SQ)
Only one query Q is assumed when sensors 
being chosen.
Based on our findings, we can formalize the 
problem as follows:
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The expected quality improvement is exactly the entropy of the probed items



Dynamic-Programming Solution (DP)

Denote the problem P(C,N) and the optimal 
set S = {T1,T2 ,...,Tm}

Consider sub-problem P(C-c1,N/{T1}) 
S’ = {T2 , ..., Tm} must be the optimal set for this 

sub-problem (proved in the paper)
leading to the optimal substructure property



Dynamic Programming Solution (DP)
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The Multiple Queries with Shared 
Budget Problem (MQSB)

More than one query are processed at the 
server simultaneously
A data item Ti may be involved in the results 
of multiple queries
By probing Ti, all queries containing it in 
their results will have a better quality



v1

Expected Quality Improvement of 
Probing Ti

By probing T1, both Q1 and Q2 will have a better quality
Therefore, the expected quality improvement of probing Ti is the 
sum of its entropies for each query, i.e.
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Solution for MQSB

The formal definition of MQSB has the same 
form as that of SQ. 
The only difference is the use of Gi to 
replace gi. 
DP is also suitable for solving MQSB.



Approximate Solutions
Greedy

Define efficiency as the amount of quality improvement 
obtained by consuming a unit of cost
Probe sensors in descending order of their efficiency 
until C is exhausted

MaxVal
Probe sensors in descending order of their quality 
improvements until C is exhausted

Random 
Randomly choose an item to probe until C is exhausted



Computational Complexity

Algorithm SQ MQSB
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Greedy

Random

MaxVal
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Memory Complexity

Algorithm SQ MQSB

DP
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Random
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Experiment Setup

Uncertain Object DB Long Beach (53k)

Uncertainty pdf Uniform

Cost of Probing Sensors Uniformly distributed in [1,10]

# of Queries (for MQSB) 10

Resource Budget [20,500]



1. Quality Improvement vs. 
Resource Budget (SQ)



2. Quality Improvement vs. 
Resource Budget (MQSB)



3. Time Analysis of DP



4. Decision Time vs.
Resource Budget (SQ)



5. Scalability of Greedy for MQSB
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Conclusions
We study the optimization issues of probabilistic query 
quality under limited budgets
Solutions for both single and multiple queries are 
presented and experimentally evaluated
Recently, we extend the study of the problem to a general  
probabilistic database model [VLDB08]
We will investigate the problem for other queries
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