Quality-Aware Probing of Uncertain Data with Resource Constraints

Jinchuan Chen

The Hong Kong Polytechnic University csjcchen@comp.polyu.edu.hk Reynold Cheng The University of Hong Kong ckcheng@cs.hku.hk

20th International Conference on Scientific and Statistical Database Management (SSDBM) July 9-11, 2008, Hong Kong, China

Sensor-based Applications

Problem Overview

Related Works

Probing Plans [VLDB00, SAC05, VLDB04b, ICDE05b, ICDE06] Probabilistic Queries CR [SIGMOD03, VLDB04, ICDE05, RTS06, IS06, ICDE07, ICDE07b, TDS07, ICDE08, SSDBM08] Uncertain Database Cleaning ペ [VLDB08]

Talk Outline

System Architecture Problem Formulation Quality-Aware Probing The Multiple Queries with Shared Budget Problem Experimental Results Conclusion

System Architecture

Uncertain Data Model

[VLDB04b, SSDBM99, IS06]

Probabilistic Queries

Definition: Probabilistic Range Query (PRQ). Given a closed interval [a,b], where $a, b \in R$ and $a \le b$, a PRQ returns a set of tuples (T_i, p_i) , where P_i is the non-zero probability that $T_i v \in [a,b]$. [SIGMOD03, VLDB04, ICDE07]

Idea: Quality Score

"T4 satisfies Q"

"T4 does not satisfy Q"

Quality Score

♦ The entropy of *Ti* for satisfying a PRQ is $g_i = -p_i \log p_i - (1 - p_i) \log(1 - p_i)$

Quality Score for a PRQ

 $H = -\sum_{i=1}^{n} (p_i \log p_i + (1 - p_i) \log(1 - p_i)) = \sum_{i=1}^{n} g_i$

Quality Score (Example)

Larger H implies lower quality

- *H* equals to zero if the result is precise ($p_i = 0$ or $p_i = 1$)
- No need to probe objects that leads to precise results

• Only needs to consider objects that satisfy the query with $p_i \in (0,1)$

Expected Quality

- To decide the sets of sensor(s) to probe, we choose the set that results in the best *expected* quality
- The set of sensors being probed can have different possible values.
 - $\propto Q$ may then have different results: $r_1, r_2,...$
 - \bowtie with corresponding probabilities $p(r_1), p(r_2),...$
 - \bigcirc each result has a quality score H_1, H_2, \ldots

Resource Budget

Important resources for wireless sensor networks composer consumption executive network bandwidth no. of transmitted messages cas a way for measuring these costs each query Q has a resource budget C max. # of transmitted messages allowed for improving H each item, Ti has a cost Ci **••** # of transmitted messages spent for probing T_i

Problem Modeling

Given

- ca query Q
- $case a set of data objects {T_1,...,T_n} each of which is attached with a resource cost <math>c_i$
- \mathbf{R} a method for calculating quality score H
- α a resource budget C,
- How to maximize the expected quality, i.e. obtain lowest H, with probing cost under C?

Brute-force Solution

Brute-force solution

- calculate the expected quality of probing this subset
- ce select the one with the best expected quality

 Exponentially expensive in both computation and memory cost

Efficient Computation of Expected Quality Improvement

$$\begin{array}{c} \mathbf{v_1} \\ \mathbf{v_1} \\ p_2 = 0 \end{array} \\ \mathbf{v_2} \\ \mathbf{v_3} \\ \mathbf{v_3} \\ \mathbf{p_3} = \mathbf{0}.5 \\ \mathbf{g_3} = 1 \\ \mathbf{g_3} = 0 \\ \mathbf{g_4} = 0.2 \\ \mathbf{g_4} = 0.81 \\ \mathbf{$$

The qualification probability for a probed data value is either 0 or 1.

Probing reduces the uncertainty of objects to zero

The expected quality improvement is exactly the entropy of the probed items.
 e.g. expected quality improvement of probing {*T*₃, *T*₄} = *g*₃+*g*₄

The Single Query Problem (SQ)

- Only one query Q is assumed when sensors being chosen.
- Based on our findings, we can formalize the problem as follows:

Maximize query $Maximize \sum_{i=1}^{n} x_i g_i$ quality within $subject to \sum_{i=1}^{n} x_i c_i \leq C$ budget C? $x_i \in \{0,1\}, i = 1, ..., n$

The expected quality improvement is exactly the entropy of the probed items

Dynamic-Programming Solution (DP)

- ♦ Denote the problem P(C,N) and the optimal set S = {T₁, T₂,...,T_m}
 - \curvearrowright Consider sub-problem $P(C-c_1, N/\{T_1\})$
 - \mathbb{C} $S' = \{T_2, ..., T_m\}$ must be the optimal set for this sub-problem (proved in the paper)

leading to the optimal substructure property

Dynamic Programming Solution (DP)

Input An array of probing costs $c = (c_1, ..., c_n)$ An array of gains $g = (g_1, ..., g_n)$ The resource budget C Output The optimal set for i := 1 to n do for k := 1 to C do if $c_i > k$ or $v[k, i-1] > v[k-c_i, i-1] + g_i$ v[k,i] := v[k,i-1]s[k,i] := s[k,i-1]else $v[k,i] \coloneqq v[k-c_i,i-1] + g_i$ $s[k,i] := s[k-c_i,i-1]$ s[k,i][i] := 1return s[C,n]

The Multiple Queries with Shared Budget Problem (MQSB)

- More than one query are processed at the server simultaneously
- A data item *Ti* may be involved in the results of multiple queries
- By probing *Ti*, all queries containing it in their results will have a better quality

Expected Quality Improvement of Probing *Ti*

- By probing T_1 , both Q_1 and Q_2 will have a better quality
- Therefore, the expected quality improvement of probing *T_i* is the sum of its entropies for each query, i.e.

$$G_i = -\sum_{j=1}^{m} p_{ij} \log p_{ij} + (1 - p_{ij}) \log(1 - p_{ij})$$

Solution for MQSB

- The formal definition of MQSB has the same form as that of SQ.
- The only difference is the use of G_i to replace g_i.
- DP is also suitable for solving MQSB.

Approximate Solutions

Greedy

Define efficiency as the amount of quality improvement obtained by consuming a unit of cost

Probe sensors in descending order of their efficiency until C is exhausted

MaxVal

Probe sensors in descending order of their quality improvements until C is exhausted

Random

Randomly choose an item to probe until C is exhausted

Computational Complexity

Algorithm	SQ	MQSB
DP	O(nC)	O(nmC)
Greedy	$O(n\log n)$	$O(nm\log nm)$
Random	O(n)	O(nm)
MaxVal	$O(n\log n)$	$O(nm\log nm)$

Memory Complexity

Algorithm	SQ	MQSB
DP	$O(n^2C)$	$O((nm)^2C)$
Greedy	O(n)	O(nm)
Random	O(n)	O(nm)
MaxVal	O(n)	O(nm)

Experiment Setup

Uncertain Object DB	Long Beach (53k)
Uncertainty pdf	Uniform
Cost of Probing Sensors	Uniformly distributed in [1,10]
# of Queries (for MQSB)	10
Resource Budget	[20,500]

1. Quality Improvement vs. Resource Budget (SQ)

2. Quality Improvement vs. Resource Budget (MQSB)

3. Time Analysis of DP

4. Decision Time vs. Resource Budget (SQ)

5. Scalability of Greedy for MQSB

References (1)

- [ICDE07] J. Chen and R. Cheng. Efficient evaluation of imprecise location-dependent queries. In ICDE, 2007
- [ICDE08] R. Cheng, J. Chen, M. Mokbel, and Chi-Yin Chow. Probabilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain data. In ICDE, 2008.
- [SIGMOD03] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In Proc. ACM SIGMOD, 2003.
- [ICDE05] R. Cheng, Y. Xia, S. Prabhakar, and R. Shah. Change tolerant indexing on constantly evolving data. In ICDE, 2005.
- [VLDB04] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods for probabilistic threshold queries over uncertain data. In Proc. VLDB,2004.
- [ICDE06] David Chu, Amol Deshpande, Joseph Hellerstein, and Wei Hong. Approximate data collection in sensor networks using probabilistic models. In ICDE, 2006.
- [VLDB04b] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Modeldriven data acquisition in sensor networks. In VLDB, 2004.
- [ICDE05b] A. Despande, W. Hong C. Guestrin, and S. R. Madden. Exploiting correlated attributes in acquisitional query processing. In ICDE, 2005.
- [SSDBM99] D.Pfoser and C. Jensen. Capturing the uncertainty of moving-objects representations. In Proc. SSDBM, 1999.

References (2)

- [ICDE04] I. Lazaridis and S. Mehrotra. Approximate selection queries over imprecise data. In ICDE, 2004.
- [ICDE07b] V. Ljosa and A. Singh. APLA: Indexing arbitrary probability distributions. In ICDE, 2007.
- [SIGMOD03b] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams. In SIGMOD, 2003.
- [VLDB00] Chris Olston and Jennifer Widom. Offering a precision-performance tradeoff for aggregation queries over replicated data. In VLDB, 2000.
- [TDS07] Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional uncertain data. ACM Transactions on Database Systems, 32(15), 2007.
- [IS06] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluation of probabilistic queriesover imprecise data in constantly-evolving environments. Information Systems Journal, 2006.
- [MMOR03] G. Diubin. The average behaviour of greedy algorithms for the knapsack problem: general distributions. Mathematical Methods of Operations Research, 57(3), 2003.
- [SAC05] Z. Liu, K. C. Sia, and J. Cho. Cost-efficient processing of min/max queries over distributed sensors with uncertainty. In SAC'05, 2005.
- [VLDB08] R. Cheng, J. Chen and X. Xie. Cleaning Uncertain Data with Quality Guarantees. To appear in Very Large Databases Conf. 2008
- [SSDBM08] Matthias Renz, Hans-Peter Kriegel and Thomas Bernecker. ProUD: Probabilistic Ranking in Uncertain Databases. In SSDBM 2008.

Conclusions

- We study the optimization issues of probabilistic query quality under limited budgets
- Solutions for both single and multiple queries are presented and experimentally evaluated
- Recently, we extend the study of the problem to a general probabilistic database model [VLDB08]
- We will investigate the problem for other queries

Thank you!

Contact: Jinchuan Chen (csjcchen@comp.polyu.edu.hk)